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Abstract
The initial rollout of COVID-19 vaccines has been challenged by logistical issues, limited
availability of doses, scarce healthcare capacity, spotty acceptance, and the emergence
of variants of concern. Non-pharmaceutical interventions (NPIs) have been critical to sup-
port these phases. However, vaccines may have prompted behavioural relaxation, poten-
tially reducing NPIs adherence. Epidemic models have explored this phenomenon, but
they have not been validated against data. Moreover, recent surveys provide conflicting
results on the matter. The extent of behavioural relaxation induced by COVID-19 vac-
cines is still unclear. Here, we aim to study this phenomenon in four regions. We imple-
ment five realistic epidemic models which include age structure, multiple virus strains,
NPIs, and vaccinations. One of the models acts as a baseline, while the others extend
it including different behavioural relaxation mechanisms. First, we calibrate the baseline
model and run counterfactual scenarios to quantify the impact of vaccinations and NPIs.
Our results confirm the critical role of both in reducing infection and mortality rates. Sec-
ond, using different metrics, we calibrate the behavioural models and compare them to
each other and to the baseline. Including behavioural relaxation leads to a better fit of
weekly deaths in three regions. However, the improvements are limited to a 2–10% reduc-
tion in weighted mean absolute percentage errors and these gains are generally offset
by models’ increased complexity. Overall, we do not find clear signs of behavioural
relaxation induced by COVID-19 vaccines on weekly deaths. Furthermore, our results
suggest that if this phenomenon occurred, it generally involved only a minority of the pop-
ulation. Our work contributes to the retrospective validation of epidemic models devel-
oped amid the COVID-19 Pandemic and underscores the issue of non-identifiability of
complex social mechanisms.

Author summary
The COVID-19 vaccines rollout initially faced significant challenges. Non-
pharmaceutical interventions (NPIs) complemented vaccinations in addressing these
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issues. However, the interplay between vaccines and NPIs is complex and still unclear.
While some surveys suggest that the arrival of vaccines induced people to relax their
protective behaviours, others found little support for this phenomenon. Furthermore,
the epidemic models developed so far to study these processes lack empirical validation.
We aim to quantify the extent of behavioural relaxation studying five compartmental
models in four regions. All models integrate age-structure, multiple virus strains, NPIs,
and vaccinations. Four also include vaccine induced behavioural relaxation mechanisms.
Our findings confirm that both vaccinations and NPIs significantly reduced infection
and mortality rates. Furthermore, although adding behavioural relaxation mechanisms
improve the overall goodness of fit, the gains are limited and offset by increased mod-
els’ complexity. Overall, we found little evidence of behavioural relaxation induced by
vaccines on weekly deaths. Even if this phenomenon occurred, our results suggest that it
generally involved only a minority of the population. Our work contributes to the efforts
devoted to retrospectively validating epidemic models developed during the COVID-19
Pandemic and highlights the issue of non-identifiability of social mechanisms.
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Introduction
COVID-19 vaccines led to a significant reduction in mortality and transmission rates [1–5].
However, especially in the first months of their rollout, vaccination efforts have encountered
many challenges due to logistical issues, insufficient stockpiles, limited healthcare capacity,
and spotty acceptance [6]. A study from the United States, for instance, showed that counties
with limited healthcare resources were also more likely to achieve lower COVID-19 vacci-
nation rates [7]. On a global scale, initial vaccine acceptance varied significantly across dif-
ferent regions, ranging from 13% in Iraq to 97% in Vietnam according to surveys conducted
before the start of vaccine rollout [8]. Moreover, vaccine nationalism (i.e., the prioritization
of national self-interests over equitable global access) [9,10] and socioeconomic inequalities
led to a concentration of doses in high-income countries [10–12]. The insufficient vaccina-
tion coverage in many areas proved inadequate to prevent subsequent waves and reduce both
cases and deaths [5,13]. The vaccines rollout was also challenged by the emergence of SARS-
CoV-2 variants of concern (VOC), such as Alpha and Delta, which led to a reduction of the
protection against infection provided by vaccines [14,15].

While non-pharmaceutical interventions (NPIs) have been key to support vaccination
efforts during these initial phases [4,5,16], their adoption is shaped by many factors such as
perceived susceptibility, severity, barriers to actions, exposure to (mis)information, and peer-
effects [17–23]. It is natural to wonder whether the arrival of COVID-19 vaccines impacted
the adoption of NPIs. Indeed, the start of vaccinations might have lowered the risk percep-
tion in at least some groups of the population, which in turn might have led to a relaxation of
compliance to a wide range of NPIs such as mask-wearing, social distancing, and increased
hygiene practices. The potential effects of this phenomenon, which for simplicity we will refer
to as behavioural relaxation, have been explored via epidemic models in realistic, yet theoret-
ical, scenarios during the first months of the vaccine rollout [24–27]. The results from these
efforts suggest that behavioural relaxation could reduce the positive gains brought about by
vaccines thus leading to higher disease burden. The empirical evidence does not provide a
clear picture of the extent of behavioural relaxation. Indeed, longitudinal survey data from
16 European countries suggest that vaccinated individuals had 1.31 times more social con-
tacts than non-vaccinated [28]. Other surveys conducted in England and Wales report that,
after two doses, about 48% of the respondents increased their interactions with friends or
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family and about 38% visited indoor places more often [29]. A regression analysis conducted
considering different mobility data in London shows a positive association between mobility
and vaccinations [30]. Other surveys conducted in Brazil, Italy, South Africa, and the United
Kingdom, indicate that public transport usage increased by up to 10% after the rollout of
first dose of vaccine [31]. However, the results from large, and repeated, cross-sectional sur-
veys conducted in France provide limited support for a systematic behavioural relaxation,
especially during the initial phases of the vaccine rollout [32].

In this context, we investigate the interplay between vaccinations and NPIs during the
first months of the COVID-19 vaccine rollout in four regions: British Columbia (Canada),
Lombardy (Italy), London (United Kingdom), and São Paulo (Brazil). These regions have
been selected to sample different epidemiological, socioeconomic, and socio-demographic
contexts, as well as different vaccine rollout schedules and coverages. We set to quantify the
extent of behavioural relaxations induced by the start of vaccination campaigns and esti-
mate their potential impact on reported weekly deaths via epidemic models. Indeed, as men-
tioned above, the models published so far to capture such behavioural relaxation have not
been validated against real data [24–27]. Besides, they have not been compared among them
nor against simpler models that do not feature explicit behavioural relaxation mechanisms. By
using the data collected and made available over the last years, we can address these gaps. To
this end, we develop a series of stochastic compartmental epidemic models, integrating vacci-
nations, variants of concern, age-structure, NPIs, as well as individuals’ behavioural relaxation
linked to vaccines. In particular, we consider a baseline model without behavioural relaxation
mechanisms and four models that include them. In these, we introduce explicit compartments
that account for non-compliant individuals who relaxed their protective behaviours as a result
of the start of vaccinations. These models, which we will refer to as behavioural models, dif-
fer according to the mechanisms used to describe the transitions in and out of non-compliant
behavioural compartments.

To set the stage, we first calibrate the baseline model to reported data (i.e., weekly deaths)
in the four locations and run two counterfactual scenarios to quantify the impact of vaccines
and of NPIs on COVID-19 burden. Our results clearly confirm the crucial role played by both
in reducing deaths and infections in the regions considered. Then, we calibrate and com-
pare the other four models against each other and the baseline. Our results do not provide
strong support for the inclusion of behavioural relaxation mechanisms across all regions. Even
more, the phase space selected in the calibration suggests that, if behavioural relaxation took
place, it was limited to a minority of the population thus not leaving clear marks on weekly
reported COVID-19 deaths. Moreover, our findings highlight the issue of non-identifiability
of complex behavioural dynamics in epidemic models.

Results
We implement and compare five epidemic models. The first acts as a baseline. The others
build on it and include different behavioural relaxation mechanisms. The four behavioural
models combine and extend approaches from the literature [24,25]. To explore different epi-
demiological, socioeconomic and socio-demographic contexts, as well as different vaccine
rollout schedules and coverages we consider four regions of the world: British Columbia
(Canada), Lombardy (Italy), London (United Kingdom), and São Paulo (Brazil). All mod-
els are calibrated to confirmed weekly deaths via an Approximate Bayesian Computation-
Sequential Monte Carlo (ABC-SMC) method [33]. While we provide a summary of the mod-
els in the next two sections, we refer the reader to the Material and Methods as well as in S1
Text (Sect 1.1) for full details.
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Baseline model
The baseline model (baseline) is a Susceptible-Latent-Infected-Recovered (SLIR) epidemic
model integrating vaccinations, NPIs, age-structured contact matrices, multiple virus strains,
and disease-related deaths. It constitutes the core upon which the other four models are built.
We include age-stratified vaccinations by using real data [34–38]. For simplicity, we assume
a single dose regiment and ignore the time required to develop full protection after inocula-
tion. Furthermore, we assume that only susceptible individuals are eligible for vaccination. We
estimate the impact of NPIs on social contacts using mobility data from the COVID-19 Com-
munity Mobility Report published by Google LLC [39] and the Oxford Coronavirus Govern-
ment Response Tracker (OxCGRT) [40]. This data is used to modulate the contact matrices as
function of time. We also consider the emergence and spread of a second virus strain. Accord-
ing to virological surveillance data, during the period under consideration, the Alpha vari-
ant emerged and replaced the ancestral type in British Columbia and Lombardy, while Delta
replaced the Gamma VOC in São Paulo. London, during the time interval under investiga-
tion, faced primarily a wave dominated by Alpha [41–43]. In our models, we assume Alpha
and Delta to have higher transmissibility [44,45], vaccine-induced immunity escape poten-
tial [44,46,47], and shorter latent period with respect to previously circulating strains [48–52].
We refer the reader to the Materials and Methods for more details.

Behavioural relaxation models
Building on the baseline and the literature, we explore four different behavioural relaxation
models. To this end, we extend the compartmental structure of the baseline by introducing
non-compliant (NC) compartments to account for susceptible individuals who relax their
COVID-19 safe behaviours as result of the vaccine rollout. The models differ for two main
aspects (see Table 1 for a summary of models’ characteristics). The first revolves on which
groups of the population might relax their behaviours. Following Ref. [24], in the first and
second behavioural model we assume that all susceptible individuals, independently from
their vaccination status, might enter/leave the NC compartments. Following Ref. [25] instead,
in the third and fourth behavioural models only susceptible and vaccinated individuals might
transition to non-compliant compartments. The second aspect that further differentiate the
models relates to the mechanisms regulating the transitions from and to compliance [24,25].
The first and third model consider the simplest transitions type: a constant transition rate.
The second and fourth models consider transition rates that are time-dependent and function
of the fraction of the population in specific compartments. In details, in the first and third
model the transition from and to compliance takes place at constant rates 𝛼 and 𝛾, respec-
tively. In the second and fourth models, the transition rate from compliant to non-compliant
behaviour is set as a function of 𝛼 and the fraction of vaccinated individuals. The reverse tran-
sition rate is set as a function of 𝛾 and the number of daily deaths per 100,000. Indeed, daily
deaths have been often used, especially by media, to characterize the severity of different Pan-
demic phases and are a known driver of individuals’ adherence to NPIs [17]. To highlight
the two key aspects differentiating the models, we refer to the first model as the constant rate
model, the second as the time-varying rate model, the third as the constant rate model (vacci-
nated only), and the fourth as the time-varying rate model (vaccinated only). In all four mod-
els, as result of behavioural relaxation, individuals in the NC compartments have a risk of
infection r (r > 1) times higher than that of compliant individuals [24,25,28,29].

It is important to note how the Health Belief Model provides the theoretical constructs to
justify and interpret the mechanisms behind the potential transitions between compliance
and non-compliance [53–55]. As mentioned, the adoption of health behaviours is affected,
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Table 1. Summary description of the four behavioural models.
Behavioural model Key features
Constant rate model Both susceptible (S) and susceptible vaccinated (SV ) individuals might become

non-compliant. Transitions to (from) non-compliance take place at constant rate 𝛼
(𝛾)

Time-varying rate model Both susceptible (S) and susceptible vaccinated (SV ) individuals might become non-
compliant. Transitions to non-compliance are function of the fraction of vaccinated
individuals and 𝛼. Transitions to compliance are function of the number of daily deaths
per 100,000 and 𝛾

Constant rate model
(vaccinated only)

Only susceptible vaccinated (SV ) individuals might become non-compliant. Transitions
to (from) non-compliance take place at constant rate 𝛼 (𝛾)

Time-varying rate model
(vaccinated only)

Only susceptible vaccinated (SV ) individuals might become non-compliant. Transi-
tions to non-compliance are function of the fraction of vaccinated individuals and 𝛼.
Transitions to compliance are function of the number of daily deaths per 100,000 and 𝛾

https://doi.org/10.1371/journal.pcbi.1013266.t001

among other factors, by perceived risks and susceptibility [53–55]. In this context, the start
and progression of COVID-19 vaccinations might have changed the risk perception of some
leading to behavioural relaxation [24,25]. On the other hand, a worsening of the epidemic
conditions in one’s social circle or in the total population might lead to another change in risk
perception and/or susceptibility thus inducing individuals to resume their adoption of NPIs.

Vaccines rollout, epidemic progression and NPIs in the four
regions under study
The rollout of COVID-19 vaccines is a key part of our work. Hence, we start by providing
some information about the initial phases of vaccinations in the four regions under study. In
Fig 1A, we show the 7-day moving average of the fraction of daily newly vaccinated individ-
uals across all age groups (shaded areas) and in the 70+ age group (solid lines) from the start
of the vaccination rollout until the end date of the period under consideration. COVID-19
vaccination campaigns started on 2020/12/19 in British Columbia, 2020/12/08 in London,
2020/12/27 in Lombardy, and 2021/01/18 in São Paulo [34–38]. In all locations, we observe
a peak in the first month during which the initial doses were mainly administered to front-
line workers and fragile individuals. A similar behaviour can be seen for the 70+ age group.
Moreover, the vaccine rates of this group show a second peak earlier with respect to the over-
all vaccination rates in the four regions, reflecting the priority given to the elderly population.
Additionally, we observe that the vaccination rate in London was concentrated during the
second to the fifth month since the rollout started. However, in British Columbia and Lom-
bardy, vaccination started on a wider scale (i.e., beyond the prioritization of fragile individ-
uals and frontline workers) from the third month of the rollout, and even later in São Paulo
(from the fourth month).

To better understand the epidemic contexts in the periods under examination, next we
discuss the evolution of the Pandemic and of NPIs in the four regions. In Fig 1B we show the
confirmed deaths per 100,000 (solid lines). We can observe differences in the timing, shape,
and intensity of the Pandemic across the four regions. Indeed, within the time horizon of
interest, British Columbia and London experienced a single peak concentrated around the
end of 2020. The peak in London was particularly intense and fuelled by the spread of the
Alpha VOC which was initially detected there and traced back to a set of transmission chains
that occurred in September 2020 [56]. However, in British Columbia, the peak of weekly
deaths was more than five times lower compared to the other three regions and followed by
a slower decrease with fluctuations due to the Alpha variant replacing the wild type [57]. In
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Lombardy, we observe an intense peak (comparable to London) right before the end of the
year and a second, less pronounced, peak in early April mainly due to the lifting of some of
the NPIs and the spreading of Alpha [4]. Also in São Paulo we observe two intense peaks,
which however are much closer both in terms of intensity and timing. Genomic data in this
region suggests that the two peaks were driven by the rapid spread of the Gamma VOC first
followed by the arrival and spread of the Delta VOC [43,58,59]. We note that the first of these
two peaks take place in April, hence months later than the main peak in the other three areas
here under examination.

In Fig 1B we also show the effect of NPIs on contacts estimated from the COVID-19 Com-
munity Mobility Report released by Google LLC [39] and the Oxford Coronavirus Govern-
ment Response Tracker (OxCGRT) [40]. We use this data to estimate the contact levels during
the Pandemic with respect to a pre-Pandemic baseline. Indeed, this data has been often used
as a proxy of NPIs adoption, especially during the first two years of the Pandemic [17]. We
refer the reader to the Materials and Methods for details. The plot suggests that, among the
regions considered, individuals in London adopted the strictest NPIs. This is likely due to the
emergence and rapid spread of the Alpha VOC that resulted in strong social distancing poli-
cies. These measures led to a significant reduction in contacts ranging from 10% to 50% with
respect to the pre-pandemic contact levels. A similar trend, though not as strong, is observed
in Lombardy where contacts rapidly dropped as the 2020 winter season progressed. In British
Columbia, despite a visible drop at the end of 2020, we observe a level centred around 50%
with respect to the pre-pandemic baseline. In São Paulo, we observe a much steeper increase
from week 13 of 2021. By the end of the observed period, the contact level achieved over
80% with respect to the pre-pandemic baseline, indicating a significant rebound toward the
pre-pandemic level.

Baseline calibration
In Fig 1C, we show the weekly deaths as reported by official surveillance and as estimated by
the baseline epidemic model in the four regions considered. In the figure, we plot medians
along with 90% confidence intervals (CI) computed considering 1000 stochastic trajectories
sampled from the joint posterior distributions estimated via the ABC-SMC calibration (see
Materials and Methods for details). We highlight the start of the vaccination campaign in each
location with vertical solid lines. To account for local differences in the epidemic trajectory,
the starting point of our simulations is left as a free, calibrated, parameter (see Materials and
Methods for more details). Furthermore, the simulation horizons in the four regions are set
to capture the local epidemic wave(s) in the first months of the vaccine rollout. More pre-
cisely, we run simulations until 2021/07/04 in British Columbia, London, and Lombardy. In
case of São Paulo we run until 2021/10/03 to capture the late waves of infection experienced
there with respect to the other regions. Interestingly, most reported data points fall within the
90% CI of the calibrated baseline, which suggests the effectiveness of the model in fitting the
unfolding of the Pandemic in the four locations despite the differences in terms of shapes and
intensities of each epidemic curve. The analysis of the posterior distributions of free parame-
ters, shown in S1 Text (Sect 5.4), indicates London as the region with the highest basic repro-
ductive number R0. This is likely due the dominance of the Alpha VOC in London at the start
of our simulation window. Overall, the posterior estimates for R0 are in line with previous
findings [60–62]. More precisely, Ref. [60] reports values just above 1 and below 1.5 in British
Columbia in October 2020. We found R0 = [1.1 – 1.5] (90% CI) at the start of our simulation
period in the same month. Ref. [61] estimated values of R0 ∼ 1.25 in Lombardy at the end of
October 2020. This finding is in line with our posterior estimates of R0 = [1.04 – 1.80] (90%
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Fig 1. Weekly deaths, vaccinations, contacts reduction, and calibration of baseline model.The x-axis indicates the year and week. A) Fraction of
daily newly vaccinated individuals across all age groups (shaded areas) and within the 70+ age-group (solid lines) in the four regions from up to down:
British Columbia, Lombardy, London, and São Paulo. B) Contact levels during the Pandemic with respect to a pre-pandemic baseline. C) Reported data
describing weekly deaths per 100,000 (dots) and the results from the calibrated baseline model (solid lines representing the medians, shaded areas the 90%
confidence intervals). The grey vertical lines mark the start of vaccinations in different regions.

https://doi.org/10.1371/journal.pcbi.1013266.g001
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CI) in the same period. Ref. [62] reports values between 1.5 and 2 for Brazil in January 2021.
Our estimates suggest R0 = [1.4 – 2.3] (90% CI) at the starting point of the simulation period
in the same month. Despite these similarities it is important to note how the calibrated val-
ues of R0 are affected by the model structure and specifically by how the force of infection
is described. Thus, comparisons of fitted values across different models should be carefully
interpreted [63].

Estimating the impact of vaccines and NPIs via counterfactual scenarios
To estimate the impact of vaccines on COVID-19 deaths and infections we run a counterfac-
tual scenario where they are removed from the baseline model. To this end, we first calibrate
the model in the four locations. Then, we run matched simulations where we remove vacci-
nations. Hence, we quantify the effect of vaccines by computing the relative deaths difference
(RDD) between the total number of deaths in a model with vaccines and those observed in
an equivalent model without vaccines (see more details in Materials and Methods). The RDD
for vaccines is shown in Fig 2A. The median values of RDD are greater than zero highlight-
ing the clear positive effects of vaccinations. In particular, we find an RDD of 10.33% (90%
CI: [–2.50%,25.01%]) in British Columbia, 15.90% ([9.65%,23.99%]) in Lombardy, 1.20%
([–0.06%,4.82%]) in London, and 50.69% ([45.77%,56.16%]) in São Paulo. The difference
in RDD across the four regions is possibly due to several factors including timing and cov-
erage of vaccines, local epidemiological context (e.g., VOC circulating), and NPIs in place.
Notably, São Paulo, which exhibits the highest RDD, achieved also the highest vaccine cov-
erage (78% of the population) by the end date of the simulation window. This is significantly
larger than the coverage in British Columbia (69%), Lombardy (63%), and London (61%). As
noted above, São Paulo is the region with the lowest reduction of contacts due to NPIs. This
might contribute to enhance the role of vaccines. Notably, the median value of RDD in São
Paulo corresponds to more than 70K additional deaths averted (see S1 Text Sect 3.5). Though
British Columbia has marginally higher vaccine coverage compared to Lombardy, its RDD
is however the second lowest. This discrepancy can be explained by the relatively lower and
slower epidemic progression in this region. As mentioned, this location experienced, at the
peak, a burden of the disease about five times lower than the other three. The RDD values in
this region are reflective of a very small absolute difference of deaths between the two scenar-
ios (144 deaths as shown in S1 Text Sect 3.5). The RDD in London is the lowest value. In Lon-
don, the early 2021 wave was fuelled by the Alpha VOC which was more transmissible and
able to reduce the vaccines’ protection from infection. Furthermore, the weekly deaths peaked
when only a small fraction of the population was vaccinated and the vaccine coverage, by the
end of our simulation window, is the smallest in the group of countries under investigation.
Additionally, as shown above, London faced the strictest NPIs among the regions considered
bringing contacts down even to 10% of pre-Pandemic levels.

Analogously, we compute relative difference of infections (RDI), defined as the fraction
of total infections avoided by vaccines with respect to the infections observed in an equiva-
lent model without vaccines (see S1 Text Sect 3.3 for details). In general, the RDIs are lower
compared to RDDs across the regions as COVID-19 vaccines are more effective in preventing
severe outcomes rather than infections. The RDIs show a similar pattern to that observed for
RDDs across the four regions, except for São Paulo. The median of RDIs is only 9% while it is
51% for RDDs. This is likely due to São Paulo experiencing distinct viral strains, specifically
the Gamma and Delta variants, which significantly reduced vaccine efficacy against infection
compared to the other regions that instead saw the circulation of the wild type and the Alpha
variant [44].
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Fig 2. Impact of vaccines and non-pharmaceutical interventions on COVID-19 deaths (baseline model). A) Relative
deaths difference (RDD) for vaccines. B) RDD for NPIs. The boxplots in both panels show the results considering 1000
stochastic trajectories in each region. The horizontal line within each box marks the median value, while the top and bottom
edges correspond to the 90% CI. The whiskers extend to the maximum and minimum values. These estimates are obtained
considering the baseline model.

https://doi.org/10.1371/journal.pcbi.1013266.g002

We also investigate when the vaccination starts to have macroscopic effects by estimat-
ing the time when weekly deaths with and without vaccination differ by more than 1%. The
results show that the difference of deaths began to diverge after 18 weeks since the vaccine
rollout in British Columbia, 6 weeks in Lombardy, 8 weeks in both London and São Paulo
(see S1 Text Sect 3.1).

To investigate the effects of NPIs on the progression of the Pandemic, we run a counter-
factual scenario where we remove the impact of NPIs on contacts, while maintaining vacci-
nations. By comparing the trajectory of deaths with/without contacts modulation induced by
NPIs, we find that without NPIs we would have experienced a larger number of deaths across
all regions considered. Specifically, our results show that removing NPIs would have resulted
in a much higher peak of weekly deaths during the period considered, 5.3 (90% CI: [3.3, 9.4])
times higher in British Columbia, 8.8 (90% CI: [6.8, 11.9]) times higher in Lombardy, 6.7
(90% CI: [5.5, 8.2]) times higher in London, and 4.7 (90% CI: [3.9, 5.7]) times higher in São
Paulo compared to the estimates of the model considering NPIs. The absence of NPIs would
have led to a 3 weeks earlier peak of weekly deaths in London and Lombardy, and 5 weeks
São Paulo (see S1 Text Sect 3.2). Furthermore, we quantify the effect of NPIs by computing
the fraction of total deaths avoided by NPIs with respect to the deaths observed in an equiv-
alent simulations without NPIs (denoted by RDD as above). As shown in Fig 2B we find that
87.50% (90% CI:[82.82%,91.27%]) deaths have been avoided due to NPIs in British Columbia,
66.72% ([62.75%, 71.25%]) in Lombardy, 70.29% ([65.06%, 76.73%]) in London, and 35.07%
([28.82%, 45.12%]) in São Paulo. Not surprisingly, the RDD of the four regions are strongly
correlated with their contact reduction with an exception in British Columbia. Specifically,
British Columbia shows the highest RDD despite not featuring the strongest reduction in con-
tacts. As noted above, the peak height of weekly deaths in British Columbia is more than five
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times smaller than in the other regions. Given these conditions, removing NPIs brings the
system into a different dynamical regime characterized, relatively speaking, by a much higher
number of deaths. The RDD of London is the second largest due to the strict NPIs imple-
mented during the observed period, imposed by the emergence and spreading of the Alpha
VOC in September 2020. In contrast, São Paulo exhibits the lowest RDD, due to the relative
low reduction in contacts induced by NPIs.

By comparing panels A and B in Fig 2, we see that, in the first months of the vaccine roll-
out, NPIs averted more deaths than vaccinations. This result highlights the crucial role of
NPIs in supporting the initial phases of vaccinations that, as discussed, struggled with signif-
icant challenges. Moreover, it shows the potential negative effects of behavioural relaxation
in that period, given that the low vaccine uptake would be insufficient to offset a substantial
decline in adherence to NPIs.

Analogously, we compute the fraction of total infections avoided by NPIs with respect to
the infections estimated by an equivalent model without NPIs (denoted as RDI). The results of
RDIs of the four regions are consistent with the results of RDD, except for London where we
find slightly lower RDIs than Lombardy (see S1 Text Sect 3.3 for details).

Estimating the extent of behavioural relaxation induced by vaccines
Building on the baseline and the literature, we developed four behavioural models where we
incorporate behavioural relaxation mechanisms potentially induced by vaccines. In Fig 3, we
show the calibrated results of all models (including the baseline) by presenting the medians
and the 90% confidence intervals of weekly deaths. The calibrated curves are all consistent
with reported epidemiological data. The differences between the models appear minimal to
a visual inspection. To better investigate the nuances, we computed weighted mean absolute
percentage errors (wMAPEs) as well as the Akaike Information Criterion (AIC) [64], and the
Bayesian Information Criterion (BIC) [65]. The wMAPE measures the difference between
the median outcomes of our models and reported data, while AIC and BIC scores assess the
performance of models by trading off their complexity and the goodness of fit. Based on the
AIC/BIC scores, we further calculate the AIC/BIC weight of each model for a more intu-
itive interpretation [65,66]. These weights can be interpreted as the probability that a model,
among those considered, is the most likely given the empirical data [65,66]. While we only
display AIC/BIC weights in the main text, we refer the reader to S1 Text (Sect 5.1) for the
AIC/BIC scores.

The wMAPEs of the median of the five models are shown in Table 2. Behavioural mod-
els lead to smaller errors than the baseline in three regions out of four, nonetheless the best
model results in limited improvements. Indeed we find a decrease in wMAPE of 9.8% in Lom-
bardy, 2.0% in London, and 6.1% in São Paulo compared to the baseline. In more detail, the
constant rate model, the constant rate model (vaccinated only), and the time-varying rate model
achieve, respectively, the lowest wMAPE in Lombardy, London, and São Paolo.

The picture changes, when we account for the complexity of the models. Indeed, according
to AIC weights, the baseline is the most likely model in three regions (see Table 3). In Lom-
bardy, instead, the constant rate model (followed by the baseline) emerges as the most likely.
In the same table we can see that when considering BIC weights, the baseline is the most likely
model across all regions. This metric is known to penalize more models with a larger num-
ber of free parameters, thus favouring simpler frameworks [67]. Nevertheless, in Lombardy
the baseline is only marginally better than the constant rate model. These results show that,
although behavioural mechanisms improve the goodness of fit in three regions, they come at
the cost of an increased complexity that does not always offset the gains of fits. Furthermore,
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Fig 3. Comparison of baseline and behavioural models. Calibrated weekly deaths trajectories (i.e., weekly deaths per 100,000) for the
baseline and four behavioural models across the four regions. Solid lines indicate the medians, while the shaded areas the 90% confidence
intervals. Reported weekly deaths are denoted by blue dots.

https://doi.org/10.1371/journal.pcbi.1013266.g003

Table 2. wMAPEs obtained comparing the medians of calibrated models and reported weekly deaths.The lowest
wMAPE in each location, indicating best performance, is highlighted in bold.
wMAMPE Baseline Constant rate Time-varying rate Constant rate

(vaccinated only)
Time-varying rate
(vaccinated only)

British Columbia 0.3751 0.4431 0.4406 0.3862 0.3833
Lombardy 0.2742 0.2473 0.2702 0.2760 0.2686
London 0.1508 0.1529 0.1561 0.1479 0.1483
São Paulo 0.3056 0.2889 0.2869 0.3009 0.2959

https://doi.org/10.1371/journal.pcbi.1013266.t002

due to the similarity of the outcomes, the selection of the most likely model is function of the
metric considered (i.e., AIC vs BIC). Following Occam’s razor principle, we can conclude that
the inclusion of behavioural relaxation mechanisms is not fully justified, at least when looking
at weekly deaths in the four regions studied. A simpler model, that does not explicitly account
for this phenomenon, appears well suited to reproduce the unfolding of reported deaths. As
shown in S1 Text (Sect 5.2), the ranking of the models in terms of Akaike weights does not
change by removing the last 1,2,3,4 week(s). In the case of BIC weights, when removing the
last 2,3,4 weeks we find the constant rate model to be more likely than the baseline, although
the difference between the two remains small. Overall, the results are robust to the choice of
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Table 3. AIC and BIC weights computed considering calibrated models’ medians and reported weekly deaths.The
highest AIC/BIC weight in each location is highlighted in bold.
AIC Baseline Constant rate Time-varying rate Constant rate

(vaccinated only)
Time-varying rate
(vaccinated only)

British Columbia 0.95 0.00 0.00 0.03 0.02
Lombardy 0.09 0.88 0.02 0.00 0.01
London 0.84 0.02 0.02 0.04 0.08
São Paulo 0.64 0.12 0.13 0.05 0.06
BIC
British Columbia 0.99 0.00 0.00 0.00 0.00
Lombardy 0.54 0.44 0.01 0.00 0.01
London 0.98 0.00 0.00 0.01 0.01
São Paulo 0.95 0.02 0.02 0.01 0.01

https://doi.org/10.1371/journal.pcbi.1013266.t003

Table 4. Relative deaths difference (medians and 50% confidence intervals) for behavioural mechanisms.
Numbers indicate percentages.
RDD (%) Constant rate Time-varying rate Constant rate

(vaccinated only)
Time-varying rate
(vaccinated only)

British Columbia -0.48 [-4.73,3.54] -0.12 [-3.26,2.58] 0.27 [-2.59,3.02] 0.10 [-1.83,1.92]
Lombardy -4.34 [-16.46,-0.79] -0.58 [-1.67,0.22] -0.33 [-1.08,0.31] -0.14 [-0.77,0.39]
London -1.91 [-8.57,-0.34] -0.21 [-0.85,0.29] -0.01 [-0.53,0.52] 0.00 [-0.23,0.24]
São Paulo -30.35 [-67.68,-7.91] -5.18 [-25.42,-0.23] -1.01 [-2.69,-0.2] -0.45 [-1.5,0.03]

https://doi.org/10.1371/journal.pcbi.1013266.t004

the time horizon considered and are not affected by possible fluctuations in the tails of the
epidemic curves.

As shown in S1 Text (Sect 5.4), the posterior distributions of increased transmissibility
(i.e., r) of non-compliant individuals range between 10 – 30%, which is a significant increase.
However, with the exception of São Paulo in case of the constant rate model, the median frac-
tion of non-compliant individuals at each time step is smaller than 20% (see S1 Text Sect
4.2). In other words, the calibration selects regions of the phase space where the population
of non-compliant individuals remains a minority. This result corroborates the lack of clear
signs of behavioural relaxation on weekly deaths. Indeed, even assuming the presence of such
phenomenon, the empirical evidence constraints it to a small group of the total population.

In order to gather a better understanding of the dynamics at play, and to isolate the poten-
tial effects of behavioural relaxation on deaths, we run another counterfactual analysis remov-
ing the relaxation mechanisms in the four calibrated behavioural models. In doing so, we
compute the relative deaths difference (RDD) between the models with/without behavioural
relaxation. As shown in Fig 4 and in Table 4, the median RDD values are below zero in the
large majority of cases, indicating that removing behavioural relaxation generally results in
fewer deaths. The results show that the constant rate model and the time-varying rate model
lead to a larger difference in deaths (especially the constant rate model in São Paulo) compared
to the versions of the models that restrict behavioural relaxation to vaccinated individuals.
Not surprisingly, the impact of non-compliance extended to the whole population is higher.
It is important to notice that, with two exceptions (i.e., the constant rate model and the time-
varying rate model in São Paulo), the RDD values are close to zero. As noted above, the poste-
rior distributions of behavioural parameters selected in the calibration lead to configurations
where relaxation does not strongly impact deaths.

Finally, we compute the relative infection difference (RDI) which shows consistent results
with those of RDDs (see S1 Text Sect 3.4).
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Fig 4. The impact of behavioural relaxation on COVID-19 deaths (behavioural models).We plot the RDD (i.e.,
relative deaths difference) for behavioural mechanisms in the four models and regions. Each boxplot is built consid-
ering 1000 stochastic simulations. The horizontal line within each box marks the median value, while the top and
bottom edges correspond to the 50% CI. The whiskers extend to the maximum and minimum values after removing
the outliers that beyond 1.5 times the interquartile range.

https://doi.org/10.1371/journal.pcbi.1013266.g004

Discussion
In this paper, we aimed to find signs and to quantify the extent of behavioural relaxation
possibly induced by vaccines during the initial phase of the COVID-19 vaccine rollout.
To this end, we developed a series of stochastic epidemic compartmental models integrat-
ing age-structure, vaccinations, NPIs, variants of concern, and deaths. We used a baseline
model, without any behavioural relaxation mechanism, as a reference, and on top of this, we
developed four behavioural models that extended previous work to account for individual
behaviours in response to vaccination and the epidemic [22–27]. We tested these models con-
sidering weekly deaths in four regions: British Columbia (Canada), Lombardy (Italy), London
(United Kingdom), and São Paulo (Brazil). These locations sample different epidemic, socioe-
conomic and socio-demographic contexts, as well as different vaccine rollout schedules and
coverages. We first calibrated the baseline model to reported data and studied two counter-
factual scenarios to quantify the impact of vaccines and NPIs on COVID-19 deaths and infec-
tions. Our results confirmed that both significantly reduced mortality and infections. Further-
more, they highlighted the critical role of NPIs in supporting the challenging initial phases of
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vaccinations. We then calibrated the four behavioural models and compared them consider-
ing both their goodness of fit and complexity. Behavioural models estimates are closer to real
data than the baseline in three locations, though the improvements are limited between 2%
and 10% in terms of wMAPE. Behavioural mechanisms increase models’ complexity which is
not always offset by the benefits of improved fits. This suggests that additional mechanisms of
behavioural relaxation linked to vaccination may not be evident across all regions. Further-
more, our results suggest that, even if behavioural relaxation took place, it was limited to a
minority of the population.

Overall, our results indicate that behavioural relaxation did not leave clear marks on
reported deaths. This finding, in line with surveys conducted in France [32], might be inter-
preted as a lack of support for systematic behavioural relaxation induced by COVID-19
vaccines. However, our findings do not exclude that, in fact, behavioural relaxation took
place as suggested by other surveys [28–31]. As mentioned above, assuming the presence
of behavioural relaxation, the calibration with weekly deaths constraints the phase space to
regions where the fraction of non-compliant individuals is a minority. This might explain the
good performance of the baseline: the impact of behavioural relaxation could be accounted
for by simpler models that do not explicitly consider additional mechanisms. In our settings,
the effects of behavioural relaxation might be fully captured by the modulation of contacts
induced by NPIs.

It is important to mention that the selected target variable (i.e., weekly deaths) might have
influenced our findings. Indeed, behavioural relaxation might have been more prevalent but
not to the levels needed to affect mortality levels observed at a macroscopic scale. Signs of
behavioural relaxation might be clearer in other indicators. For example, given the strong
dependence of COVID-19 mortality on age [68], behavioural relaxation might have primarily
affected infections, especially among the young, active population, rather than deaths. How-
ever, data on confirmed cases has been shown to be a poor indicator and a very hard signal to
fit due to under-reporting and variations in testing policies among other factors [69].

These possible interpretations of our results highlight the issue of non-identifiability of
complex behavioural mechanisms in epidemic models linked to highly degenerate phase-
spaces and to the interplay among the various processes at hand (e.g., disease transmis-
sion and behavioural reactions) [70,71]. Arguably, the quest towards a clear identification
of behavioural reactions to epidemics is linked to the use of multi-stage calibration steps
informed by a range of data types and indicators that go beyond the solely use of epidemic
variables [70]. For example, future work is needed to explore whether the integration of
behavioural data, such as aggregated mobility metrics, into the calibration pipeline might
provide further constraints and help reduce the problem of non-identifiability. Progresses in
this direction are contingent to advances in data collection and data sharing as well as to the
identification of key behavioural observables and novel data streams to track [72,73].

Our work comes with limitations. First, the epidemiological and vaccination data are
sourced from different datasets. Although the data has been obtained from official sources,
the granularity provided is not homogeneous. Second, we considered a simplified vaccina-
tion protocol assuming that only susceptible individuals can get vaccinated and a single dose
regiment. These assumptions have been made to simplify the model structure. Due to the
lack of data for all VOCs studied, we did not account for the effects of vaccines on the infec-
tiousness of breakthrough cases (i.e., the infectiousness of vaccinated individuals that acquire
infection) [74]. Nevertheless, in the four regions under study here, the larger number of infec-
tions took place when the fraction of vaccinated individuals was still small. Hence, we do
not expect this simplification to significantly affect the results. Third, we used regional-level
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data regarding school closures for British Columbia, London, and São Paulo but country-
level data for Lombardy, due to the lack of specific regional data within Italy. Fourth, there is
lack of available data to parametrize the rates regulating behavioural relaxation. As a conse-
quence, we had to calibrate the behavioural parameters within some rather arbitrary ranges.
Fifth, we did not consider that behavioural relaxation, nor the increase in infection risk of
non-compliant individuals, might be age dependent. Indeed, given the lack of detailed data
for all age-groups, introducing age-dependent parameters would have drastically increased
the complexity of the models exacerbating the issues of non-identifiability. Furthermore, as
a way to simplify the structure of the models, we assumed that only susceptibles individu-
als might relax their behaviours. In doing so, we excluded the possibility that also infectious
individuals might become non-compliant. Arguably, the relatively short infectious period
(i.e., 2.5 days) limits the impact of this choice on the findings. Sixth, we modulated contacts
rates using mobility data towards workplaces and other public locations. We did not consider
changes in contacts rates at home. Assuming an homogenous mixing, variations in contact
rates scale quadratically with respect to changes in mobility (i.e., visits to particular locations).
However, as the risk of infection does not increase quadratically if two or more people remain
confined at home, it is unclear to what extent this relationship holds in households. Seventh,
though we accounted for higher transmission rates, shorter latent periods, and decreased vac-
cine efficacy against VOCs, we used the same infection fatality rate (IFR) across all strains and
regions. Eighth, the results reported above are obtained using a relatively simple compart-
mental model that neglects both presymptomatic and asymptomatic stages of the infection.
As sensitivity analysis, in S1 Text, we report the results obtained modifying the model struc-
ture to include these aspects. The overall picture remains unchanged. Finally, our model does
not account for socioeconomic nor socio-demographic differences in vaccines uptake nor in
adoption of NPIs [75,76].

Overall, our work highlights the critical importance of both NPIs and vaccines in curb-
ing COVID-19 deaths and infections during the initial months of COVID-19 vaccination
campaigns. Our findings pave the way for further research to refine the proposed models and
deepen our understanding of the interaction between individual protective behaviour and
vaccinations in a broader context.

Materials and methods
Baseline model
As baseline we adopt a stochastic age-stratified epidemic compartmental model that inte-
grates vaccination, NPIs, and the emergence/spread of multiple strains. The baseline is
based on a Susceptible-Latent-Infected-Recovered (SLIR) compartmentalization extended
to account for deaths. Individuals are grouped into 16 age brackets with a five-year inter-
val (except for the last group which is 75+). We use age-stratified infection fatality rates
(IFR) from Ref. [68], age-stratified contact matrices from Ref. [77], and official demographic
data [78–81]. The natural history of the disease is modelled as follows. By interacting with the
Infected (I), Susceptible (S) individuals transition to the latent stage (L compartment) where
they are infected but not yet infectious. We assume a force of infection 𝜆k (i.e., the per capita
rate at which susceptibles get infected) function of age (i.e., k), the transmissibility of each
strain, contact matrices, and NPIs (see S1 Text Sect 1.1 for more details). Individuals stay in
L for an average of 𝜖–1 days. After, they become infectious transitioning to the I compartment.
After the infectious period 𝜇–1, infected individuals either recover with probability (1– IFRk)

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013266 July 7, 2025 15/ 26

https://doi.org/10.1371/journal.pcbi.1013266


ID: pcbi.1013266 — 2025/7/9 — page 16 — #16

PLOS COMPUTATIONAL BIOLOGY Estimating behavioural relaxation induced by COVID-19 vaccines

(transitioning to the R compartment) or die from the disease with probability IFRk (transi-
tioning to the D compartment). We also consider a delay of Δ days in deaths reporting. There-
fore, individuals are moved to the Do compartment from D after Δ days. The model does not
explicitly consider isolation/quarantine of infectious individuals. However, we opted for a
short infectious period assuming that infected individuals develop symptoms and isolate, or
get tested and isolate on average after 𝜇–1 = 2.5 days.

Modelling vaccinations. We incorporate vaccinations into our models by doubling all the
compartments to include vaccinated individuals at any stage of the disease. We assume that
only susceptible individuals can receive the vaccine. Additionally, to simplify the model, we
disregard the time interval between the first and second dose. Consequently, we assume that
individuals acquire full protection right after the first inoculation. We use real data to cap-
ture the unfolding of the vaccination campaigns in the four regions [34–38]. Vaccinations
are simulated as follows. For each age-group k, a fraction of susceptible individuals (non-
vaccinated) transition to the compartment of susceptible vaccinated according to the number
of daily vaccinations from data [34–38]. We note how vaccine data are reported weekly for
British Columbia while daily for the others. Thus, in British Columbia, we convert the weekly
number of doses into daily by splitting them homogeneously in each week day.

Vaccines protect individuals in two ways: by lowering the risk of infection, and by reduc-
ing the risk of death in case of breakthrough infection. In practice, for vaccinated individuals
the force of infection is multiplied by a factor 1 –VES, where VES denotes the vaccine’s efficacy
against infection. If a vaccinated individual becomes infected, the IFR is further reduced by a
factor 1 –VEM, where VEM represents the vaccine’s efficacy against death. Therefore, the over-
all vaccine efficacy for a susceptible individual, against death, is VE = 1– (1–VES)(1–VEM).

Modelling the impact of NPIs on contacts. We use Ref [77] to obtain pre-Pandemic
contact matrices, i.e., C. These stratify contacts by age and location (i.e., context) such that:

C =Chome +Cwork +Cschool +Cothers (1)

Hence, each element Cij describes the mean daily number of contacts of an individual
in age group i with individuals in age group j across all contexts. We estimate weekly varia-
tions in these contact rates due to NPIs using mobility data from the COVID-19 Commu-
nity Mobility Report released by Google LLC [39] and the Oxford Coronavirus Government
Response Tracker (OxCGRT) [40]. In particular, we adjust contact matrices, at time t, as
follows:

C′(t) =Chome +wwork(t)Cwork +wschool(t)Cschool +wothers(t)Cothers. (2)

C′(t) is the adjusted contact matrix at time t. The values wwork(t) and wothers(t) are com-
puted as (1– x(t)/100)2 where x(t) is the percentage change in mobility to specific locations
with respect to a pre-Pandemic baseline [39]. The baseline is defined by Google as the median
value of mobility between January 3rd and February 6th, 2020. The values of wwork(t) are com-
puted considering the specific field related to workplaces, while wothers(t) considering an
average of the fields related to retail, recreation and transit stations. We use a square form as
the number of contacts in a location scales proportional to the square of people visiting that
location [4,5]. Furthermore, wschool(t) is computed as (3– school(t))/3, where school(t) is an
index measuring the strictness of containment policies in schools reported by OxCGRT at
time t [40]. It takes integer values from 0 (i.e., no containment measures are in place) to 3
(i.e, full school closure). Although we acknowledge that contacts at home may have increased
due to the adoption of NPIs, we opted for not modifying them as function of time. Indeed,
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due to saturation effects, we expect the link between changes in the time spent at home and
infection risk to be more complex than for other locations. In S1 Text we show that the varia-
tion in contact patterns estimated as outlined above is consistent with the independent find-
ings obtained in Ref. [82] via surveys. We note how the contact levels, with respect to the
pre-Pandemic baseline, shown in Fig 1B are computed as (wwork(t) +wschool(t) +wothers(t)) /3.

Modelling multiple viral strains. In British Columbia, Lombardy, and São Paulo, we
introduce new compartments L′, I′, R′, D′ and Do′ to account for non-vaccinated individu-
als infected by a VOC (i.e., a second strain). Similarly, we consider compartments LV

′
, IV

′
,

RV′ , DV′ , DoV′ for vaccinated individuals infected by a VOC. We model the introduction
of a second strain as follows. We denote tvar as the time at which the second variant estab-
lishes its presence in each location. To this end, we use genomics data from Ref. [41] and
calibrate tvar in a range between 0 and 42 days prior to the first date in which each variant is
consistently featured in the genomics data (i.e., the share of samples attributed to the vari-
ant in the genomics data is greater zero from this first date onwards). We did not consider the
first appearance in the dataset as a single sample might be linked to an isolated importation
from a different location. Then, at time tvar we initialize the compartment I′ with a number of
individuals equivalent to the 1% of people infected by the initial strain (i.e., I and IV).

The four regions studied faced the Alpha, Gamma, and Delta VOC. In detail, in British
Columbia and Lombardy, Alpha appeared as a second strain replacing the wild type. In Lon-
don, the Alpha variant was the dominant variant circulating throughout our time horizon. In
São Paulo, the initial variant observed at the start of the simulation period was Gamma which
was then replaced by Delta.

We model VOCs by adjusting (or not) relevant parameters. According to literature, the
latent period of Alpha and Gamma is similar to that of the wild type [48–51]. Hence, we kept
𝜖′ = 3.7–1days–1 for these variants. In contrast, the latent period of Delta has been reported
to be shorter [52]. Hence, we set 𝜖′ = 3–1days–1 for this VOC. For all variants, including the
wild type, we set the infectious period to 𝜇 = 2.5–1days–1. Additionally, the second variant
may exhibit higher transmissibility. Thus we adjust the transmissibility of variants by mul-
tiplying it by a parameter 𝜎, which represents the relative increase in transmissibility. Fol-
lowing the literature we set 𝜎 = 1.5 for Alpha compared to the wild type [44]. In São Paulo,
where Delta replaced Gamma, we calibrate 𝜎 in a range of [1.6–2.5], as no specific indication
was found in the literature. Moreover, the vaccine efficacy might also be lower against vari-
ants [44,46,47]. Following the literature, we set the vaccine efficacy as VE = 90% (VES=85%)
against the wild type [46], VE = 85% (VES = 75%) against Alpha [46], VE = 80% (VES = 65%)
against Gamma [47], and VE = 90% (VES = 60%) against Delta [46].

Behavioural models
Building on the baseline and the literature, we implemented four additional models that also
include behavioural relaxation mechanisms [28,30]. To this end, we introduce new compart-
ments SVNC and SNC to account for susceptible individuals that relax adoption of NPIs becom-
ing non-compliant (NC). In detail, individuals who relax their behaviour transit from S (SV)
to SNC (SVNC). Conversely, non-compliant individuals who return to compliant behaviours
transition from SNC (SVNC) to S (S

V). We assume that individuals in the non-compliant com-
partments get infected at higher rates compared to those in compliant compartments [24,25].
This is accounted for by multiplying their force of infection by a factor r > 1.

Following the literature, we investigate four behavioural models that differ for two key
aspects: 1) the groups that might relax their behaviour and 2) the mechanisms used to
describe how individuals enter and leave the non-compliant compartments. In the constant
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rate model, susceptible individuals (vaccinated or not) can enter (leave) the NC compartments
at constant rate 𝛼 (𝛾). In the time-varying rate model, susceptible individuals (vaccinated or
not) enter or leave the NC compartments at time-varying rates. The transition rate from S
(SV) to SNC (SVNC) is set as a function of the fraction of vaccinated individuals and a parameter
𝛼. The transition rate from SNC (SVNC) to S (S

V) is set as a function of the number of reported
daily deaths per 100,000 and a parameter 𝛾. The constant rate model (vaccinated only) and
the time-varying rate model (vaccinated only) are analogous to the previous two. However, in
these only vaccinated individuals can transition to the NC compartment. The structure of our
models is illustrated in Fig 5. More details are reported in the Supporting Information.

Models calibration
We apply an Approximate Bayesian Computation-Sequential Monte Carlo (ABC-SMC)
method to calibrate our models [33] to reported data. The goal of ABC-SMC algorithm is to
estimate the posterior distribution of free parameters 𝜃 starting from an input prior distri-
bution P(𝜃). It is an extension of the ABC rejection algorithm, where suitable parameters
are found by iteratively sampling from the prior distribution and computing for each sam-
pled parameter set 𝜃i a distance function d(yi, ydata), where yi ∼ f(𝜃i) is the output of the

Fig 5. Epidemic compartment structure. All compartments connected by solid lines constitute the baseline model. This
model includes susceptible (S), latent (L), infected (I), recovered (R), and dead (D, Do) compartments. The top row rep-
resents non-vaccinated compartments, whereas the bottom row represents vaccinated compartments. Individuals in the S
compartment get vaccinated according to real vaccine rates (𝜈) and then transition to the SV compartment. To account for
the emergence of a second variant, we double the compartments creating L′, I′, R′, D′, and Do′ . This is done also for the
vaccinated compartments that become LV

′
, IV

′
, RV′ , DV′ , DVo′ . Behavioural models include susceptible non-compliant

compartments (SNC, SVNC) connected by dotted lines, where individuals have r times higher probability of getting infected
with respect to susceptible compliant individuals (S and SV ). In the constant rate model and the time-varying rate model, we
include SNC and SVNC, whereas in the vaccinated-only versions, we include only SVNC
https://doi.org/10.1371/journal.pcbi.1013266.g005
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model and ydata is the reported data (i.e., weekly deaths). Each 𝜃i is accepted if d(yi, ydata) ≤ 𝜉,
where 𝜉 is a predefined tolerance. The process is repeated untilM parameters 𝜃i are accepted.
Their distribution approximates the true posterior distributionΠ(𝜃|ydata, 𝜉). The ABC rejec-
tion algorithm is of straightforward implementation, however suffers from several limita-
tions. First, the values ofM and of the tolerance 𝜉 are free parameters that shape the inter-
play between convergence speed and accuracy [83]. Second, the prior distribution is never
updated to account for information from previous iterations. The ABC-SMC framework has
been developed to tackle these issues. It consists of T generations (i.e., iterations). The first
one is based on a rejection algorithm step where 𝜉 is set to a high value. In the second gen-
eration, the tolerance is decreased, parameters are sampled from those accepted in the previ-
ous step and perturbed via a kernel to avoid converging on local minima of the phase space.
The process is repeated for T generations ofM particles (i.e, samples) each. Then, the set of
accepted parameters in the last generation is used as the empirical posterior distribution. We
adopted a Python implementation of ABC-SMC from the package pyabc [84].

The free parameters and the priors explored in our models are:

• Reproductive number R0. We explore values in the interval [1,3].
• Delay in reporting deaths Δ. Consistent with observations, we explore the interval
[3,64] [85].

• Initial fraction of infections of the total population iini. We estimating the ranges
from the number of deaths and IFR across the four regions. We explore the interval
[0.0005,0.02].

• Initial fraction of individuals with residual immunity from past waves rini. We explore
the range of [0.1,0.4] [86].

• Start date t0 of the simulation of epidemic. We calibrate t0 within a range of 8 weeks
such that t0 = t∗ –Δt, where Δt = [0, 1,… , 7] week(s). The baseline dates t* are set as 8
weeks before the peak of mortality in real data. Following this, t* is set as 2020/10/12 for
British Columbia, 2020/10/05 for Lombardy, 2020/11/16 for London, and 2021/01/18
for São Paulo.

• Introduction date of a VOC tvar (applied for all regions except London). We use
genomics data from Ref. [41] and calibrate tvar in a range between 0 and 42 days prior
to the first date t∗var from which each variant is consistently featured in the genomics
data. Thus, tvar = t∗var –Δtvar, where Δtvar = [0, 1,… , 42] day(s). t∗var is set as 2020/12/21 in
British Columbia, 2020/9/28 in Lombardy, and 2021/3/29 in São Paulo.

• Relative transmissibility 𝜎 of Delta with respect to Gamma. In the case of São Paulo,
Delta replaced Gamma. Literature shows that Delta is about 1.3 times more transmis-
sible than Gamma [43]. We explore the interval [1.0–2.5].

• Behavioural parameters 𝛼 and 𝛾. We explore the interval [0.0001–10]. For both and
sample them on a logarithmic scale.

• Relative infection probability of non-compliant individuals r. Individuals who relax
their behaviour are more likely infected. Therefore, we increase the infection probabil-
ity of non-compliant individuals by multiplying it by a factor r. We explore the interval
[1.0,1.5].

The initial prior distribution P(𝜃) is obtained sampling each interval uniformly.

Model initialization
We initialize the number of individuals in each compartment as follows. We assume that,
at the beginning, all individuals are in the compartments S, L, I, or R. The initial individual

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013266 July 7, 2025 19/ 26

https://doi.org/10.1371/journal.pcbi.1013266


ID: pcbi.1013266 — 2025/7/9 — page 20 — #20

PLOS COMPUTATIONAL BIOLOGY Estimating behavioural relaxation induced by COVID-19 vaccines

numbers of infected (including both L and I compartments) and recovered (R) individu-
als are set as fractions of total population considering under-reporting and official data. The
total number of infected individuals is then distributed to L and I compartments propor-
tionally to the inverse of their respective transition rates. Besides, since our model is age-
stratified, the initial numbers of individuals in compartments S (L, I, or R) in each age group
is set as NS ×Nk/N (NL ×Nk/N, NI ×Nk/N, or NR ×Nk/N), where Nk is the individual num-
ber in age-group k, N is the total individual number, NS is the total number of individuals in
compartment S. All parameters of our models are displayed in Table 5.

Models evaluation
For evaluating the models we use weighted mean absolute percentage errors (wMAPEs),
Akaike Information Criterion (AIC) scores [64], and Bayesian Information Criterion (BIC)
scores [65]. wMAPE measures the difference between the median outcomes of our models
and reported data. It is defined as:

wMAPE = ∑
tf
t=1 |ydata,t –median(yi,t)|

∑tf
i=t ydata,t

(3)

where ydata,t is the reported data at time t,median(yi,t) is median trajectory of model i at time
t, and tf is the total number of weeks.

Table 5. Models’ parameters.
Parameter Symbol Value
Reproductive number R0 Calibrated within [1,3].
Latent period 𝜖 3–1days–1 for Delta [52], 3.7–1days–1 for others

[48–51]
Infectious period 𝜇 2.5–1days–1 [48,87]
Transmission rate 𝛽 Obtained from R0
Infection fatality rate IFR Ref. [68]
Contact matrix C Ref. [77]
Delayed days in reporting deaths Δ Calibrated within [3,64] [85]
Initial fraction of infections iini Calibrated within [0.0005,0.02]
Initial fraction of recoveries rini Calibrated within [0.1,0.4]
Adjustment of the start date of the simulation of
epidemic with respect to the baseline date (t*)

Δt Calibrated within [0,7] weeks

Adjustment of the introduction date of a VOC with
respect to the date (t∗var) at which each variant is
consistently featured in the genomics data

Δtvar Calibrated within [0,42] days [88]

Relative transmissibility of a second variant 𝜎 1.5 for Alpha [44]; calibrated within [1.0–2.5] for
Delta with respect to Gamma [43]

Overall vaccine efficacy VE 0.9 against wild type; 0.85 against Alpha vari-
ant; 0.8 against Gamma variant; 0.9 against Delta
variant [46,47]

Vaccine efficacy against infection VES 0.85 against wild type; 0.75 against Alpha variant;
0.65 against Gamma variant; 0.6 against Delta
variant [46,47]

Transition rate towards non-compliance 𝛼 Calibrated within [0.0001–10]
Transition rate towards compliance 𝛾 Calibrated within [0.0001–10]
Relative infection risk of non-compliant individuals r Calibrated within [1.0–1.5]

https://doi.org/10.1371/journal.pcbi.1013266.t005
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AIC scores assess the performance by trading off the complexity and fitting of the models.
The AIC score of model i is computed as:

AICi = tflogΦ2 + 2Ki (4)

where Φ2 is the sum of the squares of residuals, tf is the number of data points (i.e., weeks
considered), and Ki is the number of free parameters of model i. To obtain a more intuitive
metric, we calculate Akaike weights from the AIC scores. These can be interpreted as the rel-
ative likelihood of a given model [66]. The Akaike weight of model i, denoted by wi, is com-
puted as

wi =
e–ΔAICi/2

∑Q
i=1 e–ΔAICi/2

(5)

where ΔAICi is the difference between the AIC score of model i and of the best model (i.e.,
the one with lowest AIC score), and Q is the number of models.

BIC scores are similar to AIC scores, but contain a different term to account for model’s
complexity. The BIC score of model i is computed as:

BICi = tflogΦ2 + log(tf)Ki (6)

To obtain a more interpretable comparison of models, we also calculate BIC weights in an
analogous way to Akaike weights. The BIC weight of model i, denoted by wi, is computed as

wi =
e–ΔBICi/2

∑Q
i=1 e–ΔBICi/2

(7)

where ΔBICi is the difference between the BIC score of model i and of the best model (i.e., the
one with lowest BIC score), and Q is the number of models.

Relative deaths difference
To quantify the effect of vaccination, NPIs, or behavioural relaxation on deaths, we compute
the relative deaths difference (RDD) as the relative difference between the total number of
deaths as simulated by the original model and in a counterfactual scenario where vaccina-
tions, NPIs, or behavioural relaxation are removed. The relative deaths difference is calculated
as:

RDD =
Dcounterfactual –Doriginal

Dcounterfactual
× 100% (8)

where Doriginal and Dcounterfactual are the total number of deaths simulated in the original model
and in the counterfactual scenario, respectively. The same approach, applied to infections, is
used to compute the relative different of infections (RDI).

Supporting information
S1 Text. Supplementary analyses for the models and results. In this supplementary file
(PDF), we present additional analyses and results of our work.
(PDF)

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013266 July 7, 2025 21/ 26

https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013266.s001
https://doi.org/10.1371/journal.pcbi.1013266


ID: pcbi.1013266 — 2025/7/9 — page 22 — #22

PLOS COMPUTATIONAL BIOLOGY Estimating behavioural relaxation induced by COVID-19 vaccines

Acknowledgments
All authors thank the High Performance Computing facilities at Queen Mary University of
London.

Author contributions
Conceptualization: Yuhan Li, Nicolò Gozzi, Nicola Perra.

Data curation: Yuhan Li.

Formal analysis: Yuhan Li.

Investigation: Yuhan Li, Nicolò Gozzi, Nicola Perra.

Methodology: Yuhan Li, Nicolò Gozzi, Nicola Perra.

Project administration: Nicola Perra.

Supervision: Nicola Perra.

Validation: Nicola Perra.

Visualization: Yuhan Li.

Writing – original draft: Yuhan Li, Nicola Perra.

Writing – review & editing: Yuhan Li, Nicolò Gozzi, Nicola Perra.

References
1. Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA covid-19

vaccine in a nationwide mass vaccination setting. N Engl J Med. 2021;384(15):1412–23.
https://doi.org/10.1056/NEJMoa2101765 PMID: 33626250

2. Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC. Global impact of the first year of
COVID-19 vaccination: a mathematical modelling study. Lancet Infect Dis. 2022;22(9):1293–302.
https://doi.org/10.1016/S1473-3099(22)00320-6 PMID: 35753318

3. Eyre DW, Taylor D, Purver M, Chapman D, Fowler T, Pouwels KB, et al. Effect of covid-19
vaccination on transmission of alpha and delta variants. N Engl J Med. 2022;386(8):744–56.
https://doi.org/10.1056/NEJMoa2116597 PMID: 34986294

4. Gozzi N, Chinazzi M, Davis JT, Mu K, Pastore Y Piontti A, Ajelli M, et al. Anatomy of the first six
months of COVID-19 vaccination campaign in Italy. PLoS Comput Biol. 2022;18(5):e1010146.
https://doi.org/10.1371/journal.pcbi.1010146 PMID: 35613248

5. Gozzi N, Chinazzi M, Dean NE, Longini IM Jr, Halloran ME, Perra N, et al. Estimating the impact of
COVID-19 vaccine inequities: a modeling study. Nat Commun. 2023;14(1):3272.
https://doi.org/10.1038/s41467-023-39098-w PMID: 37277329

6. Sallam M. COVID-19 vaccine hesitancy worldwide: a concise systematic review of vaccine
acceptance rates. Vaccines (Basel). 2021;9(2):160. https://doi.org/10.3390/vaccines9020160 PMID:
33669441

7. Cuadros DF, Gutierrez JD, Moreno CM, Escobar S, Miller FD, Musuka G, et al. Impact of
healthcare capacity disparities on the COVID-19 vaccination coverage in the United States: a
cross-sectional study. Lancet Reg Health Am. 2023;18:100409.
https://doi.org/10.1016/j.lana.2022.100409 PMID: 36536782

8. Sallam M, Al-Sanafi M, Sallam M. A global map of COVID-19 vaccine acceptance rates per
country: an updated concise narrative review. J Multidiscip Healthc. 2022;15:21–45.
https://doi.org/10.2147/JMDH.S347669 PMID: 35046661

9. Riaz MMA, Ahmad U, Mohan A, Dos Santos Costa AC, Khan H, Babar MS, et al. Global impact of
vaccine nationalism during COVID-19 pandemic. Trop Med Health. 2021;49(1):101.
https://doi.org/10.1186/s41182-021-00394-0 PMID: 34963494

10. Katz IT, Weintraub R, Bekker L-G, Brandt AM. From vaccine nationalism to vaccine equity - finding
a path forward. N Engl J Med. 2021;384(14):1281–3. https://doi.org/10.1056/NEJMp2103614
PMID: 33830709

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013266 July 7, 2025 22/ 26

https://doi.org/10.1056/NEJMoa2101765
http://www.ncbi.nlm.nih.gov/pubmed/33626250
https://doi.org/10.1016/S1473-3099(22)00320-6
http://www.ncbi.nlm.nih.gov/pubmed/35753318
https://doi.org/10.1056/NEJMoa2116597
http://www.ncbi.nlm.nih.gov/pubmed/34986294
https://doi.org/10.1371/journal.pcbi.1010146
http://www.ncbi.nlm.nih.gov/pubmed/35613248
https://doi.org/10.1038/s41467-023-39098-w
http://www.ncbi.nlm.nih.gov/pubmed/37277329
https://doi.org/10.3390/vaccines9020160
http://www.ncbi.nlm.nih.gov/pubmed/33669441
https://doi.org/10.1016/j.lana.2022.100409
http://www.ncbi.nlm.nih.gov/pubmed/36536782
https://doi.org/10.2147/JMDH.S347669
http://www.ncbi.nlm.nih.gov/pubmed/35046661
https://doi.org/10.1186/s41182-021-00394-0
http://www.ncbi.nlm.nih.gov/pubmed/34963494
https://doi.org/10.1056/NEJMp2103614
http://www.ncbi.nlm.nih.gov/pubmed/33830709
https://doi.org/10.1371/journal.pcbi.1013266


ID: pcbi.1013266 — 2025/7/9 — page 23 — #23

PLOS COMPUTATIONAL BIOLOGY Estimating behavioural relaxation induced by COVID-19 vaccines

11. Mobarak AM, Miguel E, Abaluck J, Ahuja A, Alsan M, Banerjee A, et al. End COVID-19 in low- and
middle-income countries. Science. 2022;375(6585):1105–10.
https://doi.org/10.1126/science.abo4089 PMID: 35271319

12. Duan Y, Shi J, Wang Z, Zhou S, Jin Y, Zheng Z-J. Disparities in COVID-19 vaccination among low-,
middle-, and high-income countries: the mediating role of vaccination policy. Vaccines (Basel).
2021;9(8):905. https://doi.org/10.3390/vaccines9080905 PMID: 34452030

13. Moore S, Hill EM, Tildesley MJ, Dyson L, Keeling MJ. Vaccination and non-pharmaceutical
interventions for COVID-19: a mathematical modelling study. Lancet Infect Dis.
2021;21(6):793–802.

14. Nasreen S, Chung H, He S, Brown KA, Gubbay JB, Buchan SA, et al. Effectiveness of COVID-19
vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of
concern in Ontario. Nat Microbiol. 2022;7(3):379–85. https://doi.org/10.1038/s41564-021-01053-0
PMID: 35132198

15. Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort:
viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol.
2021;21(10):626–36. https://doi.org/10.1038/s41577-021-00592-1 PMID: 34373623

16. Galanti M, Pei S, Yamana TK, Angulo FJ, Charos A, Swerdlow DL, et al. Social distancing remains
key during vaccinations. Science. 2021;371(6528):473–4. https://doi.org/10.1126/science.abg2326
PMID: 33510018

17. Perra N. Non-pharmaceutical interventions during the COVID-19 pandemic: a review. Phys Rep.
2021;913:1–52. https://doi.org/10.1016/j.physrep.2021.02.001 PMID: 33612922

18. Rosenstock IM. The health belief model and preventive health behavior. Health Educ Monogr.
1974;2(4):354–86.

19. Briand SC, Cinelli M, Nguyen T, Lewis R, Prybylski D, Valensise CM, et al. Infodemics: a new
challenge for public health. Cell. 2021;184(25):6010–4. https://doi.org/10.1016/j.cell.2021.10.031
PMID: 34890548

20. Skarp JE, Downey LE, Ohrnberger JWE, Cilloni L, Hogan AB, Sykes AL, et al. A systematic review
of the costs relating to non-pharmaceutical interventions against infectious disease outbreaks. Appl
Health Econ Health Policy. 2021;19(5):673–97. https://doi.org/10.1007/s40258-021-00659-z PMID:
34114184

21. Tizzoni M, Nsoesie EO, Gauvin L, Karsai M, Perra N, Bansal S. Addressing the socioeconomic
divide in computational modeling for infectious diseases. Nat Commun. 2022;13(1):2897.
https://doi.org/10.1038/s41467-022-30688-8 PMID: 35610237

22. d’Andrea V, Gallotti R, Castaldo N, De Domenico M. Individual risk perception and empirical social
structures shape the dynamics of infectious disease outbreaks. PLOS Comput Biol.
2022;18(2):e1009760.

23. Yu Z, Gurarie D, Huang Q. Media-driven adaptive behavior in pandemic modeling and data
analysis. medRxiv. 2024:2024–04.

24. Gozzi N, Bajardi P, Perra N. The importance of non-pharmaceutical interventions during the
COVID-19 vaccine rollout. PLoS Comput Biol. 2021;17(9):e1009346.
https://doi.org/10.1371/journal.pcbi.1009346 PMID: 34506478

25. Teslya A, Rozhnova G, Pham TM, van Wees DA, Nunner H, Godijk NG, et al. The importance of
sustained compliance with physical distancing during COVID-19 vaccination rollout. Commun Med
(Lond). 2022;2(1):146. https://doi.org/10.1038/s43856-022-00207-3 PMID: 36402924

26. Silva DH, Anteneodo C, Ferreira SC. Epidemic outbreaks with adaptive prevention on complex
networks. Commun Nonl Sci Numer Simulat. 2023;116:106877.

27. De Gaetano A, Barrat A, Paolotti D. Modeling the interplay between disease spread, behaviors,
and disease perception with a data-driven approach. medRxiv. 2024:2024–04.

28. Wambua J, Loedy N, Jarvis CI, Wong KLM, Faes C, Grah R, et al. The influence of COVID-19 risk
perception and vaccination status on the number of social contacts across Europe: insights from
the CoMix study. BMC Public Health. 2023;23(1):1350.
https://doi.org/10.1186/s12889-023-16252-z PMID: 37442987

29. Antonopoulou V, Ong M, Meyer C, Beale S, Lorencatto F, Michie S. Adherence to mask wearing
and social distancing following vaccination and use of lateral flow testing during the COVID-19
pandemic in England and Wales: Results from a cross-sectional study nested within the
prospective Virus Watch household community cohort study. 2024.

30. Bei H, Li P, Cai Z, Murcio R. The impact of COVID-19 vaccination on human mobility: the London
case. Heliyon. 2023;9(8):e18769. https://doi.org/10.1016/j.heliyon.2023.e18769 PMID: 37636432

31. De Gaetano A, Bajardi P, Gozzi N, Perra N, Perrotta D, Paolotti D. Behavioral changes associated
with COVID-19 vaccination: cross-national online survey. J Med Internet Res. 2023;25:e47563.
https://doi.org/10.2196/47563 PMID: 37906219

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013266 July 7, 2025 23/ 26

https://doi.org/10.1126/science.abo4089
http://www.ncbi.nlm.nih.gov/pubmed/35271319
https://doi.org/10.3390/vaccines9080905
http://www.ncbi.nlm.nih.gov/pubmed/34452030
https://doi.org/10.1038/s41564-021-01053-0
http://www.ncbi.nlm.nih.gov/pubmed/35132198
https://doi.org/10.1038/s41577-021-00592-1
http://www.ncbi.nlm.nih.gov/pubmed/34373623
https://doi.org/10.1126/science.abg2326
http://www.ncbi.nlm.nih.gov/pubmed/33510018
https://doi.org/10.1016/j.physrep.2021.02.001
http://www.ncbi.nlm.nih.gov/pubmed/33612922
https://doi.org/10.1016/j.cell.2021.10.031
http://www.ncbi.nlm.nih.gov/pubmed/34890548
https://doi.org/10.1007/s40258-021-00659-z
http://www.ncbi.nlm.nih.gov/pubmed/34114184
https://doi.org/10.1038/s41467-022-30688-8
http://www.ncbi.nlm.nih.gov/pubmed/35610237
https://doi.org/10.1371/journal.pcbi.1009346
http://www.ncbi.nlm.nih.gov/pubmed/34506478
https://doi.org/10.1038/s43856-022-00207-3
http://www.ncbi.nlm.nih.gov/pubmed/36402924
https://doi.org/10.1186/s12889-023-16252-z
http://www.ncbi.nlm.nih.gov/pubmed/37442987
https://doi.org/10.1016/j.heliyon.2023.e18769
http://www.ncbi.nlm.nih.gov/pubmed/37636432
https://doi.org/10.2196/47563
http://www.ncbi.nlm.nih.gov/pubmed/37906219
https://doi.org/10.1371/journal.pcbi.1013266


ID: pcbi.1013266 — 2025/7/9 — page 24 — #24

PLOS COMPUTATIONAL BIOLOGY Estimating behavioural relaxation induced by COVID-19 vaccines

32. Mccoll K, Martin-Lapoirie D, Veltri GA, Arwidson P, Raude J. Does vaccination elicit risk
compensation? Insights from the COVID-19 pandemic in France. Health Psychol Behav Med.
2024;12(1):2287663.

33. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. Approximate Bayesian computation scheme
for parameter inference and model selection in dynamical systems. J R Soc Interface.
2009;6(31):187–202. https://doi.org/10.1098/rsif.2008.0172 PMID: 19205079

34. Government of Canada. COVID-19 vaccination: Vaccination coverage..
https://health-infobase.canada.ca/covid-19/vaccination-coverage/

35. Covid-19 Opendata Vaccines. https://github.com/italia/covid19-opendata-vaccini/
36. Greater London Authority. Coronavirus (COVID-19) Weekly Update.

https://data.london.gov.uk/dataset/coronavirus–covid-19–cases
37. openDataSUS, Ministry of Health. Data & resources.

https://opendatasus.saude.gov.br/dataset/covid-19-vacinacao
38. Ferreira LS, Darcie Marquitti FM, Paixão da Silva RL, Borges ME, Ferreira da Costa Gomes M,

Cruz OG, et al. Estimating the impact of implementation and timing of the COVID-19 vaccination
programme in Brazil: a counterfactual analysis. Lancet Reg Health Am. 2023;17:100397.
https://doi.org/10.1016/j.lana.2022.100397 PMID: 36439909

39. Google LLC. Google COVID-19 Community Mobility Reports.
https://www.google.com/covid19/mobility/

40. Oxford COVID-19 Government Response Tracker. https:
//www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker#data

41. Hodcroft EB. CoVariants: SARS-CoV-2 mutations and variants of interest. https://covariants.org/
42. Choi JY, Smith DM. SARS-CoV-2 variants of concern. Yonsei Med J. 2021;62(11):961–8.

https://doi.org/10.3349/ymj.2021.62.11.961 PMID: 34672129
43. Giovanetti M, Fonseca V, Wilkinson E, Tegally H, San EJ, Althaus CL, et al. Replacement of the

Gamma by the Delta variant in Brazil: Impact of lineage displacement on the ongoing pandemic.
Virus Evol. 2022;8(1):veac024. https://doi.org/10.1093/ve/veac024 PMID: 35371559

44. Duong D. Alpha, beta, delta, gamma: What’s important to know about SARS-CoV-2 variants of
concern?. 2021.

45. Luo CH, Morris CP, Sachithanandham J, Amadi A, Gaston D, Li M. Infection with the SARS-CoV-2
delta variant is associated with higher infectious virus loads compared to the alpha variant in both
unvaccinated and vaccinated individuals. MedRxiv. 2021.

46. Shapiro J, Dean NE, Madewell ZJ, Yang Y, Halloran ME, Longini I. Efficacy estimates for various
COVID-19 vaccines: what we know from the literature and reports. MedRxiv. 2021;:2021–05.

47. Ferreira LS, de Almeida GB, Borges ME, Simon LM, Poloni S, Bagattini ÂM, et al. Modelling
optimal vaccination strategies against COVID-19 in a context of Gamma variant predominance in
Brazil. Vaccine. 2022;40(46):6616–24. https://doi.org/10.1016/j.vaccine.2022.09.082 PMID:
36210250

48. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of
SARS-CoV-2 through the postpandemic period. Science. 2020;368(6493):860–8.
https://doi.org/10.1126/science.abb5793 PMID: 32291278

49. Xin H, Li Y, Wu P, Li Z, Lau EHY, Qin Y, et al. Estimating the latent period of coronavirus disease
2019 (COVID-19). Clin Infect Dis. 2022;74(9):1678–81. https://doi.org/10.1093/cid/ciab746 PMID:
34453527

50. Zhao S, Tang B, Musa SS, Ma S, Zhang J, Zeng M, et al. Estimating the generation interval and
inferring the latent period of COVID-19 from the contact tracing data. Epidemics. 2021;36:100482.
https://doi.org/10.1016/j.epidem.2021.100482 PMID: 34175549

51. Ma S, Zhang J, Zeng M, Yun Q, Guo W, Zheng Y, et al. Epidemiological parameters of coronavirus
disease 2019: a pooled analysis of publicly reported individual data of 1155 cases from seven
countries. Medrxiv. 2020;:2020–03.

52. Li B, Deng A, Li K, Hu Y, Li Z, Shi Y, et al. Viral infection and transmission in a large, well-traced
outbreak caused by the SARS-CoV-2 Delta variant. Nat Commun. 2022;13(1):460.
https://doi.org/10.1038/s41467-022-28089-y PMID: 35075154

53. Rosenstock IM. The health belief model and preventive health behavior. Health Educ Monogr.
1974;2(4):354–86. https://doi.org/10.1177/109019817400200405

54. Hochbaum GM. Public participation in medical screening programs: a socio-psychological study.
U.S. Department of Health, Education, and Welfare, Public Health Service, Bureau of State
Services, Division of Special Health Services, Tuberculosis Program; 1958.

55. Hayden J. Introduction to health behavior theory. Jones & Bartlett Learning; 2013.
https://books.google.it/books?id=9YZSAAAAQBAJ

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013266 July 7, 2025 24/ 26

https://doi.org/10.1098/rsif.2008.0172
http://www.ncbi.nlm.nih.gov/pubmed/19205079
https://health-infobase.canada.ca/covid-19/vaccination-coverage/
https://github.com/italia/covid19-opendata-vaccini/
https://data.london.gov.uk/dataset/coronavirus
https://opendatasus.saude.gov.br/dataset/covid-19-vacinacao
https://doi.org/10.1016/j.lana.2022.100397
http://www.ncbi.nlm.nih.gov/pubmed/36439909
https://www.google.com/covid19/mobility/
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker#data
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker#data
https://covariants.org/
https://doi.org/10.3349/ymj.2021.62.11.961
http://www.ncbi.nlm.nih.gov/pubmed/34672129
https://doi.org/10.1093/ve/veac024
http://www.ncbi.nlm.nih.gov/pubmed/35371559
https://doi.org/10.1016/j.vaccine.2022.09.082
http://www.ncbi.nlm.nih.gov/pubmed/36210250
https://doi.org/10.1126/science.abb5793
http://www.ncbi.nlm.nih.gov/pubmed/32291278
https://doi.org/10.1093/cid/ciab746
http://www.ncbi.nlm.nih.gov/pubmed/34453527
https://doi.org/10.1016/j.epidem.2021.100482
http://www.ncbi.nlm.nih.gov/pubmed/34175549
https://doi.org/10.1038/s41467-022-28089-y
http://www.ncbi.nlm.nih.gov/pubmed/35075154
https://doi.org/10.1177/109019817400200405
https://books.google.it/books
https://doi.org/10.1371/journal.pcbi.1013266


ID: pcbi.1013266 — 2025/7/9 — page 25 — #25

PLOS COMPUTATIONAL BIOLOGY Estimating behavioural relaxation induced by COVID-19 vaccines

56. PHE. Investigation of novel SARS-CoV-2 variant. Variant of Concern 202012/01. Technical briefing
3. 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_
data/file/950823/Variant_of_Concern_VOC_202012_01_Technical_Briefing_3_-_England.pdf

57. Detsky AS, Bogoch II. COVID-19 in Canada: experience and response to waves 2 and 3. JAMA.
2021;326(12):1145–6. https://doi.org/10.1001/jama.2021.14797 PMID: 34424275

58. Banho CA, Sacchetto L, Campos GRF, Bittar C, Possebon FS, Ullmann LS. Impact of SARS-CoV-2
Gamma lineage introduction and COVID-19 vaccination on the epidemiological landscape of a
Brazilian city. Commun Med. 2022;2(1):41.

59. Faria NR, Mellan TA, Whittaker C, Claro IM, Candido D da S, Mishra S, et al. Genomics and
epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021;372(6544):815–21.
https://doi.org/10.1126/science.abh2644 PMID: 33853970

60. Fung ICH, Hung YW, Ofori SK, Muniz-Rodriguez K, Lai PY, Chowell G. Sars-cov-2 transmission in
alberta, british columbia, and ontario, canada, december 25, 2019, to december 1, 2020. Disast
Med Public Health Preparedness. 2022;16(6):2428–37.

61. Manica M, Guzzetta G, Riccardo F, Valenti A, Poletti P, Marziano V, et al. Impact of tiered
restrictions on human activities and the epidemiology of the second wave of COVID-19 in Italy. Nat
Commun. 2021;12(1):4570. https://doi.org/10.1038/s41467-021-24832-z PMID: 34315899

62. Banho CA, de Carvalho Marques B, Sacchetto L, Lima AKS, Parra MCP, Lima ARJ, et al. Dynamic
clade transitions and the influence of vaccination on the spatiotemporal circulation of SARS-CoV-2
variants. NPJ Vaccines. 2024;9(1):145. https://doi.org/10.1038/s41541-024-00933-w PMID:
39127725

63. Gozzi N, Perra N, Vespignani A. Comparative evaluation of behavioral-epidemic models using
COVID-19 data. medRxiv. 2024;:2024–11.

64. Akaike H. A new look at the statistical model identification. IEEE Trans Automat Control.
1974;19(6):716–23.

65. Neath AA, Cavanaugh JE. The Bayesian information criterion: background, derivation, and
applications. Wiley Interdiscip Rev: Comput Statist. 2012;4(2):199–203.

66. Wagenmakers E-J, Farrell S. AIC model selection using Akaike weights. Psychon Bull Rev.
2004;11(1):192–6. https://doi.org/10.3758/bf03206482 PMID: 15117008

67. Dziak JJ, Coffman DL, Lanza ST, Li R, Jermiin LS. Sensitivity and specificity of information criteria.
Brief Bioinform. 2020;21(2):553–65. https://doi.org/10.1093/bib/bbz016 PMID: 30895308

68. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of
coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20(6):669–77.
https://doi.org/10.1016/S1473-3099(20)30243-7 PMID: 32240634

69. Lau H, Khosrawipour T, Kocbach P, Ichii H, Bania J, Khosrawipour V. Evaluating the massive
underreporting and undertesting of COVID-19 cases in multiple global epicenters. Pulmonology.
2021;27(2):110–5. https://doi.org/10.1016/j.pulmoe.2020.05.015 PMID: 32540223

70. Osi A, Ghaffarzadegan N. Parameter estimation in behavioral epidemic models with endogenous
societal risk-response. PLoS Comput Biol. 2024;20(3):e1011992.
https://doi.org/10.1371/journal.pcbi.1011992 PMID: 38551972

71. Chowell G, Skums P. Investigating and forecasting infectious disease dynamics using
epidemiological and molecular surveillance data. Phys Life Rev. 2024.

72. Althouse BM, Scarpino SV, Meyers LA, Ayers JW, Bargsten M, Baumbach J, et al. Enhancing
disease surveillance with novel data streams: challenges and opportunities. EPJ Data Sci.
2015;4(1):17. https://doi.org/10.1140/epjds/s13688-015-0054-0 PMID: 27990325

73. Bedson J, Skrip LA, Pedi D, Abramowitz S, Carter S, Jalloh MF, et al. A review and agenda for
integrated disease models including social and behavioural factors. Nat Hum Behav.
2021;5(7):834–46. https://doi.org/10.1038/s41562-021-01136-2 PMID: 34183799

74. Braeye T, Catteau L, Brondeel R, van Loenhout JA, Proesmans K, Cornelissen L. Vaccine
effectiveness against transmission of alpha, delta and omicron SARS-COV-2-infection, Belgian
contact tracing, 2021–2022. Vaccine. 2023;41(20):3292–300.

75. Manna A, Dall’Amico L, Tizzoni M, Karsai M, Perra N. Generalized contact matrices allow
integrating socioeconomic variables into epidemic models. Sci Adv. 2024;10(41):eadk4606.

76. Surasinghe S, Manivannan SN, Scarpino SV, Crawford L, Ogbunugafor CB. Structural causal
influence (SCI) captures the forces of social inequality in models of disease dynamics. arXiv
preprint 2024. https://arxiv.org/abs/240909096

77. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys
and demographic data. PLoS Comput Biol. 2017;13(9):e1005697.
https://doi.org/10.1371/journal.pcbi.1005697 PMID: 28898249

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013266 July 7, 2025 25/ 26

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/950823/Variant_of_Concern_VOC_202012_01_Technical_Briefing_3_-_England.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/950823/Variant_of_Concern_VOC_202012_01_Technical_Briefing_3_-_England.pdf
https://doi.org/10.1001/jama.2021.14797
http://www.ncbi.nlm.nih.gov/pubmed/34424275
https://doi.org/10.1126/science.abh2644
http://www.ncbi.nlm.nih.gov/pubmed/33853970
https://doi.org/10.1038/s41467-021-24832-z
http://www.ncbi.nlm.nih.gov/pubmed/34315899
https://doi.org/10.1038/s41541-024-00933-w
http://www.ncbi.nlm.nih.gov/pubmed/39127725
https://doi.org/10.3758/bf03206482
http://www.ncbi.nlm.nih.gov/pubmed/15117008
https://doi.org/10.1093/bib/bbz016
http://www.ncbi.nlm.nih.gov/pubmed/30895308
https://doi.org/10.1016/S1473-3099(20)30243-7
http://www.ncbi.nlm.nih.gov/pubmed/32240634
https://doi.org/10.1016/j.pulmoe.2020.05.015
http://www.ncbi.nlm.nih.gov/pubmed/32540223
https://doi.org/10.1371/journal.pcbi.1011992
http://www.ncbi.nlm.nih.gov/pubmed/38551972
https://doi.org/10.1140/epjds/s13688-015-0054-0
http://www.ncbi.nlm.nih.gov/pubmed/27990325
https://doi.org/10.1038/s41562-021-01136-2
http://www.ncbi.nlm.nih.gov/pubmed/34183799
https://arxiv.org/abs/240909096
https://doi.org/10.1371/journal.pcbi.1005697
http://www.ncbi.nlm.nih.gov/pubmed/28898249
https://doi.org/10.1371/journal.pcbi.1013266


ID: pcbi.1013266 — 2025/7/9 — page 26 — #26

PLOS COMPUTATIONAL BIOLOGY Estimating behavioural relaxation induced by COVID-19 vaccines

78. Statistics Canada. Population estimates on July 1, by age and gender. 2023.
https://doi.org/10.25318/1710000501-eng

79. Italian National Institute of Statistics. Resident population on 1st January: By age.
http://dati.istat.it/Index.aspx?QueryId=42869&lang=en#

80. Nomis O for NS (ONS). Population estimates - local authority based by five year age band.
https://www.nomisweb.co.uk/datasets/pestnew

81. Brazilian Institute of Geography and Statistics. Tables - 2018 Population Projections for Brazil and
Federation Units by Sex and Age: 2010-2060. https:
//www.ibge.gov.br/en/statistics/social/population/18176-population-projection.html?lang=en-GB

82. Trentini F, Manna A, Balbo N, Marziano V, Guzzetta G, O’Dell S, et al. Investigating the relationship
between interventions, contact patterns, and SARS-CoV-2 transmissibility. Epidemics.
2022;40:100601.

83. Minter A, Retkute R. Approximate Bayesian computation for infectious disease modelling.
Epidemics. 2019;29:100368. https://doi.org/10.1016/j.epidem.2019.100368 PMID: 31563466

84. Schälte Y, Klinger E, Alamoudi E, Hasenauer J. pyABC: efficient and robust easy-to-use
approximate Bayesian computation. JOSS. 2022;7(74):4304. https://doi.org/10.21105/joss.04304

85. CDC. COVID-19 Pandemic Planning Scenarios.
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html#table-1

86. Davis JT, Chinazzi M, Perra N, Mu K, Pastore Y Piontti A, Ajelli M, et al. Cryptic transmission of
SARS-CoV-2 and the first COVID-19 wave. Nature. 2021;600(7887):127–32.
https://doi.org/10.1038/s41586-021-04130-w PMID: 34695837

87. Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV)
infections among travellers from Wuhan, China, 20-28 January 2020. Euro Surveill.
2020;25(5):2000062. https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062 PMID: 32046819

88. Sharma S, Shrivastava S, Kausley SB, Rai B, Pandit AB. Coronavirus: a comparative analysis of
detection technologies in the wake of emerging variants. Infection. 2023;51(1):1–19.
https://doi.org/10.1007/s15010-022-01819-6 PMID: 35471631

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013266 July 7, 2025 26/ 26

https://doi.org/10.25318/1710000501-eng
http://dati.istat.it/Index.aspx?QueryId=42869&lang=en#
https://www.nomisweb.co.uk/datasets/pestnew
https://www.ibge.gov.br/en/statistics/social/population/18176-population-projection.html
https://www.ibge.gov.br/en/statistics/social/population/18176-population-projection.html
https://doi.org/10.1016/j.epidem.2019.100368
http://www.ncbi.nlm.nih.gov/pubmed/31563466
https://doi.org/10.21105/joss.04304
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html#table-1
https://doi.org/10.1038/s41586-021-04130-w
http://www.ncbi.nlm.nih.gov/pubmed/34695837
https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
http://www.ncbi.nlm.nih.gov/pubmed/32046819
https://doi.org/10.1007/s15010-022-01819-6
http://www.ncbi.nlm.nih.gov/pubmed/35471631
https://doi.org/10.1371/journal.pcbi.1013266

	Estimating behavioural relaxation induced by COVID-19 vaccines in the first months of their rollout
	References




