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Controlling the spread of deception-based cyber-threats on time-varying networks
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We study the efficacy of strategies aimed at controlling the spread of deception-based cyber-threats unfolding
on online social networks. We model directed and temporal interactions between users using a family of
activity-driven networks featuring tunable homophily levels among gullibility classes. We simulate the spread-
ing of cyber-threats using classic susceptible-infected-susceptible (SIS) models. We explore and quantify the
effectiveness of four control strategies. Akin to vaccination campaigns with a limited budget, each strategy
selects a fraction of nodes with the aim to increase their awareness and provide protection from cyber-threats.
The first strategy picks nodes randomly. The second assumes global knowledge of the system selecting nodes
based on their activity. The third picks nodes via egocentric sampling. The fourth selects nodes based on
the outcome of standard security awareness tests, customarily used by institutions to probe, estimate, and
raise the awareness of their workforce. We quantify the impact of each strategy by deriving analytically how
they affect the spreading threshold. Analytical expressions are validated via large-scale numerical simulations.
Interestingly, we find that targeted strategies, focusing on key features of the population such as the activity,
are extremely effective. Egocentric sampling strategies, though not as effective, emerge as a clear second best
despite not assuming any knowledge about the system. In addition, we find that networks characterized by highly
homophilic interactions linked to gullibility might expand the range of transmissibility parameters that allows for
macroscopic outbreaks. At the same time, they reduce the reach of these spreading events. Hence, rather isolated
patches of the network formed by highly gullible individuals might provide fertile grounds for the propagation
and survival of cyber-threats.
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Deception-based attacks such as phishing, baiting, and file
masquerading have become one of the most diffuse types
of cyber-threats [1–8]. These are designed around ingenious
strategies that target human nature. For example, the classic
phishing scheme tries, via trusted access, to lure victims to
open a malicious link and/or to download a malware which
might affect personal accounts and devices, reveal sensitive
data, and, unbeknownst to the victims, allow the threat to
spread further. Worryingly, the recent advancements in gen-
erative artificial intelligence are offering new unprecedented
opportunities to malicious actors to enhance and scale up their
criminal activities [9,10].

The extant literature devoted to modeling these processes
and gathering insights to contrast them is vast, but presents
two main limitations. First, most previous work neglects the
temporal nature of online contact patterns, focusing instead
on aggregated networks [11–15]. However, the order and
concurrency of interactions are key factors shaping the charac-
teristics of a wide range of spreading processes on networks.
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As extensively shown in the case of random walks [16–20],
biological [21–34] and social contagion phenomena [35–37]
neglecting time-varying patterns in favor of static (i.e., ag-
gregated) representations may lead to a misrepresentation of
the spreading potential of these processes. Indeed, as not all
contacts might be active at the same time, the possible routes
a random walker can take or the possible number of infec-
tion chains could be reduced with respect to those available
in time-aggregated representations [16–18,21,22,26,37]. Even
more, all contacts a node has before it is infectious or is visited
by a random walker cannot lead to a further propagation of
the process [11,12]. At the same time, it is interesting to note
how the complex nature of interactions, in particular possible
correlations in activation patterns, could also lead to a speed
up of such processes [19,38]. In the context of cyber-threats,
a few papers have highlighted the importance of account-
ing for temporal interactions. Reference [39] modeled the
spreading of computer viruses on time-varying networks fea-
turing homophily. The paper shows how the interplay between
timescales (one describing the evolution of connectivity pat-
terns and the other the spreading process) might induce highly
nontrivial dynamics. Reference [40] studied the spreading of
computer viruses via temporal Bluetooth connections. The
results highlight how the diffusion of these threats is slowed
down by the actual, fewer, opportunities of a contagion with
respect to those that would be erroneously considered avail-
able in static aggregations of users’ contacts.
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As a second limitation, most of the literature assumes
users to be equally susceptible (i.e., gullible). However, recent
empirical studies showed that susceptibility to cyber-threats
is not homogeneous and may depend on factors such as
age, digital proficiency, or familiarity with online social
networks, among others [5,41]. Reference [39] is an excep-
tion in the literature, as it explicitly accounts for different
gullibility classes. The paper shows how interactions across
different susceptibility groups might render the system more
fragile to the spreading of cyber-threats with respect to ho-
mogeneous cases. Hence, considering the presence of such
heterogeneities might be critical to gather a better picture of
systems’ resilience against cyber-threats.

Here, we build on the theoretical framework developed
in Ref. [39] and expand it to investigate the effectiveness
of different strategies devoted to controlling the spread of
deception-based attacks. To this end, we imagine a large
corporation or institution facing the challenge of protecting
their digital infrastructure against cyber-threats. Following
Ref. [39], we model the temporal interactions between users in
the corporation adopting a family of activity-driven networks
[22,37,42,43] featuring different gullibility classes and tun-
able homophily levels between them. We model the potential
spreading of deception-based cyber-threats within the corpo-
ration considering a classic susceptible-infected-susceptible
(SIS) model [44].

In these settings, we assume that, in a given time window,
the corporation has a limited budget to increase the aware-
ness of their employees via specific training courses, and it
faces the following question: Who should be selected for such
training? Defining a strategy to select a fraction of employees
to better protect a corporation from computer viruses can be
formulated as a vaccination problem with limited budget [45].
We investigate the impact of four different strategies. The first
acts as a baseline and selects a random fraction of the nodes
for training independently from their features. The second
focuses on targeting nodes that, possibly due to the nature
of their work (e.g., customer service), tend to get in contact
with more individuals over time (i.e., they are more active)
[23]. As a third option, we consider a strategy based on local
egocentric sampling of the connections of a fraction of nodes
that act as probes [15,23]. Finally, we study a fourth strategy
that targets users based on their knowledge of cyber-threats
estimated via prototypical awareness tests (e.g., simulated
phishing campaigns) [46].

We derive closed analytical expressions of the epidemic
threshold, providing insights about the impact of users’ fea-
tures in all four immunization strategies. We quantify the
effectiveness of each strategy via large-scale numerical simu-
lations, which (i) validate the analytical solutions derived and
(ii) allow the characterization of the dynamics under consid-
eration. Overall, we find a clear hierarchy among strategies
in terms of their effectiveness. The activity-based strategy
emerges as the most effective. Indeed, selecting nodes based
on their activities might reduce the needed fraction of users to
halt the spreading by more than one order of magnitude with
respect to other strategies. The egocentric strategy emerges
consistently as second best, while the strategy based on secu-
rity awareness tests is only marginally better than the baseline.
Interestingly, we find that highly homophilic interactions

among gullibility classes increase the range of transmissibility
parameters that might result in macroscopic outbreaks, but at
the same time they reduce the reach of cyber-threats confining
them within the most gullible group. This result highlights
how cyber-threats might survive in rather isolated parts of
networks even if they are not able to spread in most of the
others. Identifying these possible breeding grounds might be
crucial for elimination campaigns.

The paper is organized as follows. In Sec. I we describe
the general structure of the model. In Sec. II we describe the
four strategies, and we present the analytical results and the
numerical simulations. In Sec. III we present our conclusions.

I. THE MODEL

In this section, we summarize the main features of the
model that acts as the building block of our study. As men-
tioned, we build on the framework proposed in Ref. [39]. We
consider a population of N users that exchange directed mes-
sages online. They are divided into Q categories describing
their susceptibility to cyber-threats (i.e., gullibility classes).
In our hypothetical scenario, categories might be linked to
the organizational structure of the corporation and describe
different departments formed by people with similar computer
proficiency. Each node features an activity a describing their
propensity to initiate communications per unit time. Activities
are extracted from a power-law distribution F (a) ∼ a−α with
a ∈ [ε, 1]. Following Ref. [39], we assume the same distribu-
tion of activity across all gullibility classes, i.e., F (a) = Fx(a)
∀x. This choice allows us to simplify the model in terms of the
number of parameters. Furthermore, it allows us to quantify
the impact of different levels of gullibility on the spreading
process without having to account for other complex dynam-
ics that might emerge from the interplay of different activity
distributions. The temporal dynamics regulating the interac-
tions between users are the following:

(i) At each time step, with probability a�t , nodes are
active.

(ii) Active nodes select m others and send them a message.
The selection is driven by a parameter p, which regulates
the homophily in the system: with probability p each active
node selects at random another user within the same gullibility
class. With probability (1 − p), instead, the active user sends
a message to a user randomly picked among the other classes.
In other words, the membership to a category influences the
link creation process [39,47]. Indeed, in our scenario, we can
imagine that people tend to interact more with others in the
same department.

(iii) At the end of each time step, all connections are
deleted and the process restarts.

Without loss of generality, we set �t = 1.
We describe the propagation of cyber-threats using an SIS

model [44]. Hence, users might be compromised (i.e., in-
fected) and recover as susceptible. Imagine a user who falls
for the ruse at time t and realizes they have been compromised
taking actions to regain full control of their computer at time
t ′. The threat will attempt to spread further by covertly sending
malicious content to all users legitimately contacted between
t and t ′. In other words, we assume that cyber-threats do not
have access to a user’s entire communication history. Instead,
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they can only piggyback on messages initiated after the user
has been compromised and before the threat is detected [14].
Each of the contacted users will be infected, thus falling for
the ruse, with a probability λx, and recover, becoming suscep-
tible again, at a rate μx. As before, x denotes the gullibility
class. We stress the asymmetry in the transmission process:
an infection can only occur when an infected user contacts a
susceptible user, and not the opposite. This asymmetry is the
key difference with respect to similar models for biological
contagion processes.

As shown in Ref. [39], in these settings it is possible to
compute an analytical expression for the basic reproduction
number (i.e., R0) of a cyber-threat unfolding in the system.
R0 is defined as the average number of secondary infections
generated by a single compromised account in an otherwise
susceptible population [44]. The expression for R0 reads

R0 = p
∑

x βx + �∑
x μx

, (1)

where βx = mλx〈a〉x, and � is a function of βx, μx, and
cx,y (i.e., the mixing probabilities among different gullibility
classes) and has a specific algebraic expression for a fixed
number of classes Q. The quantity 〈a〉x denotes the average ac-
tivity in the gullibility class x. We refer the reader to Ref. [39]
and to the Appendix A for more details about the derivation.

II. CONTROL STRATEGIES

We imagine a hypothetical scenario of a large institution
that, in a given time-window, has the budget to provide cyber-
security training to a fraction of its workforce. We assume,
for simplicity, that the training provides complete protection
from future deception-based attacks. The key question is how
to select users that will be trained. In these settings, the cyber-
security training is equivalent to a sterilizing vaccine [45].
Indeed, the training reduces the risk of being compromised to
zero, and users who receive it are removed from the propaga-
tion process. As a result, we model the impact of the training
as an SIS model where a fraction of the nodes is completely
removed from the spreading dynamics.

We consider four strategies to select users for training.
In the first one, users are selected at random independently
from any of their features. The second strategy selects users
in decreasing order of activity. The implementation of this
strategy requires a complete knowledge about users’ activity.
This might be challenging to obtain in reality due to compu-
tational costs required to monitor all communications, as well
as privacy and ethical constraints. The third strategy is based
on an egocentric sampling of the network of communication
starting from random probes. The fourth targets users based
on their knowledge of cyber-threats estimated via prototypical
security awareness training (SAT) tests.

In what follows, we imagine that the training of a fraction
γ of employees takes place in a given time-window. We then
assume that a small fraction of users fall for a deception-based
attack, and we study the impact of each of the four control
strategies in hampering the spreading potential of the cyber-
threat. In other words, we study how each strategy protects the
system from the attack.

A. Random strategy

Given the framework discussed in the previous section,
in the absence of any training, the equation describing the
evolution in time of the number of infected nodes with activity
a and in class x can be written as

dt I
x
a = −μxIx

a + mλxSx
a

×
⎡
⎣p

∫
da′a′ Ix

a′

Nx
+ (1 − p)

∑
y �=x

∫
da′a′ Iy

a′

N − Ny

⎤
⎦.

(2)

In particular, the first term on the right-hand side accounts for
the recovery process, while the second and third terms in the
square brackets account for the possibility of infection due to
a compromised message coming, respectively, from inside or
outside the gullibility class x. In the first strategy, which acts
as a baseline, users are randomly selected for training. Hence,
we remove a random fraction γ of individuals at the beginning
of the spreading process: Rx

a = γ Nx
a . During the early stages

of the spreading, we assume the number of compromised
accounts to be small, i.e., Ix

a 	 Nx
a . Hence, we can approx-

imate the number of susceptible individuals in each activity
class a and gullibility x as Sx

a ≈ (1 − γ )Nx
a . Equation (3) then

becomes

dt I
x
a = −μxIx

a + mλx(1 − γ )Nx
a

×
⎡
⎣p

∫
da′a′ Ix

a′

Nx
+ (1 − p)

∑
y �=x

∫
da′a′ Iy

a′

N − Ny

⎤
⎦.

(3)

By defining λrnd
x = λx(1 − γ ) and integrating Eq. (4) across

all activities, we obtain

dt I
x = −μxIx + mλrnd

x

⎡
⎣pθ x + (1 − p)

∑
y �=x

cx,yθ
y

⎤
⎦, (4)

where θ x = ∫
daaIx

a , cx,y = Nx/(N − Ny), Ix = ∫
daIx

a , and
Nx = ∫

daNx
a . By multiplying both sides of Eq. (4) by a and

integrating across all activities, we obtain

dtθ
x = −μxθ

x + mλrnd
x 〈a〉x

⎡
⎣pθ x + (1 − p)

∑
y �=x

cx,yθ
y

⎤
⎦.

(5)

Equations (4) and (5) define a system of 2Q differential equa-
tions. The cyber-threat will be able to spread only if the largest
eigenvalue of the Jacobian matrix of the system is greater than
zero. As shown in the Appendix B, the largest eigenvalue of
the system reads


rnd
max = −

∑
x

μx + p
∑

x

βrnd
x + �rnd , (6)

where βrnd
x = (1 − γ )βx and �rnd is a function of

βrnd
x , μx, cx,y. Considering the expression of the largest

eigenvalue of the system of differential equations, the basic
reproduction number in the case of random immunization

064311-3



NICOLÒ GOZZI AND NICOLA PERRA PHYSICAL REVIEW E 112, 064311 (2025)

strategy becomes

Rrnd
0 = p

∑
x βrnd

x + �rnd∑
x μx

. (7)

We notice that its expression is equal to the expression of R0

without any security training [see Eq. (1)], except for the terms
βrnd

x and �rnd , which are affected by the definition of λrnd
x . To

showcase the full expression of the threshold, we consider the
cases with a single and two gullibility classes, i.e., Q = 1 and
Q = 2.

Case Q = 1. With a single gullibility class, �rnd = 0 (and
p = 1), hence

Rrnd
0 = βrnd

μ
= (1 − γ )β

μ
= (1 − γ )R0. (8)

In this case, R0 is simply rescaled from a factor (1 − γ )
(i.e., the fraction of nodes not removed). This is the classic
result of random immunization/removal of nodes. Indeed, the
impact of the strategy on the threshold scales linearly with the
fraction of nodes removed [45].

Case Q = 2. With two gullibility classes, (�rnd )2 takes the
following expression:

(�rnd )2 = (μ1 − μ2)2 + (1 − γ )2

×
[

p2(β1 − β2)2 + 2p

1 − γ
(μ2 − μ1)(β1 − β2)

+ 4β1β2(1 − 2p)

]
. (9)

If the two gullibility classes feature the same recovery rate
(i.e., μ1 = μ2), the expression simplifies to

(�rnd )2 = (1 − γ )2[p2(β1 − β2)2 + 4β1β2(1 − 2p)]

= (1 − γ )2�2. (10)

Hence, when the two classes are characterized by the same
recovery rate, the basic reproduction number Rrnd

0 is equal
to R0 rescaled by a factor (1 − γ ). In other words, if the
two gullibility groups differ just by the probability of infec-
tion, the impact of a random removal strategy scales linearly
with γ . Interestingly, in the case μ1 �= μ2, this simple re-
lation does not hold anymore. Indeed, in this case there is
an interplay between timescales regulating the infection pe-
riod of each class. As shown in Ref. [39], in the absence of
any intervention strategy, this interplay can make the system
more fragile than it would be if each class were considered
separately.

B. Activity-based strategy

This second strategy targets nodes that, possibly due the
nature of their job or personal attitude, are more active. Hence,
we remove all nodes of class x that feature an activity higher
than a given threshold ac(x). In practice, this means that
all integrals across activities go from ε to ac(x) (and not
1). In this case, the early-stage linearization takes the form
Sx

a ∼ (1 − γx )Nx
a , where γx = ∫ 1

ac (x) Nx
a /Nxda is the fraction

of nodes removed in class x. The system of 2Q differential

equations defined by Eqs. (4) and (5) can be rewritten as

dt I
x = −μxIx + mλact

x

⎡
⎣pθ x + (1 − p)

∑
y �=x

cx,yθ
y

⎤
⎦,

dtθ
x = −μxθ

x + mλact
x 〈a〉c

x

⎡
⎣pθ x + (1 − p)

∑
y �=x

cx,yθ
y

⎤
⎦,

(11)

where we define λact
x = (1 − γx )λx and 〈a〉c

x =∫ ac (x)
ε

aFx(a)da. Following the same steps outlined above,
we derive the basic reproduction number in the case of
activity-targeted immunization strategy as

Ract
0 = p

∑
x βact

x + �act∑
x μx

, (12)

where βact
x = mλact

x 〈a〉c
x, and �act is a function of all βact

x ,
μx, and cx,y. We note how the threshold is a function of the
groups’ activity averages, i.e., 〈a〉c

x. Hence, one could estimate
the impact of the strategy by knowing just such averages.
However, this information would not be enough to actually
implement it. Indeed, one would have to know which subset
of users to select for training, thus requiring full knowledge
about their activity.

Case Q = 1. With a single gullibility class, �act = 0 (and
p = 1), hence

Ract
0 = βact

μ
= mλact

x 〈a〉c
x

μ
= m(1 − γ )λ〈a〉c

x

μ
. (13)

In this case, the threshold is not a simple rescaling of the R0

obtained without any interventions. Indeed, the expression is
also modified by the contribution of activity classes which
are able to get infected. In doing so, the modulation of R0

induced by targeting the most active nodes in each activity
class is, generally speaking, not linear with the fraction of
nodes removed.

Case Q = 2. The expression of �act is analogous to �rnd ,
where, however, the βx are substituted with βact

x . Hence, also
in this case, the impact of the selection strategy is regulated
by the transmission rates of each class, i.e., βact

x . As noted
above, these are affected by the expression of γx and the
activity distributions of the nodes possibly affected by the
threat, i.e., 〈a〉c

x. Hence, the impact of each node removed is
again nonlinear.

C. Egocentric sampling strategy

As mentioned, the activity-based strategy requires a com-
plete knowledge of nodes’ activities. Due to practical and
privacy issues, this information is typically unavailable in
real-world scenarios. However, a proxy of nodes’ activity can
be obtained by sampling the egocentric network of a fraction
of nodes [15,23]. Egocentric networks capture the connection
that each ego (i.e., a given node in the system) has with their
alters (i.e., the first neighbors of each ego). We can sample
these egocentric networks by randomly selecting a group of
nodes that act as probes. We then observe their connections
(i.e., egocentric network) during a time-window of length T ,
neglecting the direction of links. In other words, we sample
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the interactions of each probe taking place within an observa-
tion window. Then, for each of the probes we pick one alter at
random in their egocentric network and select it for security
training. The idea behind this selection strategy is that highly
active nodes are more likely to be in the egocentric network
of different probes. This local sampling strategy improves the
likelihood of selecting high-activity nodes without assuming
any global knowledge about the system. In general, the num-
ber of probes in different classes can vary depending on their
size. Given a total number of probes Nw, assuming a random
distribution, the expected number of these in each gullibility
class can be written as Nx

w = Nw
Nx

N . We note how in these
settings the fraction of probes in each gullibility class (i.e.,
wx = Nx

w/Nx) is equal to the total fraction and equal across
each class (i.e., wx = w ∀x). However, the number of probes
in each class could be different.

Let us define Px
a as the probability that, from the egocentric

network of a given probe, we select a node of activity a in the
gullibility class x. These are the nodes that will undertake the
security training and thus will be immune from cyber-attacks.
After one observation time step, we can write

Px
a = ap

∫
da′Nx

a′wx
m

Nx

+ a(1 − p)
∑
y �=x

∫
da′Ny

a′wy
m

N − Nx

+
∫

da′a′ pNx
a′wx

m

Nx

1

m

+
∑
y �=x

∫
da′a′(1 − p)Ny

a′wy
m

N − Ny

1

m

= apwxm + a(1 − p)m
Nw − Nx

w

N − Nx
+ pwx〈a〉x

+ (1 − p)
∑
y �=x

Ny

N − Ny
wy〈a〉y. (14)

In particular, the first term of Eq. (14) represents the proba-
bility that nodes with activity a and in gullibility class x are
selected for training (i.e., are removed from the cyber-threat
dynamics) because they are active and connect with probes in
the same gullibility class; the second term is analogous but
considers connections with probes in other gullibility classes;
the third and the fourth term, instead, represent the probability
that nodes are removed after being reached and selected from
probes, respectively, inside (third term) and outside (fourth
term) their gullibility class. By assuming this selection dy-
namics independent across time steps, the probability for a
node with activity a and in class x to be removed after T
time-steps can be written as Px

a (T ) = 1 − (1 − Px
a )T . Hence,

the number of nodes removed after T periods with activity a
and in class x is Rx

a(T ) = Nx
a [1 − (1 − Px

a )T ]. We note how
this formulation is a clear approximation. Indeed, it does
not consider the depletion of nodes in each class due to the
immunization process. As such, this expression holds in the
regime of small T and when the probability that a probe is
selected more than once is small. Furthermore, we note how
due to the possible selection of the same targets from different
probes, in general, the cardinality of the set of nodes selected

by this strategy for security training, γ , might be smaller than
the fraction of probes γ � w. As before, at early stages of the
spreading, we can write Sx

a ∼ Nx
a − Rx

a(T ) and repeat similar
calculations to those explained above to obtain

dt I
x = −μxIx+mλx�

T
0,x

⎡
⎣pθ x + (1 − p)

∑
y �=x

cx,yθ
y

⎤
⎦, (15)

dtθ
x = −μxθ

x+mλx�
T
1,x

⎡
⎣pθ x + (1 − p)

∑
y �=x

cx,yθ
y

⎤
⎦,

(16)

where we define �T
n,x = ∫

daanFx(a)(1 − Px
a )T . In this case,

the basic reproduction number can be written as

Rego
0 = p

∑
x β

ego
x + �ego∑

x μx
with βego

x = mλx�
T
1,x. (17)

Case Q = 1. In the case of a single gullibility class, we have
Rego

0 = βego

μ
= mλ

μ

∫
daaF (a)(1 − Pa)T . We note how the ego-

centric sampling strategy affects the threshold by decreasing,
nonlinearly as function T , the average activity of susceptible
nodes.

Case Q = 2. In the case of two gullibility classes, the
expression of �ego is analogous to �rnd , where βrnd

x are sub-
stituted with β

ego
x . Also in this case, the impact of strategy on

the dynamics is hidden in the �T
1,x expressions, which lead to

nonlinear effects.

D. Security awareness training strategy

In this last strategy, we imagine that the corporation runs
a security awareness training (SAT) test in which all the em-
ployees (i.e., nodes) receive a fake compromised email and/or
message (e.g., a phishing email). These tests are customar-
ily used for cyber-security training and awareness purposes
[48]. The strategy consists in estimating the gullibility of
employees based on the outcomes of the test. In particular,
we implement it as follows. With probability g, a user sees
the SAT email and opens it. In general, we set g < 1 thus not
all employees engage with the SAT. After seeing the email,
a node in gullibility class x clicks on the compromised link,
thus falling for the ruse, with probability λx. We assume that
the fraction γ of the users that are selected to receive security
training is selected from the pool of employees that did not
recognize the potential threat and clicked on the compromised
link. In doing so, we aim to select users more in need of
security training.

In these settings, the average number of employees with
activity a and in gullibility class x that would fall for the ruse
can be estimated as gNx

a λx. The fraction of γ ′ needed, such
that the overall fraction of employees ultimately selected for
training is γ , can be obtained solving the following equation:
γ = N−1 ∑

x

∫
dagNx

a λxγ
′. This leads to

γ ′ = γ

g〈λ〉 , (18)

where 〈λ〉 = ∑
x λxNx/N is the average transmissibility in the

system. Hence, the number of employees with activity a and
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(c) (d)

(a) (b)

FIG. 1. Numerical validation of the threshold under different strategies. Each panel shows the stationary fraction of infected individuals
I∞/N as a function of R0 for the four immunization strategies: (a) random, (b) activity-based, (c) egocentric sampling, and (d) SAT. Results are
shown for two parameter settings: (p = 0.4, γ = 10−1, λ2 = 0.5) in blue and (p = 0.8, γ = 10−1, λ2 = 0.3) in orange for panels (a), (c), and
(d); and (p = 0.4, γ = 10−2, λ2 = 0.5) in blue and (p = 0.8, γ = 10−2, λ2 = 0.8) in orange for panel (b). The vertical dashed line indicates
the critical value of the threshold computed analytically (i.e., R0 = 1). Solid lines with markers represent mean values, while shaded areas
indicate 95% confidence intervals computed in 100 stochastic simulations. Other parameters common to all simulations: α = 2.1, ε = 10−3,
m = 4, initial infected percentage 0.5%, μ1 = μ2 = 10−2. In the egocentric sampling strategy case, we set T = 10.

in gullibility class x selected for training can be written as

Rx
a = gNx

a λxγ
′ = Nx

a

λx

〈λ〉γ . (19)

Interestingly, if a class x features transmissibility equal to
the network’s average, the fraction of removed nodes in that
class is simply that of the random case (i.e., Rx

a ∼ Nx
a γ ). If

a class x has transmissibility higher (lower) than the average
(i.e., is more or less gullible than the average), it will have a
higher (lower) fraction of removed nodes with respect to the
random case.

At early stages of the spreading, the equation for Ix
a be-

comes

dt I
x
a = −μxIx

a + mλxNx
a

(
1 − λx

〈λ〉γ
)

×
⎡
⎣p

∫
da′a′ Ix

a′

Nx
+ (1 − p)

∑
y �=x

∫
da′a′ Iy

a′

N − Ny

⎤
⎦.

(20)

By defining λsat
x = λx(1 − λx

〈λ〉γ ), we obtain an equa-
tion analogous to the random case. Hence, we can directly
write the expression for R0 as

Rsat
0 = p

∑
x βsat

x + �sat∑
x μx

, (21)

where βsat
x = βx(1 − λx

〈λ〉γ ), and �sat is again a function of βsat
x ,

μx, cx,y.
Case Q = 1. In the case of a single gullibility class, the SAT

strategy is equivalent to the random strategy. Indeed, in this
case nodes are selected proportionally to their gullibility and
not other features. Thus in the case of a single group of nodes,

each one is selected uniformly at random. This aspect of the
SAT strategy hints at its difference with respect to the previous
two strategies, which, even in the case of one gullibility class,
did not lead to the same expression of the baseline strategy.

Case Q = 2. In the case of two gullibility classes, the ex-
pression of Rsat

0 is analogous to the random case. However, as
for the other cases, the expression of the β terms is different.
The effect of the selection strategy is a function of γ and
modulated by the gullibility of each class with respect to the
system’s average.

Interestingly, as shown in the Appendix E, for any number
of gullibility classes and a given fraction of removed nodes γ ,
the effective average transmissibility in this strategy cannot
be larger than in the random case, namely 〈λsat〉 � 〈λrnd〉.
This implies that the effective spreading potential in the case
in which the subset of nodes is selected via a SAT strat-
egy can only be smaller or equal with respect to a random
selection.

E. Numerical simulations

In Fig. 1 we show, for each strategy, the simulated fraction
of infected nodes at equilibrium as a function of R0 for two
different values of p and two gullibility classes (Q = 2). In
all simulations, we assume the process reaches the station-
ary state when the ratio between the mean and the standard
deviation of the prevalence (i.e., the number of currently in-
fected nodes), computed over the last 103 simulation steps,
falls below a threshold of 0.02. In all scenarios, except those
adopting an activity-based strategy, we set γ = 10−1 (i.e.,
10% of employees are enrolled in the security training). The
strategy that selects nodes in decreasing order of activity is so
effective that, to validate the analytical formulation, we need
to consider smaller values of γ (e.g., γ = 10−2). Indeed, all
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(c) (d)

(a) (b)

FIG. 2. Phase space of R0 as a function of λ1 and λ2, under different strategies. Each panel corresponds to a specific strategy: (a) random,
(b) activity-based, (c) egocentric sampling, and (d) SAT, with two subpanels per strategy representing (p = 0.4, γ = 10−1) and (p = 0.8,

γ = 10−1)—except for panel (b), which uses γ = 10−2. The colored contours show analytically computed R0 values for each strategy. The
red solid contour line marks the critical threshold R0 = 1 under the given intervention strategy, while the black dashed line shows the R0 = 1
threshold in the absence of intervention. Other parameters common to all panels are μ1 = μ2 = 10−2, m = 4, α = 2.1, ε = 10−3.

physical combinations of parameters lead to subcritical states
for γ = 10−1. In all simulations, we fixed the infection proba-
bility of the second class (i.e., λ2) and let λ1 vary exploring
corresponding R0 values in the range 0.6–1.5. We exclude
nonphysical combinations that result in values λ1 > 1. Fur-
thermore, we consider a simple case in which the two recovery
rates are equal, i.e., μ1 = μ2. As a way to show the validity of
the analytical derivation across a wider range of parameters,
we set two different values of λ2 for the two values of p. We
use λ2 = 0.3 for p = 0.8 and λ2 = 0.5 for p = 0.4. We note
how we adopt R0 as an order parameter rather than λ1 to fairly
compare different parameter combinations. The analytical es-
timation of the thresholds for all strategies is confirmed by
the numerical simulations. Indeed, the analytical thresholds
clearly split the phase spaces in two. Below the critical value
(i.e., R0 = 1), the cyber-threat is not able to spread into the
system. Then, to the right of the critical values, we see a clear
transition in the dynamics. Indeed, the fraction of infected
nodes reaches an endemic state. The effectiveness of each
strategy can be evaluated by looking at the outbreak size for a
given R0. Differences become clear as we move away from the
threshold (i.e., R0 = 1). The activity-based strategy emerges
are clearly the most effective. Indeed, the values λ1 above
threshold are just extreme values very close to 1. This explains
why we have fewer points in that panel [see Fig. 1(b)]. The ef-
fectiveness of this strategy is even more striking recalling than
in this case we removed only 1% of nodes, rather than 10%
as for the other strategies. The baseline and the SAT strategy
appear similar and clearly less effective than the activity-based
strategy. As mentioned above, the similarity between the two
is to be expected by construction. However, the SAT strategy
performs marginally better, especially for larger values of p.
The egocentric strategy appears to be more effective than both
the baseline and the SAT strategy. However, its performance
is still far from the most effective. Across the board, we

observe how smaller values of p (i.e., low homophily) result
in larger outbreaks, especially for large values of R0. Hence,
well above the threshold, increased mixing across gullibility
classes might be detrimental to the whole system in the case
of successful attacks.

In the Appendixes, we reproduce Fig. 1 (considering only
p = 0.4) for other values of parameters. The results show the
robustness of the mathematical formulation to the choice of
input variables.

In Fig. 2 we show contour plots of the theoretical value
of R0, estimated from the analytical derivations described
above, as a function of the gullibility of the two classes, i.e.,
R0(λ1, λ2). As for the previous plots, we assume μ1 = μ2.
The black dashed lines show the thresholds (i.e., R0 = 1)
in the case of γ = 0 (no security training). The red solid
lines, instead, show the thresholds in the case of γ = 10−1

for all strategies but the activity-based one. As before, we set
γ = 10−2 for this strategy. In each panel, the gap between
the two lines quantifies the impact of the training strategy.
Indeed, points below each line are subcritical, thus the threat
would not be able to spread in those regions of the phase
space. The two lines are rather close in the case of the random
baseline strategy highlighting the marginal efficacy of this
strategy [see Fig. 2(a)]. The effectiveness of the activity-based
strategy clearly emerges in Fig. 2(b). Indeed, the gap between
the two lines is the largest among all strategies, confirming
how selecting nodes based on their activities leads to the best
outcomes. We stress one more time how the effectiveness of
this strategy is particularly striking when considering that it
is the only one for which we removed only 1% of nodes. The
egocentric strategy is confirmed to be more effective than both
random and SAT strategies with a gap between the two lines
closer to the activity-based strategy, though in this case we
have γ = 10−1. The SAT strategy is confirmed to be similar
to the random baseline [see Fig. 2(d)], though more effective,
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(c) (d)

(a) (b)

FIG. 3. Phase diagrams of R0 as a function of μ1 and μ2, under different immunization strategies. Each panel corresponds to a specific
strategy: (a) random, (b) activity-based, (c) egocentric-sampling, and (d) SAT, with two subpanels per strategy representing (p = 0.4, γ = 0.2)
and (p = 0.8, γ = 0.2)—except for panel (b), which uses γ = 10−2. The colored contours show analytically computed R0 values for each
strategy. The red solid contour line marks the critical threshold R0 = 1 under the given intervention strategy, while the black dashed line
shows the R0 = 1 threshold in the absence of intervention. Other parameters common to all panels are λ1 = 10−1, λ2 = 0.8, m = 4, α = 2.1,
ε = 10−3.

especially for larger values of homophily and when the two
classes exhibit greater differences in gullibility. Across all
strategies, the difference of the phase spaces as a function of p
shows how large values of homophily allow macroscopic, yet
localized, outbreaks even if one of the two classes is perfectly
immune to the threat (e.g., λ1 = 0). Indeed, in these scenarios
the threat is able to spread, and survive, in one community of
the network. On the other hand, smaller values of homophily
lead to a larger mix between the two classes, and the dynamics
is driven by the interplay between the gullibility of the two
classes. Observing the critical value of λ2 above which the
threat would be able to spread even if the other gullibility class
is perfectly protected (i.e., λ1 = 0) offers another approach
to compare strategies. Indeed, higher values of λ2 highlight
better performance in stopping the spreading. This value is
the largest in the case of the activity-based strategy (λc

2 �
0.84). The egocentric strategy follows with a critical value of
λc

2 � 0.75. The SAT and random strategy then show values of
λc

2 � 0.71 and λc
2 � 0.63, respectively.

In Fig. 3 we show the phase space of R0 as a function of
μ1 and μ2 while fixing the values of λ1 and λ2. We set γ

in each case setting as γ = 0.2 for all strategies except for
the activity-based strategy, where we use instead γ = 10−2.
Across the board we observe that smaller values of recovery
rates result in larger R0. The trend is to be expected, as the
larger the recovery time is (i.e., μ−1

x ), the higher is the number
of opportunities for each infected node to spread the threat
further. Also in this plot, we observe how large values of
homophily allow macroscopic outbreaks even if one gullibil-
ity class manages to recover immediately after infection (i.e.,
μx = 1), thus limiting the spread of the threat. Furthermore,
the plots confirm the hierarchy of efficacy of the four strate-
gies highlighted above.

To further compare the various strategies, we compute the
fraction � of the (λ1, λ2) phase space that results in subcritical
dynamics. In other words, � is defined as the portion of
the (λ1, λ2) phase space for which the corresponding R0 is
subcritical (i.e., R0 < 1). For a given range of parameters, the
larger � is, the smaller is the region of the transmissibility
parameters that would allow for a macroscopic outbreak. We
show the results for different scenarios in Fig. 4. In all plots,
the dashed horizontal lines and gray bars describe the value
of � in the absence of any control strategy (i.e., γ = 0).
Furthermore, the numerical labels above each bar indicate
the value of � for each strategy and, in parentheses, the
absolute gain with respect to the no-intervention scenario.
The panels in the first row are obtained considering the same
value of the recovery rates in two gullibility classes, but two
different values of the homophily parameter. The second row
instead considers scenarios in which the recovery parameters
are different. A few observations are in order. First, across
the board, the hierarchy of effectiveness of the four strate-
gies confirms previous findings. The activity-based strategy
results in the largest increase of �. Second, larger values of
homophily result in smaller subcritical regions of the phase
space. Indeed, as observed above, for large values of p the
threat might be able to spread even if one gullibility class
is perfectly protected (e.g., λ1 = 0). These configurations are
not compatible with macroscopic outbreaks in the case of
higher mixing levels between gullibility classes (i.e., smaller
homophily). We note how these results are not in contrast
with the observations we made above, where we noted how,
for a given value of R0, higher levels of homophily corre-
sponded to larger outbreaks. Indeed, � quantifies the inactive
(i.e., subcritical) region of the phase space. It is agnostic to
the prevalence/reach of the cyber-threat in the system. It is
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(c) (d)

(a) (b)

FIG. 4. Subcritical (λ1, λ2) phase-space fraction (�) under different strategies. Each panel reports results for a specific combination of
parameters: (a) p = 0.4, μ1 = μ2 = 10−2; (b) p = 0.8, μ1 = μ2 = 10−2; (c) p = 0.4, μ1 = 10−2, μ2 = 5 × 10−2; (d) p = 0.8, μ1 = 10−2,
μ2 = 5 × 10−2. The horizontal dashed lines and gray bars represent the value of � in the absence of intervention. Numerical labels above the
bars indicate the total controlled fraction and, in parentheses, the gain with respect to the no-intervention baseline. Other parameters common
to all panels are m = 4, α = 2.1, ε = 10−3.

a measure of the combination of transmissibility parameters
that result in subcritical dynamics. It does not provide any in-
formation about what happens in supercritical regimes. These
two results together suggest how higher values of homophily
facilitate the spreading of cyber-threats, but limit their reach
in rather isolated groups. Hence, cyber-threats might survive
in patches of the network constituted by isolated and highly
gullible groups. Third, increasing the recovery rate of even
just one class leads to a sensible reduction of the subcritical
phase space. Indeed, the values of � decrease across the board
in Fig. 4(c) and Fig. 4(d). We note, however, how the relative
effectiveness of each strategy is preserved also in this case.

III. CONCLUSIONS

We studied the effectiveness of different strategies aimed
at containing the spread of deception-based cyber-threats in
online social networks. To this end, we modeled the temporal
interactions among users using the framework of activity-
driven networks. We allowed for the presence of multiple
gullibility (i.e., susceptibility) classes describing heteroge-
neous risk profiles of users. Furthermore, we assumed that
the membership to a gullibility class affects the interaction
dynamics via a tunable homophily parameter. Finally, we
simulated the spreading of cyber-threats using prototypical
SIS epidemic models. In these settings, we quantified the
efficacy of four strategies aimed at selecting a fraction of
nodes to be protected from such threats. The first strategy acts

as a baseline and selects individuals at random. The second
assumes complete knowledge of the activity (i.e., propensity
of initiating online interactions) of each individual and tar-
gets first the most active nodes. The third is based on an
egocentric sampling strategy aimed at reaching highly active
nodes without assuming any knowledge about their activity.
The fourth is based on estimating the gullibility of each node
via security awareness tests, which are routinely employed
in many institutions to probe the cyber-security awareness
of the workforce [48]. We analytically derived the epidemic
threshold under each intervention strategy. In doing so, we
quantified their effectiveness to control the spreading process.
Large-scale numerical simulations validated the analytical ex-
pressions across all strategies. The results obtained clearly
show the high effectiveness of activity-based strategies, which
are able to outperform the others even when protecting a
smaller fraction of individuals. The egocentric sampling strat-
egy emerges as second best, confirming the value of local
sampling strategies aimed at reaching the most active nodes
without global knowledge of the system. The fourth strategy,
based on security awareness tests, proved only marginally
better than the baseline.

Our findings confirm how identifying the most important
nodes in the network allows us to effectively interrupt the
spreading of contagion processes [23,45,49]. Furthermore, the
results highlight that highly homophilic interactions within
gullibility classes expand the transmissibility phase space,
thereby fostering conditions for macroscopic outbreaks.
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Indeed, in these conditions the cyber-threat may still spread
within the most gullible group, even when it cannot propagate
through others. At the same time, we find that larger values
of homophily ultimately reduce the outbreak size with respect
to more mixed scenarios. The modulation effects induced by
the mixing levels between gullibility classes highlight the im-
portance of considering heterogeneous susceptibility groups.
Indeed, neglecting them in favor of a homogeneous repre-
sentation of gullibility might lead to a misrepresentation of
the spreading potential of cyber-threats and of the efficacy
of strategies aimed at hampering them. Furthermore, these
results suggest how cyber-threats might survive and propagate
in rather isolated groups of gullible individuals, and they
highlight the importance of identifying and increasing the
awareness of these communities.

The work presented comes with several limitations. First,
we neglected more realistic mechanisms driving the in-
teraction between users. Indeed, while we accounted for
homophily, we did not consider popularity and social re-
inforcement mechanisms, among others [12,50]. Second,
for simplicity we assumed indefinite and perfect protection
granted by cyber-security training. Third, we considered the
recovery process as a spontaneous transition function of the
gullibility of each node. Hence, we did not account for the
possibility that a compromised account might be informed
by others, in response to their anomalous behavior. Fourth,
we considered only a few groups of gullibility. Future work
should explore the impact of more heterogeneity across users.
Fifth, we used a simple SIS compartmentalization setup to
model cyber-threats. More realistic setups accounting, for
example, for possible latent states of the threats are possi-
ble alternatives [51]. Sixth, we did not account for possible
correlations between activity and gullibility that might lead
to the emergence of additional interesting dynamics. Finally,
we modeled the probability of falling for a ruse and getting
infected as a function only of the gullibility class of each node.
Hence, we neglected possible modulations induced by past ex-
periences (i.e., past infection events), recency, and frequency
biases [52]. We leave accounting for these limitations to future
work.

Overall, our results highlight the striking effectiveness of
targeted strategies based on node activity. At the same time,
they confirm the effectiveness of local sampling strategies
that, although not as efficient as targeted approaches, do not
require access to global information about systems’ connec-
tions. The research contributes to the limited literature devoted
to controlling the spread of cyber-threats accounting for both
temporal dynamics and heterogeneous susceptibility of users.
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APPENDIX A: SPREADING THRESHOLD DERIVATION
FOR γ = 0

The interactions between nodes follow the model proposed
in Ref. [39]. A population of N users is divided into Q
categories describing their susceptibility to cyber-threats (i.e.
gullibility classes). Nodes feature an activity a describing their
propensity to initiate communications. Activities are extracted
from a power-law distribution F (a) ∼ a−α with a ∈ [ε, 1]. In
these settings, at each time step t , a network is generated as
follows:

(i) Each node is initially disconnected.
(ii) With probability a�t each node becomes active.
(iii) Active nodes select m others and create directed links

(e.g., send them a message). Furthermore, with probability p
the new links are created within the same class at random.
With probability 1 − p, links are created with nodes in other
gullibility classes, at random.

(iv) At time t + �t , all links are deleted and the process
restarts.

Without lack of generality, we can set �t = 1.
We simulate the spreading of deception-based cyber-

threats unfolding on top of these temporal networks using
a classic susceptible-infected-susceptible (SIS) model [44].
Nodes in class x get infected with probability λx and spon-
taneously become susceptible again at a rate μx. We stress
the asymmetry in the transmission process: an infection can
only occur when an infected contacts a susceptible, and not
the opposite.

Assuming that all nodes in the same gullibility and activity
class are statistically equivalent, and considering the continu-
ous limit (i.e., N → ∞), we can write the equation describing
the evolution of the number of infected as

dt I
x
a =−μxIx

a + λxmSx
a

×
⎡
⎣p

∫
da′a′ Ix

a′

Nx
+ (1 − p)

∑
y �=x

∫
da′a′ Iy

a′

N − Ny

⎤
⎦.

(A1)

The first term on the right-hand side captures the recovery
process. The second term describes susceptible nodes that
receive a compromised message coming from their gullibility
class and as a result get infected. The third is analogous to
the previous term but accounts for compromised messages
arriving from other gullibility classes. At early stages, we
can assume that the number of compromised nodes is very
small, hence we can consider the approximation Sx

a ∼ Nx
a . The

previous equation becomes

dt I
x
a = −μxIx

a + λxmNx
a

⎡
⎣p

∫
da′a′ Ix

a′

Nx
+ (1 − p)

∑
y �=x

∫
da′a′ Iy

a′

N − Ny

⎤
⎦. (A2)
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We observe that
∫

daIx
a = Ix,

∫
daNx

a = Nx. Integrating
both members of Eq. (A2) over all activities, we obtain

dt I
x = −μxIx + λxm

⎡
⎣pθ x + (1 − p)

∑
y �=x

cx,yθ
y

⎤
⎦, (A3)

where we define θ x = ∫
da′aIx

a , cx,y = Nx/(N − Ny). We
multiply both members of Eq. (A2) by a and integrate over
all activities:

dtθ
x = −μxθ

x + λxm〈a〉x

⎡
⎣pθ x + (1 − p)

∑
y �=x

cx,yθ
y

⎤
⎦,

(A4)

where we define 〈a〉x = ∫
daaNx

a /Nx. Finally, we obtain a
system of 2Q differential equations that describes the evolu-
tion of the system:

dt I
x = −μxIx + λxm

[
pθ x + (1 − p)

∑
y �=x

cx,yθ
y

]
= gx,

dtθ
x = −μxθ

x + λxm〈a〉x

[
pθ x + (1 − p)

∑
y �=x

cx,yθ
y

]
= hx.

(A5)

The threat would be able to spread if the largest eigenvalue
of the Jacobian matrix of this system is larger than zero. The
Jacobian matrix can be written as

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂g1

∂I1 · · · ∂g1

∂IQ
∂g1

∂θ1 · · · ∂g1

∂θQ

...
. . .

...
...

. . .
...

∂gQ

∂I1 · · · ∂gQ

∂IQ
∂gQ

∂θ1 · · · ∂gQ

∂θQ

∂h1

∂I1 · · · ∂h1

∂IQ
∂h1

∂θ1 · · · ∂h1

∂θQ

...
. . .

...
...

. . .
...

∂hQ

∂I1 · · · ∂hQ

∂IQ
∂hQ

∂θ1 · · · ∂hQ

∂θQ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Substituting the partial derivatives, we get a block matrix whose structure depends on μx, λx, cx,y, 〈a〉x, and p:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ1 0 · · · 0 pλ1m (1 − p)λ1mc1,2 · · · (1 − p)λ1mc1,Q

0 −μ2 · · · 0 (1 − p)λ2mc2,1 pλ2m · · · (1 − p)λ2mc2,Q
...

...
. . .

...
...

...
. . .

...

0 0 · · · −μQ (1 − p)λ2mcQ,1 (1 − p)λ2mcQ,2 · · · pλQm
0 0 · · · 0 −μ1 + pβ1 (1 − p)β1c1,2 · · · (1 − p)β1c1,Q

0 0 · · · 0 (1 − p)β2c2,1 −μ2 + pβ2 · · · (1 − p)β2c2,Q
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 (1 − p)βQcQ,1 (1 − p)βQcQ,2 · · · −μQ + pβQ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where we define βx = m〈a〉xλx. Then, the largest eigenvalue

max can be written in a general form as [39]


max = −
∑

x

μx + p
∑

x

βx + �, (A6)

where � is an algebraic function of βx, μx, and cx,y and its
analytical expression depends on the number of classes Q.
Since the cyber-threat is able to spread if 
max > 0, we define
the basic reproduction number as

R0 = p
∑

x βx + �∑
x μx

. (A7)

If R0 > 1, the threat would be able to spread affecting a
macroscopic fraction of the population.

APPENDIX B: RANDOM STRATEGY

Here, we provide the details about the threshold derivation
for the random strategy. We recall that in this case, the fraction
of removed nodes, γ , is picked at random, independently
of any of their features. Hence, in the early stages of the

spreading we can write

Sx
a ∼ (1 − γ )Nx

a . (B1)

Substituting this in the dynamics described by Eq. (A1),

dt I
x
a =−μxIx

a + λx(1 − γ )mNx
a

×
⎡
⎣p

∫
da′a′ Ix

a′

Nx
+ (1 − p)

∑
y �=x

∫
da′a′ Iy

a′

N − Ny

⎤
⎦.

(B2)

By defining λrnd
x = λx(1 − γ ), the equation is analogous to

Eq. (A2). Hence, we can directly write the expression of R0 in
this case as

Rrnd
0 = p

∑
x βrnd

x + �rnd∑
x μx

, (B3)

where βrnd
x = (1 − γ )βx, and �rnd is a function of βrnd

x , μx,
and cx,y.
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APPENDIX C: ACTIVITY-BASED STRATEGY

Here, we provide the detailed derivation of the threshold
for the activity-based strategy. In this strategy, we remove all
nodes of class x that show an activity higher than a threshold
ac(x). In practice, integrals across activities now spans from ε

to ac(x) (and not 1), reflecting the immunization of most active
nodes. In the early stages of the spreading, we can write

Sx
a ∼ (1 − γx )Nx

a , (C1)

where γx is the fraction of nodes removed in class x. This
quantity can be computed as

γx =
∫ 1

ac (x)
daNx

a /Nx. (C2)

By repeating the same same calculation presented in Ap-
pendix A, we obtain the system of 2Q equations:

dt I
x =−μxIx + m λx(1 − γx )

×
⎡
⎣pθ x + (1 − p)

∑
y �=x

cx,yθ
y

⎤
⎦, (C3)

dtθ
x = −μxθ

x + m λx(1 − γx )〈a〉c
x

×
⎡
⎣pθ x + (1 − p)

∑
y �=x

cx,yθ
y

⎤
⎦. (C4)

As for the previous strategy, by defining λact
x = λx(1 − γx ),

we can map this system of equation to the case for γ = 0.
Hence, we can directly write the expression for the basic
reproductive number as

Ract
0 = p

∑
x βact

x + �act∑
x μx

, (C5)

where βact
x = mλact

x 〈a〉c
x and �act is a function of all βact

x , μx,
and cx,y.

APPENDIX D: EGOCENTRIC SAMPLING STRATEGY

Here, we provide the detailed derivation of the threshold
for the egocentric sampling strategy. In this strategy, a random
fraction w of nodes is selected as probes. We observe their
interactions (i.e., egocentric network) for T time steps. Then,
for each of the probes, we remove, at random, exactly one of
their neighbors in the aggregate egocentric network. Let us
define Nw as the total number of probes. Assuming a random
distribution, the expected number of these in each gullibility
class is Nx

w = Nw
Nx

N . This implies that the fraction of probes
in each gullibility class is wx = Nx

w/Nx. In the case of random
distribution, the average fraction of probes in each class is the
same, and it is equal to the overall fraction wx = w ∀x.

Let us define Px
a as the probability that, from a given probe,

we select a node of activity a in the gullibility class x. After
one observation time step, we can write

Px
a = ap

∫
da′Nx

a′wx
m

Nx
+ a(1 − p)

∑
y �=x

∫
da′Ny

a′wy
m

N − Nx

+
∫

da′a′ pNx
a′wx

m

Nx

1

m
+

∑
y �=x

∫
da′a′(1 − p)Ny

a′wy
m

N − Ny

1

m

= apwxm + a(1 − p)m
Nw − Nx

w

N − Nx
+ pwx〈a〉x + (1 − p)

∑
y �=x

Ny

N − Ny
wy〈a〉y. (D1)

In particular, the first and the second term represent the probability that the node is removed after reaching one of the probe,
respectively, inside and outside its gullibility class; the third and the fourth term, instead, represent the probability that the node
is removed after being reached from a probe, respectively, inside and outside its gullibility class. By assuming independent
subsequent time steps, the probability for a node with activity a and in class x to be removed after T periods of length 1
is Px

a (T ) = 1 − (1 − Px
a )T . Hence, the number of nodes removed after T periods with activity a and in class x is Rx

a(T ) =
Nx

a [1 − (1 − Px
a )T ]. The number of susceptible in each activity and gullibility class can be approximated, at early times, as

Sx
a ∼ Nx

a − Rx
a. By using these two expressions in Eq. (A1) integrating across all activities, we get

dt I
x = −μxIx + mλx�

T
0,x

⎡
⎣pθ x + (1 − p)

∑
y �=x

cx,yθ
y

⎤
⎦ = hx, (D2)

where we define �T
n,x = ∫

da an Fx(a)(1 − Px
a )T . By multiplying by a and integrating across all activities instead, we obtain

dtθ
x = −μxθ

x + mλx�
T
1,x

⎡
⎣pθ x + (1 − p)

∑
y �=x

cx,yθ
y

⎤
⎦ = gx. (D3)

Equations (D2) and (D3) define the system of 2Q equations in the case of egocentric network sampling immunization
strategies. In this case, the mapping with the simple case with γ = 0 is not immediate, at least from the system of equations.
Hence, in order to obtain the threshold, we can compute the Jacobian matrix. By defining λ

ego
x = λx�

T
0,x and β

ego
x = mλx�

T
1,x,
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we obtain

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ1 0 · · · 0 pλego
1 m (1 − p)λego

1 mc1,2 · · ·
0 −μ2 · · · 0 (1 − p)λego

2 mc2,1 pλego
2 m · · ·

...
...

. . .
...

...
...

. . .

0 0 · · · −μQ (1 − p)λego
Q mcQ,1 (1 − p)λego

Q mcQ,2 · · ·
0 0 · · · 0 −μ1 + pβego

1 (1 − p)βego
1 c1,2 · · ·

0 0 · · · 0 (1 − p)βego
2 c2,1 −μ2 + pβego

2 · · ·
...

...
. . .

...
...

...
. . .

0 0 · · · 0 (1 − p)βego
Q cQ,1 (1 − p)βego

Q cQ,2 −μQ + pβego
Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The structure of the Jacobian is very similar to the cases
discussed above. Indeed, we obtain

Rego
0 = p

∑
x β

ego
x + �ego∑

x μx
. (D4)

APPENDIX E: SECURITY AWARENESS TEST STRATEGY

Here, we provide the detailed derivation of the threshold
in the case of the security awareness test strategy. In this
strategy, we imagine that all nodes receive a fake compro-
mised email and/or message meant to test their awareness of
and susceptibility to cyber-threats. With probability g a node
opens the message, and with probability λx it gets infected,
falling for the ruse. The fraction of nodes to be selected from
training is picked from this subset of nodes that (1) opened
the message and (2) did not recognize it as a cyber-threat. In
these settings, during the early stages of the spreading, we can
write Rx

a ∼ Nx
a gλxγ

′, where γ ′ is the fraction of nodes that fall
for the attack that gets selected for training. For comparability
with other strategies, we now derive the expression of γ ′ as a
function of γ . By definition of γ we have that

∑
x

∫
da Rx

a
N =

γ . By solving with respect to γ ′, we obtain

γ ′ = γ

g〈λx〉 , (E1)

where 〈λ〉 = ∑
x λxNx/N is the weighted average of the

transmissibility parameter across different gullibility classes.
Using this expression, we get

Rx
a ∼ Nx

a

λx

〈λx〉γ . (E2)

Interestingly, if a class x has a transmissibility parameter equal
to the average, the fraction of removed nodes in that class is
simply that of the random case (i.e., Rx

a ∼ Nx
a γ ). If a class x

has transmissibility higher (lower) than the average (i.e., is
more or less gullible than the average), it will have a higher
(lower) fraction of removed nodes with respect to the random
case. During the early stages of the spreading, the equation for
Ix
a can be written as

dt I
x
a = −μxIx

a + mλxNx
a

(
1 − λx

〈λ〉γ
)[

p
∫

da′a′ Ix
a′

Nx

+ (1 − p)
∑
y �=x

∫
da′a′ Iy

a′

N − Ny

]
. (E3)

By defining λsat
x = λx(1 − λx

〈λ〉γ ), we can map the equa-
tions to the simple case γ = 0 for which we have already
derived the solution. Hence, we can directly write

Rsat
0 = p

∑
x βsat

x + �sat∑
x μx

, (E4)

where βsat
x = βx(1 − λx

〈λ〉γ ), and �sat is again a function of βsat
x ,

μx, cx,y.
It can be shown that, for a given fraction of removed

nodes γ , the average transmissibility across gullibility classes
(i.e., a proxy for the effectiveness of the immunization strat-
egy) in the case of the social awareness test cannot be larger
than in the random case, namely 〈λsat〉 � 〈λrnd〉.

As mentioned, the average transmissibility across gullibil-
ity classes is

〈λsat〉 =
∑

x

λsat
x

Nx

N
(E5)

=
∑

x

λx

(
1 − λx

〈λ〉γ
)

Nx

N
(E6)

=
∑

x

λx
Nx

N
−

∑
x

λ2
x

〈λ〉γ
Nx

N
(E7)

= 〈λ〉 − γ
〈λ2〉
〈λ〉 . (E8)

In the random case, instead,

〈λrnd〉 =
∑

x

λrnd
x

Nx

N
(E9)

=
∑

x

λx(1 − γ )
Nx

N
(E10)

=
∑

x

λx
Nx

N
− γ

∑
x

λx
Nx

N
(E11)

= 〈λ〉 − γ 〈λ〉. (E12)

By comparing the two, we obtain that 〈λsat〉 � 〈λrnd〉 if the
following conditions hold:

〈λ2〉 � 〈λ〉2. (E13)

This is always verified. Even more, the equality holds only
if λx is constant across x. In other words, every time there is
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(c) (d)

(a) (b)

FIG. 5. Numerical validation of the threshold under different strategies (sensitivity analysis). Each panel shows the stationary fraction of
infected individuals I∞/N as a function of R0, for the four immunization strategies: (a) random, (b) activity-based, (c) egocentric sampling,
and (d) SAT. Results are shown for (p = 0.4, γ = 10−1, λ2 = 0.5) for panels (a), (c), and (d) and (p = 0.4, γ = 10−2, λ2 = 0.5) for panel (b).
The vertical dashed line indicates the critical value of the threshold computed analytically (i.e., R0 = 1). Solid lines with markers represent
mean values, while shaded areas indicate 95% confidence intervals computed in 100 stochastic simulations. Other parameters common to all
simulations are α = 2.3, ε = 10−3, m = 8, initial infected percentage 0.5%, μ1 = μ2 = 0.015. In the egocentric sampling strategy case, we
set T = 10.

heterogeneity across gullibility classes, the social awareness
test immunization is more efficient than the random case in
reducing the spread.

APPENDIX F: SENSITIVITY ANALYSIS

In Fig. 5 we show results of a sensitivity analysis regard-
ing the choice of the parameters used in Fig. 1 in the main
text. In particular, we reproduce the results of the numerical

simulations validating the analytical epidemic thresholds
derived for the four strategies changing the following param-
eters: α = 2.3 (instead of 2.1 used in Fig. 1), m = 8 (instead
of 4 used in Fig. 1), and μ1 = μ2 = 0.015 (instead of 0.01
used in Fig. 1). We can see that the fraction of infected nodes
at the equilibrium grows as a function of R0 and shows a
clear phase transition at R0 = 1, confirming the validity of
analytical derivations also in the case of a different parameter
choice.
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