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Characterizing the feedback linking human behavior and the transmission of infectious
diseases (i.e., behavioral changes) remains a significant challenge in computational
and mathematical epidemiology. Existing behavioral epidemic models often lack real-
world data calibration and cross-model performance evaluation in both retrospective
analysis and forecasting. In this study, we systematically compare the performance
of three mechanistic behavioral epidemic models across nine geographies and two
modeling tasks during the first wave of COVID-19, using various metrics. The first
model, a Data-Driven Behavioral Feedback Model, incorporates behavioral changes
by leveraging mobility data to capture variations in contact patterns. The second and
third models are Analytical Behavioral Feedback Models, which simulate the feedback
loop either through the explicit representation of different behavioral compartments
within the population or by utilizing an effective nonlinear force of infection. Our
results do not identify a single best model overall, as performance varies based on
factors such as data availability, data quality, and the choice of performance metrics.
While the Data-Driven Behavioral Feedback Model incorporates substantial real-time
behavioral information, the Analytical Compartmental Behavioral Feedback Model
often demonstrates superior or equivalent performance in both retrospective fitting and
out-of-sample forecasts. Overall, our work offers guidance for future approaches and
methodologies to better integrate behavioral changes into the modeling and projection
of epidemic dynamics.

COVID-19 | behavioral epidemic models | behavioral changes | epidemiology

During the COVID-19 Pandemic, epidemic models became central tools for providing
situational awareness, scenario analysis, and forecasts. Specifically, mathematical and
computational models were used to characterize the initial outbreak phases (1–6), assess
policy interventions (6–12), evaluate risks from new virus strains (13–17), and estimate
outcomes of various vaccination strategies (18–23). Achieving the required level of realism
in these models necessitated incorporating population-level behavioral changes due to
epidemic awareness and mandated or recommended nonpharmaceutical interventions
(NPIs) (24–26). However, capturing the feedback loop between the transmission of
infectious diseases and human behavior has long been regarded, and still remains, as a
major challenge in Epidemiology (24, 27–30).

In this context, we identify two major classes of mechanistic modeling approaches:
Data-Driven Behavioral Feedback Models and Analytical Behavioral Feedback Models.
Data-Driven Behavioral Feedback Models integrate real-world data on behavioral
changes, such as mobility patterns, social distancing measures, or other proxies into
epidemic simulations (13, 20, 30–48). Hence, these models rely on empirical data to
simulate how behaviors change. Analytical Behavioral Feedback Models, instead, use
theoretical frameworks to incorporate nonlinear mechanisms describing how individual
behaviors change in response to the epidemic’s progression (49–56). These models do
not rely on real-world data but rather on mechanistic rules that capture the feedback
loop between behavior and epidemic dynamics.

Data-driven approaches have been prevalent in the COVID-19 literature for several
reasons. First, using empirical data can drastically reduce the number of free parameters
and explicit mechanisms needed to capture human behavior. Additionally, most models
in the analytic class were developed before the COVID-19 pandemic and often lacked
empirical validation (27). Using an explicit behavioral model rather than data, however,
has the potential to accurately capture the interplay between human behavior and the
spread of infectious diseases, enabling more precise projections and forecasts. Further-
more, data-driven models are not necessarily simpler than their analytical counterparts.
In fact, they often integrate large amounts of temporal data, rely on methodologies that
involve several assumptions, and may be prone to biases as well as other data collection
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issues. These considerations stress the need for a systematic
analysis of the performance and calibration of these model
classes to understand their reliability and usefulness in informing
decision-making processes.

Here, we present a systematic comparison of the performance
of different behavioral feedback models during the first wave
of the COVID-19 pandemic, spanning nine geographies and
two modeling tasks. Specifically, we investigate three mechanistic
models: i) the Data-Driven Behavioral Model exemplifies data-
driven approaches, leveraging mobility data to estimate effective
changes in contact patterns; ii) the Compartmental Behavioral
Feedback Model simulates the feedback loop by explicitly
representing different behavioral classes within the population;
iii) the Effective Force of Infection Behavioral Feedback Model
employs an effective nonlinear forcing to adjust the infection rate
based on the epidemic’s progression and the resulting behavioral
changes. We first quantitatively assess the performance of these
models through a retrospective analysis of their ability to capture
the dynamics of the first COVID-19 wave across nine diverse
geographical areas. Using the same datasets, we also evaluate their
out-of-sample forecasting performance over a rolling four-week
horizon in these regions. Remarkably, in the retrospective analy-
sis, the Data-Driven Behavioral Model, which integrates mobility
data, does not consistently outperform the Analytical Behavioral
Feedback Models. In forecasting performance, similar results are
observed, indicating that Analytical Behavioral Feedback Models,
though largely neglected during the COVID-19 pandemic, can
often provide superior, or comparable, performance by capturing
the interplay between human behavior changes and disease
progression.

Overall, our results highlight how data-driven behavioral
models might not necessarily lead to the best performance.
On the contrary, our findings pave the way for a broader use
of analytical behavioral approaches in epidemic modeling and
forecasting contexts. Modeling choices should therefore consider
factors such as data availability and quality, target metrics, and
geographic scope. It is important to note that, despite similar
performances in retrospective and forecasting analyses, the
models often offer different characterizations of disease dynamics,
exemplified by different effective reproductive numbers time
series. This evidence reinforces the indication of interpreting
disease dynamics in the context of the model’s structure rather
than as intrinsic properties of the pathogen. While our results
focus on COVID-19, they hold broad relevance for the analysis
and forecasting of respiratory and other transmissible diseases.

Results

We consider three mechanistic models in which the disease
progression is described via an age-structured Susceptible-
Exposed-Infected-Recovered (SEIR) disease dynamic with the
addition of compartments accounting for COVID-19 deaths and
their delayed reporting (Fig. 1). Each model differs in the way
population behavioral changes are integrated into the dynamic:

• Data-Driven Behavioral (DDB) model. This model integrates
data from the COVID-19 Community Mobility Report
published by Google LLC (57) to derive a time-varying contact
reduction coefficient.

• Compartmental Behavioral Feedback (CBF) model. This
model introduces behavioral changes explicitly through a new
compartment SB for susceptible individuals who are risk averse.
These individuals experience a relative reduction r < 1 in
the force of infection. Additional parameters of the model

Fig. 1. Flow diagrams of the behavioral epidemic models considered. The
Top row shows the baseline SEIR-like epidemic model. The Bottom row shows
the epidemic-behavior mechanisms for the three models considered. In
particular, � indicates the transmission rate, rmobility is the contact reduction
parameter estimated on mobility data, �B regulates the behavioral transitions
in the Compartmental Behavioral Feedback model and r is the relative
reduction in the force of infection of risk-averse individuals, and f (Drep)
is a nonlinear function of the number of reported deaths that modulates
the force of infection in the Effective Force of Infection Behavioral Feedback
model.

characterize the transitions to and out of the risk-averse
compartment.

• Effective Force of Infection Behavioral Feedback (EFB) model.
This model integrates the behavior changes in the population
with an explicit modulation of the transmissibility (55). More
precisely, we consider a nonlinear function (that saturates as
the number of reported deaths grows) characterizing the rate at
which susceptible individuals acquire infection (i.e., the force
of infection).

In Fig. 1, we show a schematic depiction of the compartmental
structure and the transitions among compartments of each model.
Full details of the models are provided in Materials and Methods
and SI Appendix. It is important to note that none of the models
distinguishes between spontaneous and mandated behavioral
changes (24, 27–29). In all cases, increased risk aversion among
individuals and the resulting reduction in contacts account for
all causes leading to behavioral changes.

Retrospective Model Inference. We calibrated the three models
to fit the initial wave of COVID-19 deaths across nine distinct
geographical areas: metropolitan areas such as Bogotá, Chicago,
Jakarta, London, Madrid, New York, Rio de Janeiro, and
Santiago de Chile, as well as a larger administrative region, such
as Gauteng in South Africa. This selection captures a diverse
range of epidemiological, sociodemographic, and socioeconomic
contexts from both the global North and South. In each region,
models are calibrated to weekly deaths using an Approximate
Bayesian Computation–sequential Monte Carlo (ABC-SMC)
algorithm (58) (details are reported in Materials and Methods
and SI Appendix). In Fig. 2, we present the fitted curves (median
and 90% predictive intervals) for these nine locations using the
three models. Overall, all models successfully replicate the shape
of the observed epidemic curves. However, we observe inferior
fit quality in specific cases. For instance, the models exhibit lower
performance in the epidemic tail for Gauteng and Rio de Janeiro,
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Fig. 2. Fitted curves (median, 90% predictive intervals obtained from 1,000 stochastic trajectories) of weekly deaths during the COVID-19 initial wave across
the nine geographies considered and three behavioral epidemic models. DDB stands for Data-Driven Behavioral model, CBF for Compartmental Behavioral
Feedback model, and EFB for Effective Force of Infection Behavioral Feedback model.

possibly due to factors such as the completeness and reporting
time of epidemiological data in those settings. To quantitatively
characterize the model’s performance, in Table 1, we report
the normalized mean absolute error (nMAE), the normalized
weighted interval score (nWIS), and the Bayesian Information
Criterion (BIC) weight of each model.

When considering the nMAE of the median, the Compart-
mental Behavioral Feedback model is the top performer in all
geographies, except for Rio de Janeiro and Santiago de Chile,
where the Data-Driven Behavioral model performs better. The
WIS measures the effectiveness of predictive intervals in bound-
ing reported data, with normalization enabling comparisons
across different geographies. Analyzing the nWIS, the Com-
partmental Behavioral Feedback model is the top performing
model in 6 geographies (Bogotá, Chicago, Gauteng, London,

Madrid, and New York), although there is more variability in
performance. The Data-Driven Behavioral model is the top
performer in 3 geographies (Jakarta, Rio de Janeiro, and Santiago
de Chile).

It is important to note that the models have different
structures and number of free parameters that obfuscate the
simple comparison through goodness of fit. To have a more
unbiased estimator, we consider the Bayesian Information
Criterion that discounts the number of estimable parameters and
calculate the BIC weights of each model in each location. The
BIC weight can be interpreted as the probability that any given
model is the best model (i.e., likelihood of the model given the
data) among those considered. According to the BIC weights, the
Compartmental Behavioral Feedback model is the most probable
in 4 cases (Bogotá, Chicago, London, and Madrid), while the

Table 1. Comparison of models performance in retrospective modeling task (** indicates probabilities<0.01%)
nMAE nWIS BIC weights

DDB CBF EFB DDB CBF EFB DDB CBF EFB

Bogotá 0.41 0.18 0.35 0.29 0.14 0.27 ** 99.99 **
Chicago 0.20 0.14 0.20 0.12 0.09 0.14 ** 99.90 0.09
Gauteng 0.32 0.25 0.34 0.25 0.18 0.26 94.20 5.73 0.07
Jakarta 0.14 0.13 0.14 0.09 0.09 0.11 97.92 0.35 1.73
London 0.12 0.07 0.18 0.07 0.06 0.11 4.57 95.42 **
Madrid 0.28 0.10 0.24 0.21 0.08 0.14 ** 99.99 **
New York 0.13 0.13 0.21 0.09 0.08 0.15 98.97 1.02 **
Rio de Janeiro 0.23 0.33 0.52 0.16 0.25 0.43 99.99 ** **
Santiago de Chile 0.24 0.25 0.32 0.14 0.19 0.26 63.80 36.17 0.03

DDB stands for Data-Driven Behavioral model, CBF for Compartmental Behavioral Feedback model, and EFB for Effective Force of Infection Behavioral Feedback model. Bold texts indicate
the best performance based on values rounded to two decimal places; when multiple models share the same rounded value, all are highlighted. In the text, comparisons among models
are based on full-precision values for greater accuracy.
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Data-Driven Behavioral model is most probably the best model
in the remaining 5 (Gauteng, Jakarta, New York, Rio de Janeiro,
and Santiago de Chile). We note how, in Data-Driven Behavioral
models, the contact reduction values estimated on mobility
data [i.e., rmobility(t)] are discounted from the number of free
parameters as they are not subject to calibration. In SI Appendix,
we also report the models’ accuracy in reproducing both the
intensity and timing of epidemic peaks. Interestingly, we find
that the Effective Force of Infection model and the Data-Driven
model are more accurate than the Behavioral Compartmental
model when evaluating these target quantities. This highlights
that the definition of the best model often depends on the specific
metric being evaluated. Another approach to model comparison
is the use of Bayes Factors. While BIC explicitly penalizes model
complexity, Bayes Factors inherently favor simpler models by in-
tegrating over the parameter space. However, this effect is highly
sensitive to prior specifications for each model. For comple-
teness, in SI Appendix we present the results of an alternative
ABC-SMC calibration scheme that directly estimates Bayes
Factors for model comparison (59), assuming a flat prior over
the three models. The results indicate that the CBF model is
favored in most locations, further strengthening the statistical
evidence for the competitive performance of analytical behavioral
epidemic models.

Estimates of Transmission Potential. Although the three models
offer a similar fit of the epidemic trajectories, it is important
to quantify the difference in the disease dynamic emerging
from them. First, we considered the posterior distribution of
the basic reproductive number (i.e., R0) provided by the three
models across the nine geographies. This quantity is defined as
the number of secondary infections, due to a single infectious
individual, in an otherwise susceptible population (60). In all
three models, R0 is defined as R0 = �(C̃)�/�, where C̃ is the
contact matrix weighted by age group populations, �(·) is the
spectral radius, � is the transmission rate, and � is the inverse of
the infectious period (61). Notably, in each behavioral model,
R0 remains the same as in a SEIR model. Indeed, in a fully
susceptible population, such as during the epidemic’s early
phases, behavioral effects are negligible.

As shown in Fig. 3, we observe comparable posterior distri-
butions in some instances, as in the case of London, where the
three models estimate median and 90% CI for R0 values of
2.54 [2.29, 2.90] (DDB), 2.77 [2.43, 3.20] (CBF), and 2.38
[2.09, 2.68] (EFB). The posterior distributions of the three
models are similar (to different extents) also for Jakarta, Madrid,
and New York. However, we also find significant variations. For
instance, in Santiago de Chile, the Data-Driven Behavioral model
estimates aR0 of 4.20 [3.96, 4.42], whereas the estimates from the
Compartmental and the Effective Force of Infection Behavioral
Feedback models are notably lower, at 1.87 [1.69, 2.04] and 1.77
[1.59, 1.97], respectively. To quantify the similarity among R0
distributions, we employ the Wasserstein distance. On average,
we find that the distributions projected by the two Analytical
Behavioral Feedback Models (CBF and EFB) are closer to each
other compared to the distribution projected by the Data-Driven
Behavioral model, which tends to exhibit greater dissimilarity.
We refer the reader to SI Appendix for full details on R0
distributions and related analysis.

While R0 is of epidemiological significance, the effective re-
productive number Rt emerged as a crucial and closely monitored
metric during the COVID-19 pandemic. Unlike R0, Rt accounts
for fluctuations in transmissibility attributed to seasonality,

Fig. 3. Boxplot of R0 posterior distributions according to the three models
considered across the nine geographies, considering 1,000 posterior samples.
The box boundaries represent the interquartile range (IQR) between the first
and third quartiles (Q1 and Q3), the line inside the box indicates the median
and the Upper (Lower) whisker extends to the last datum less (greater) than
Q3+1.5IQR (Q1−1.5IQR). DDB stands for Data-Driven Behavioral model, CBF
for Compartmental Behavioral Feedback model, and EFB for Effective Force
of Infection Behavioral Feedback model.

changes in susceptibility, and also behavioral changes. For this
reason, in Fig. 4, we compare the Rt estimated using the method
described in ref. 62 from the three models’ data. Generally, we
observe a consistent trend in their evolution. Noteworthy is the
close alignment of tipping points (i.e., instances where Rt crosses
1) projected by all three models. However, deviations are evident
in the cases of Bogotá and Gauteng, where the Data-Driven
Behavioral model predicts an early tipping point in March/April
2020. This divergence can be attributed to decreased mobility
in those regions during the early months of 2020, prompted by
global emergency measures, despite a subsequent rise in cases
and deaths. This underscores some limitations of mobility data
in accurately estimating the impact of NPIs (Discussion). As an
additional analysis, we calculate pairwise correlations between
one-step changes inRt as estimated by the three models (shown in
the Inset of Fig. 4). We generally observe positive and statistically
significant correlations, with a few exceptions. For instance, the
evolution of Rt in the Data-Driven Behavioral model does not
show a significant correlation with the corresponding quantity
estimated by the Compartmental Behavioral Feedback model and
the Effective Force of Infection Behavioral Feedback model in
Gauteng. Similarly, the Rt of the Data-Driven Behavioral model
is not significantly correlated with that of the Compartmental

4 of 10 https://doi.org/10.1073/pnas.2421993122 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 P
O

L
IT

E
C

N
IC

O
 D

I 
T

O
R

IN
O

 o
n 

Ju
ne

 1
6,

 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
13

0.
19

2.
68

.1
31

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2421993122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2421993122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2421993122#supplementary-materials


Fig. 4. Effective reproductive number (Rt ) analysis. Effective reproductive number (median, 90% predictive intervals) projected by three models across nine
geographical regions considered. The shaded grey area indicates Rt < 1, while dots indicate points in time where Rt went below 1. In the Inset of each figure,
we show pairwise Pearson correlation coefficients between one-step changes in Rt as estimated by the three models. Asterisks indicate correlations significant
at the 5% significance level. DDB stands for Data-Driven Behavioral model, CBF for Compartmental Behavioral Feedback model, and EFB for Effective Force of
Infection Behavioral Feedback model.

Behavioral and of the Effective Force of Infection Behavioral
Feedback model in Santiago de Chile. Similar to the findings
regarding R0 distributions, we note that the evolution of Rt
projected by the two Analytical Behavioral Feedback Models
generally shows higher correlations.

Overall, our results highlight an important point. Differences
in the estimated values of R0 and Rt across models are influenced
by approaches used to describe the force of infection. Hence,
they are affected by different underlying assumptions and appr-
oximations. Ensemble approaches, which average across models,
might be used to provide more reliable estimations of the real
value of such quantities (63). While these methods are typically
used in out-of-sample forecasts, they have been also used to
provide in-sample consensus estimates across models for Rt (64).

Forecasting Performance. As a final step in comparing the three
models, we use them to forecast the number of weekly deaths
during the first wave in the nine geographies under consideration.
Specifically, we calibrate each model up to time t, forecast the
subsequent four weeks, then shift the calibration window to t+1
and repeat the process. We assess forecasting performance using
two metrics: the Weighted Interval Score (WIS) and the mean
absolute error (MAE) of the median. Normalization of metrics is
not required in this context, as forecasting performance is assessed
relative to a baseline model, as explained below. For simplicity,
we present analysis concerning the WIS as a performance metric
in the main text, while MAE results are reported in SI Appendix.
The main findings remain consistent across both metrics.

In Fig. 5A, we present the ratio, for all forecasting rounds,
between the average WIS of each model over the 4-wk horizon
and the average WIS of a baseline model. The latter is
defined as a model that consistently predicts, as median value,
the last data point within the calibration period and whose
predictive intervals are estimated on past data. Similar baseline
models have become a standard neutral benchmark providing a

simple reference for all models in the context of collaborative
forecasting hubs, such as the US and the European COVID-19
Forecast Hub (63, 65). We refer the reader to Materials and
Methods for more details and the definition of the baseline
model. It follows that, values below (above) 1 indicate superior
(inferior) performance compared to the baseline. We observe
heterogeneous forecasting performance among the geographies
under consideration. Notably, in Chicago, Gauteng, London,
Madrid, New York, and Santiago de Chile, all models statistically
outperform the baseline. However, in other locations, some
models significantly underperform compared to the baseline;
for instance, the Effective Force Behavioral Model in Rio de
Janeiro and the Data-Driven Behavioral Model in Bogotá. We
use the Wilcoxon signed-rank test (with outliers removal) to
statistically compare the performance of different models. The
null hypothesis of this test is that the two groups come from
the same distribution. In Fig. 5A, we report the statistical
significance of the tests comparing different pairs of models
as follows: ****: Pvalue ≤ 10−4, ***: 10−4 < Pvalue ≤ 10−3,
**: 10−3 < Pvalue ≤ 10−2, *: 10−2 < Pvalue ≤ 0.05, and
otherwise blank if Pvalue > 0.05. The Data-Driven Behavioral
Model performs best in terms of median relative WIS in Chicago,
Jakarta, London, New York, Rio de Janeiro, and Santiago de
Chile. However, its performance distribution is statistically
different from that of the Compartmental Behavioral Model
only in three cases (Chicago, London, and New York). The
Compartmental Behavioral Model is the median top performer
in the remaining three locations. Its performance distribution is
statistically different from that of the Data-Driven model in all
these three cases, namely Bogotá, Gauteng, and Madrid.

To provide an overall performance assessment, in Fig. 5B,
we show the distribution of the relative WIS with respect
to the baseline model for the three models. To provide an
overall view of models’ performance, we combine results from
all geographies and all forecasting points. The analysis shows that
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A B

Fig. 5. Forecasting performance (WIS). (A) Relative WIS computed over all forecasting rounds for the three behavioral epidemic models across the nine
geographical regions considered. Values below 1 indicate better performance with respect to the baseline forecasting model. Each data point underlying the
boxplot represents the relative WIS averaged over the four-week horizon of the corresponding forecasting round. In the Bottom Right of each plot, we report
the number of forecasting rounds for each location. (B) Boxplot and swarmplot of relative WIS for different models pooling together results from all rounds
and geographies. The box boundaries represent the interquartile range (IQR) between the first and third quartiles (Q1 and Q3), the line inside the box indicates
the median and the Upper (Lower) whisker extends to the last datum less (greater) than Q3 + 1.5IQR (Q1 − 1.5IQR). DDB stands for Data-Driven Behavioral
model, CBF for Compartmental Behavioral Feedback model, and EFB for Effective Force of Infection Behavioral Feedback model. In both panels, we report
the statistical significance of the Wilcoxon test comparing different forecasting performances as follows: ****: Pvalue ≤ 10−4, ***: 10−4 < Pvalue ≤ 10−3,
**: 10−3 < Pvalue ≤ 10−2, *: 10−2 < Pvalue ≤ 0.05, and otherwise blank if Pvalue > 0.05.

the Compartmental Behavioral Feedback model is statistically the
top performer with an overall median relative WIS of 0.64, closely
followed by the Data-Driven Behavioral model (0.67) and the
Effective Force of Infection Behavioral Feedback model (0.83).
The reported significance of the Wilcoxon test confirms the
statistical difference in performance between the Compartmental
Behavioral Model and the other two models. Furthermore, for
this model, nearly 70% of the forecasts are better than the baseline
compared to only the 60% and 58% for the Data-Driven and
the Effective Force of Infection Behavioral Feedback model,
respectively.

It is important to note that in assessing forecast performance,
the role of model complexity and the number of parameters
remains unclear. Especially at the early stage of an epidemic
wave, limited available data can disadvantage more complex
models, which may be outperformed by more parsimonious
approaches. To gather a better understanding on this point,
in SI Appendix, we compare the forecasting performance of the
three behavioral epidemic models against two simpler forecasting
frameworks: a generalized logistic growth model (GLM) and a
two-subepidemic model where each subepidemic follows GLM
dynamics (66). Across the board, we find behavioral epidemic
models to consistently outperform these approaches.

In SI Appendix, we present the forecasting performance
analysis for two ensemble models that combine the forecasts of
individual behavioral epidemic models. Ensemble forecasts have
consistently demonstrated greater accuracy and reliability over
time in various epidemiological forecasting contexts (63, 65).
In the first ensemble approach, all models are weighted equally,
while in the second, weights are proportional to past forecasting

performance. Interestingly, we find that ensemble models outper-
form individual behavioral epidemic models in most cases across
different metrics. Although the performance-weighted ensemble
shows slight improvements over the equally weighted ensemble,
these improvements are generally marginal and not statistically
significant.

Discussion

Modeling the interplay between human behavior and the spread
of infectious diseases is still considered a hard problem in
epidemiology (24, 27, 28, 67, 68). One of the main obstacles
to solving this challenge has been the lack of data to validate
the theoretical models developed. A review of studies published
between 2010 and 2015 found that only about 15% utilized data
to parameterize and/or validate the proposed epidemic-behavior
mechanisms (27). The COVID-19 pandemic has significantly
altered this landscape. The abundance of novel data sources
and the scale of the emergency made incorporating behavioral
data into modeling studies possible. Most computational models,
however, have leveraged data to include behavioral changes as an
exogenous factor, as seen in the Data-Driven Behavioral Feedback
Model used here. While this approach benefits from a transparent
data integration process, it has limited the use and validation of
general classes of models that explicitly simulate the feedback loop
between the spread of infectious diseases and human behaviors.

Interestingly, our results show that Analytical Behavioral Feed-
back Models, developed well before the COVID-19 pandemic,
often provide comparable or superior performance to data-
driven approaches in both retrospective analysis and forecasting.
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Although we observe variability depending on the task, geograph-
ical context, and the metrics considered, our findings suggest that
purely data-driven methodologies to model behavior change may
not always represent the best modeling solution.

While it may seem counterintuitive to suggest that data-
driven approaches based on mobility data are less reflective of the
actual dynamics of an epidemic, several factors contribute to this
conclusion. In many cases, there is limited knowledge about the
underlying population, or the data generation process, complicat-
ing the assessment of data representativeness and potential biases.
Moreover, how variations in mobility data translate into changes
in the contact structure relevant to infection dynamics, such
as SARS-CoV-2 transmission, remains unclear. For forecasting
purposes, real data can only be used under specific assumptions
about the future -often with a status quo assumption- which
may not accurately capture the true dynamics of the population.
Finally, there are limited mobility data available for many low and
middle-income countries, and when available, the data quality
can be poor (69–72). This can easily deteriorate the modeling re-
sults (73). These issues can be mitigated by using analytical behav-
ioral feedback models, which derive the epidemic-behavior inter-
play in a self-consistent way through calibration and parameteri-
zation of behavioral mechanisms. However, purely model-based
approaches can misinterpret errors in reporting, the emergence
of more transmissible virus strains, or other factors influencing
the epidemic’s progression as changes in behavior. Moreover,
the high-dimensional space characterizing complex analytical
behavioral feedback models could lead to challenges such as
parameter identifiability, interpretability, and overfitting (74).
Nevertheless, as shown in SI Appendix, all behavioral models (in-
cluding the data-driven framework) do not show signs of practical
nonidentifiability within the ranges of parameters explored.

Our results stress the critical importance of systematically
evaluating different modeling approaches and considering the
use of ensemble modeling techniques. Indeed, as shown in SI
Appendix, by integrating the three models, ensemble methods
generally improve forecast accuracy and generate a broader
range of potential epidemic trajectories. Since no single model
can completely capture the feedback mechanisms of epidemic
dynamics and human behavior, ensembling multiple models
allows for the integration of different mechanisms and factors,
potentially resulting in a more reliable representation of the
epidemic-behavior interplay (75, 76).

As with all modeling approaches, this study is not with-
out limitations. First, we could not consider all the possible
approaches used to model COVID-19 epidemic-behavior in-
terplay. For instance, we did not test the performance of survey-
driven models (77–80) and semimechanistic models (81, 82).
Second, our results may be influenced by the chosen calibration
framework. To address this, in SI Appendix, we conduct extensive
analyses assessing the robustness of our approach via parameter
recovery experiments. The findings demonstrate a high degree of
robustness and reliability in the ABC-SMC framework used. Fur-
thermore, translating mobility changes into contact reductions
remains an open challenge. Therefore, the performance of the
data-driven model may vary depending on different approaches
to effective contacts rescaling (83–87). Finally, our forecasts are
based on data reported as of today, not addressing the challenge
of retrospective data adjustments (i.e., backfilling) very common
for epidemiological datasets. While this could impact forecast
performance, our primary goal is to compare models. Therefore,
assuming that all models would be equally affected, this issue
may not significantly impact our comparative analysis.

In light of the assumptions and limitations, our study
offers a clear path forward for the application of analytic
feedback behavioral models in both retrospective analysis and
epidemic forecasting (65, 88, 89). The strong performance of
the Compartmental Behavioral Feedback model in both tasks
suggests that the epidemic-behavior interplay can be mechanis-
tically captured in a parsimonious way, substantially improving
accuracy. Interestingly, its superior performance over the other
analytical behavioral model (i.e., the EFB model) appears to stem
from the functional form of its behavioral mechanism, which
offers greater flexibility in capturing behavioral responses. This
increased adaptability enables it to reproduce a wider range of
epidemic trajectories more effectively (see SI Appendix for more
details). Moreover, our study paves the way for more systematic
use of analytical feedback behavioral models in operational
forecasting efforts. By demonstrating their capability to account
for the dynamic relationship between human behavior and
disease spread, these models can improve epidemic forecasts
and projections without relying on explicit assumptions about
the possible evolution of population behavior. This approach
can be particularly valuable in anticipating the effects of
public health interventions and supporting more informed
decision-making.

Materials and Methods

Epidemic Models.
Compartmental and age structure. In all models studied, we adopt a SEIR
compartmentalization setup. Healthy and susceptible individuals are placed in
the compartment S. Through interactions with infectious, they transition to the
compartment of the exposed E. Individuals in the E compartment get infectious
only after the latent period (�−1) when they transition to the compartment I.
Finally, after the infectious period (�−1) individuals in the I compartment
transition to the compartment of the recovered R. We assume the population to
be stratified into 10 different age groups ([0− 9, 10− 19, 20− 24, 25− 29,
30−39, 40−49, 50−59, 60−69, 70−79, 80+]). We introduce the contact
matrix C ∈ ℝK×K , whose element Ci,j is the average number of daily contacts
that an individual in age group i has with individuals in age group j (90). The rate
at which susceptible individuals acquire infection, namely the force of infection, is

�(k, t) = s(t)�
∑K

k′=1 Ckk′
I′k(t)
N′k

(where s(t) is a seasonality modulation term

andNk′ is the number of individuals in age groupk′ such thatN =
∑K

k′=1 Nk′ ).
The basic reproductive number for this model is R0 = �(C̃)�/�, where � is the
transmission rate of the disease, C̃ij = CijNi/Nj and �(C̃) is the spectral radius
of the matrix. Our implementation of the model is stochastic and the number of
individuals transitioning among compartments is simulated via chain binomial
processes. Additionally, we model COVID-19 deaths by applying age-stratified
infection fatality rates (91) to the number of individuals transitioning from Ik to
Rk and accounting for a lag Δ between such transition and actual death due
to isolation, hospitalization, and reporting delays. More details on the model
definition are provided in SI Appendix.
Data-driven behavioral model. In the Data-Driven Behavioral model, we use
the COVID-19 Community Mobility Report published by Google LLC (57) to
modulate the force of infection. This dataset reports percentage changes in
mobility to specific locations on a given day and geography. Our models do not
consider multiple locations, so we derive an overall mobility change percentage
m(t) as the average of mobility changes toward all locations (excluding mobility
toward parks due to its anomalous behavior). Finally, m(t) is turned into a
contacts reduction parameter as follows: rmobility(t) = (1 − |m(t)|/100)2.
The intuition is that, under the homogeneous mixing assumption, the number
of contacts will be proportional to the square of the number of individuals. Then,
we use rmobility(t) to modulate the rate at which susceptible becomes infected
as a consequence of behavior change, namely, we modify the force of infection as
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�′(k, t) = rmobility(t)�(k, t). In short-term forecasting, we assume that future
rmobility(t) will be equal to the last observed contacts reduction parameter in
the calibration window (i.e., status quo assumption).
Compartmental behavioral feedback model. In the Compartmental Behav-
ioral Feedback model, we introduce an additional compartmentSBk of susceptible
individuals that adopt behavior change and thus get infected at a lower rate
r�(k, t), where r < 1 is a parameter that describes the efficacy of preventive

measures. The transition fromSk toSBk happens at rate�B
(

1− e−Drep(t−1)
)

,

where the �B and  regulate the behavioral response, and Drep(t − 1) is the
total number of reported deaths in the previous day. We also assume that
SBk individuals can relax their behavior and transition back to Sk at a rate

�B
(∑K

k′=1 Sk′(t) + Rk′(t)
)

/N, where �B sets the tendency of susceptibles

to drop safer behaviors (92).
Effective force of infection behavioral feedback model. In the Effective Force
of Infection Behavioral Feedback model, we consider the following function

f(Drep, �, , t) =
1

1 + �Drep(t − 1) +  
∑t−1

t′=1 Drep(t
′)
, [1]

where, as above, Drep(t − 1) is the number of reported deaths at time t − 1,∑t−1
t′=1 Drep(t

′) is the cumulative number of reported deaths up to t − 1,
� and  are parameters that set the behavioral reactivity of individuals (55).
This function multiplies the force of infection and serves as a proxy for the
modulating effect of behavioral changes. Specifically, it takes into account new
reported deaths in the last time step, capturing short-term effects of recent
epidemiological conditions on behavior, as well as cumulative reported deaths,
capturing the long-term effects of past epidemiological conditions on current
behavior.

Models Calibration. Models are calibrated using an ABC-SMC algorithm
(58, 93). The ABC-SMC is an extension of the more simple rejection algorithm,
which works as follows. The modeler needs to choose prior distribution �(�)
for the free parameters � of the model, a distance metric d(·), a tolerance �,
and a population size P. Then, the model is run iteratively sampling at each
step a parameters set �i from the prior distribution �(�). At each iteration,
an output quantity produced by the model yi (i.e., simulated deaths) is
compared to the corresponding real quantity yobs using the distance metric
d(yi, yobs). If d(yi, yobs) < � then �i is accepted, otherwise it is rejected.
This process continues until P parameter sets are accepted. The main limitation
of this approach is that the acceptance criterion remains fixed, causing slow
convergence. Additionally, finding an appropriate tolerance value � beforehand
is challenging, especially with multiple models and geographies. The ABC-SMC
algorithm addresses these issues by using a sequence of T rejection steps (i.e.,
generations) with decreasing tolerance. Each generation’s prior distribution is
the posterior distribution from the previous one perturbed via a kernel function.
This method starts with high error tolerances and broad prior distributions,
progressively refining the parameter space. The final generation’s accepted
�i distribution approximates the true posterior distribution of the parameters.
Here, we consider 10 generations, 1,000 parameter sets accepted at each step,
weekly deaths as output quantity, and the weighted mean absolute percentage
error (wMAPE) as a distance metric, defined as

wMAPEi =

∑tn
t=1 |yi(t)− yobs(t)|∑tn

t=1 |yobs(t)|
, [2]

where yobs is the vector of actuals and yi of model estimates, and tn is the
number of weeks considered. We use the ABC-SMC implementation of the
pyabc Python package (94). In SI Appendix, we report additional information on
the calibration, including prior distributions.

Performance Metrics. The MAE of the median is defined as

MAE =

∑tn
t=1 |yobs(t)− M(t)|

tn
, [3]

Where yobs is the vector of actuals and M the model’s medians. Its normalized
version is simply defined as nMAE = MAE/mean(yobs).

The WIS is a score that approximates the continuous ranked probability
score (95). For a given a prediction interval (1− �)× 100% (i.e., 90% interval)
of a model’s estimate, the interval score (IS� ) is defined as

IS� = (u− l) +
2
�

(l− yobs)I(yobs < l) +
2
�

(yobs − u)I(yobs > u), [4]

Where u (l) is the upper (lower) limit of the prediction interval, yobs is the actual
outcome, and I(c) is an indicator function that equals 1 if condition c is met
and 0 otherwise. Looking at IS� we see that its first term captures how wide is
the prediction interval, while the second and third terms are the penalization for
under- and overprediction. Indeed, they are different from 0 only if the actual
data point yobs is below or above the interval limits. The WIS is an extension of
the IS and takes into account multiple prediction intervals at once. It is defined
as

WIS�0:K =
1

K + 1
2

w0|yobs − M|+
K∑

k=1

wk IS�k

 , [5]

Where K is the number of prediction intervals considered, M is the model’s
median, and wk are the nonnegative weights of the different intervals. We can
see that the first term in parenthesis measures how much the model’s central
estimateM differs from the actual data yobs, while the second term is a weighted
sum of the different interval scores IS�k . Following a common approach,
we set w0 = 1/2, wk = �k/2, and we consider 11 prediction intervals
(�k = 0.02, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90). Its
normalized version is simply defined as nWIS = WIS/mean(yobs).

The BIC is a metric that evaluates the model’s estimates based on the
accordance with real data and on the model complexity (96). For a model q it is
defined as

BICq = kqln(tn)− 2ln(Lq), [6]

Where kq is the number of model’s free parameters, and Lq is the model’s
likelihood which we define it here as

Lq =
1
tn

tn∑
t=1

(
yobs(t)− Mq(t)

)2 [7]

that is the mean squared error between actual (yobs) and median predicted
values (Mq). We note that, for simplicity, we assume a likelihood function
equivalent to a Gaussian error model. Intuitively, the model reaching the lowest
BIC is the best, since it guarantees the minimum deviation from observed
data with the minimum number of parameters. In this sense, BIC favors both
accordance with real data and the model’s parsimony; however, its values
lack an immediate interpretation. For this reason, we consider BIC weights
defined as

wq(BIC) =
e−

1
2Δq(BIC)∑

q′ e
−

1
2Δq′ (BIC)

, [8]

Where Δq(BIC) = BICq − minq′(BICq′). These weights express the relative
probability of a model over the others.

Forecasting. In each forecasting round, we calibrate the three models using
data up to time t and we forecast weekly deaths in the next four weeks. In the
next round, we move our window up to t + 1 and we repeat the calibration
and forecasting procedures. This process is performed iteratively until the end
of the epidemic curve, starting with at least 4 data points for model calibration.
Instead of the ABC-SMC algorithm, for forecasting, we adopt a modified version
of the rejection algorithm where, instead of setting a predefined tolerance,
we calibrate models by selecting top 1,000 simulations out of a total of 1M
simulations obtained through sampling from the prior distributions. In the case
of forecasting, we also consider as distance metric a generalized version of the
wMAPE which gives more importance to more recent data points defined as∑tn

t=1

(
w(t) |yobs(t)−yi(t)|

|yobs(t)|

)
/
∑tn

t=1 w(t), wherew(t) = 1/((tn+1)− t).
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Baseline forecasting model. We employ a baseline forecasting model that
consistently predicts the median value as the last data point within
the calibration period. To compute predictive intervals, we consider the
previous 1-step increments. Specifically, we compute 1-step differences
up to time t: � = (d2, d3, . . . , dt). To ensure the median forecast
aligns with the last calibration point, we symmetrize � by considering
�′ = (�,−�). If the maximum horizon is H, we sample H differences
from �′. Finally, predictions at horizon h are computed as fh = vt +∑h

i=1 d̂i, where vt represents the last observed data points, and d̂i are
1-step differences sampled from �′. Following this process, we gener-
ate 10,000 trajectories from which we compute quantiles and predictive
intervals.

Data, Materials, and Software Availability. Code and data have been
deposited in GitHub (https://github.com/ngozzi/covid-behavior-models) (97).
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