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Ocean currents exhibit strong time dependence at all scales that influences physical and biochemical dynamics.
Network approaches to fluid transport permit to address explicitly how connectivity across the seascape is
affected by the spatiotemporal variability of currents. However, such temporal aspect is mostly neglected, relying
on a static representation of the flow. We here investigate the role of current variability on networks describing
physical transport across the Mediterranean basin. We first focus on degree distributions and community structure
comparing ensembles of temporal networks that explicitly resolve time dependence and their aggregated, i.e.,
time-averaged, counterparts. Furthermore, we explore the implications of the two approaches in a simple reaction
dispersal model for a generic tracer. Our analysis evidences that aggregation induces structural network changes
that cannot be easily avoided, not even introducing a pruning of the aggregated adjacency matrix. We also
highlight that, depending on the time scales considered, the importance of the temporal features of the networks
can vary significantly. Finally, we find that the tracer evolution obtained from a temporal dispersal kernel cannot
be always approximated by aggregated adjacency matrices, in particular during transients of the dynamics.
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I. INTRODUCTION

Almost every aspect of the oceanic environment, from
physical dynamics to biochemical processes, presents a
marked time dependence [1,2]. Such temporal variability
is both observed at short scales of a few hours [3] as
well as at the slower inter-annual climatic ones [4]. This
is particularly relevant for oceanic currents, that may drive
chaotic fluid transport dynamics across the seascape [5–7],
deeply influencing other processes that depend on it, such
as tracers redistribution, organisms dispersal, or pollutants
spreading.

Over the last decade, tools borrowed from network theory
brought new insights into the study of transport processes in
fluid flows [8]. Specifically, in the Lagrangian Flow Network
framework, subregions of the ocean are represented as nodes
of a network, while weighted links between the nodes model
the fluid exchange between the regions [8,9]. This approach
proved its utility for the characterization of physical transport

*These authors contributed equally to this work.
†Contact author: enrico.sergiacomi@gmail.com

patterns in the ocean and atmosphere [10–12] and of marine
organisms dispersal [13].

Even though Lagrangian flow networks can be represented
with temporal graphs [9,10,14], the common practice is to ag-
gregate, i.e., average the temporal component of the network,
thereby obtaining a unique static representation of the flow.
However, this approximation may be insufficient to describe
the dynamical processes unfolding on the evolving network
structure at comparable time scales [15–18]. Thus, in the
oceanic context, using an aggregated network requires careful
consideration of the potential loss of detailed information
compared to the time-resolved approach.

For the past 20 years, researchers in network science devel-
oped theories and models to study temporal networks [19–21],
effectively extending tools and measures proposed for the
analysis of static graphs to cope with the time-varying na-
ture of interactions and their characterization. With this work,
we use these tools to quantify the differences between static
and time-resolved representations of oceanic Lagrangian flow
networks, assessing their effect on transport and biological
processes.

To this aim, we consider two ensembles of temporal
Lagrangian flow networks representing surface transport
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across the Mediterranean Sea and compare them with their
equivalent aggregated graphs.

We limit our analysis to the surface layer of the ocean due
to its relevance for several processes like air-sea exchanges,
plastic pollution, larval transport, plankton dynamics and hu-
man activity. To uncover the effect of seasonal variations, the
first temporal network is composed of 12 consecutive one-
month snapshots across the same year 2002, while the second
by ten networks representing the month of July across ten
years, from 2002 to 2011 to study yearly changes. To compare
the temporal and aggregated networks, we first investigated
some basic topological measures, such as the resulting degree
distributions of the two approaches. We then considered a
pruned version of the aggregated network that preserves the
average degree of the temporal network. We show that, even
if the two networks have the same number of links, this simple
pruning is not able to reproduce the basic features of the
temporal snapshots. Furthermore, we examined the temporal
mesoscale organization of the network, observing recurrent
patterns in the community structure of the snapshots. Finally,
we probed the effects of these structural differences on a
minimal reaction-dispersion model simulating the dynamics
of a generic tracer.

II. METHODS

A. Network construction

Following the approach described in [8], we build different
Lagrangian flow networks representing fluid transport across
subregions of the Mediterranean surface for different time
windows.

We discretize the Mediterranean basin into a grid of 8196
equal-area cells of 0.25◦ latitudinal extension. Cells corre-
spond to the nodes of the network whose edges represent
surface transport across the basin [8–10]. To quantify horizon-
tal transport, we fill each node with 100 ideal fluid particles
and, integrating realistic velocity fields of surface currents,
we reconstruct the Lagrangian trajectories of each particle in
time. Velocity fields taken from the Mediterranean forecasting
system (MFS) based on NEMO-OPA (Nucleus for European
Modelling of the Ocean-PArellelis, version 3.2 [22]). This
data-assimilative operational model has been implemented in
the Mediterranean at 1/16◦ degree horizontal regular resolu-
tion and we use the first of 72 unevenly spaced vertical levels
[23,24]. Lagrangian trajectories are simulated by integrating
horizontal velocities bilinearly interpolated using a Runge-
Kutta fourth order algorithm with a time step of six hours. We
note that, on the one hand, the network discretization implies
a coarse graining of dynamics that hides patterns smaller
than the node size. On the other hand, it introduces spatial
diffusion that is needed to parametrize subgrid scale processes
not accounted by the modeled velocity fields.

The set of Lagrangian trajectories is encoded in a transport
matrix, denoted P(t0, τ ). Its entry i j is proportional to the
amount of particle exchanged between i and j from the initial
time t0 to the final one t0 + τ . The transport matrix can be thus
interpreted as the adjacency matrix of a weighted and directed
network [8,9,25]. We also define the out degree of node i as
the number of edges starting from i. Throughout the rest of

FIG. 1. Average out degree in the pruned network as a function
of the threshold W . The blue dots are the out degree of the aggregated
network obtained removing all values smaller than W . The horizontal
dashed line marks the average network degree averaged over all
monthly networks (〈〈k〉〉 ≈ 50). The intersection between the dotted
and dashed lines points to the threshold weight (WT H ) used to build
the pruned aggregated network.

the manuscript, we refer to the degree distribution P(k) as the
probability that a randomly selected node has out degree k.

1. Aggregated network

Given the set of the matrices P(t0, τ )i j representing the
temporal snapshots, its aggregated counterpart is obtained
by averaging across different time windows of duration τ

[8,9]. In particular, given an ensemble of T transport matrices
P(ti, τ ) with t1 < · · · < tT , the aggregated average matrix is
defined as

P̂
τ

i, j := 1

T

T∑
x=1

P(tx, τ )i, j . (1)

2. Pruned network

The aggregation process Eq. (1) necessarily generates
denser networks, in the sense that the average degree of the
average network is always equal or larger than the average de-
gree of single temporal snapshots. This is because the degree
only depends on Boolean variables (existence or not of a given
edge) and the sum performed in the average converts into an
“or” operation for the degree of the aggregated matrix. We
thus propose a simple modification of the aggregated matrix
that both adds and prunes edges to generate a time-averaged
network with statistics that better represent single snapshots
of the temporal network. We consider a pruning mechanism
that consists of removing all the edges from the aggregated
matrix that have a weight smaller than a threshold W . In
Fig. 1 we show how the average degree of the aggregated
network decreases for different values of W . We choose the
threshold pruning weight, WT H , to be such that the resulting
pruned network’s average degree corresponds to the mean of
all snapshot’s average degree, satisfying

〈〈k〉〉 = 1

T

T∑
t=1

〈kt 〉,

where T is the number of snapshots and 〈kt 〉 is the average out
degree of the t th snapshot.
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B. Dynamical community detection

The complexity of spatiotemporal transport patterns in
the ocean is reflected in a marked community structure in
Lagrangian flow networks [8,25]. To quantify how temporal
variations affect the mesoscale organization of the network,
we will analyze community structures across the different
snapshots and compare them.

Community detection [26,27] is a commonly studied in-
ference problem that consists of partitioning the nodes of
a network into tightly and nonoverlapping groups. For each
node i, one wants to define a mapping i → �(i) ∈ {1, . . . , q},
where q is the number of communities. A practical challenge
in this setting is related to the complexity of the network
structure that is weighted, directed, and temporal. We use
a dynamical spectral clustering algorithm inspired by [28],
adapted to weighted and directed graphs.

The core idea of spectral clustering is to represent each
node of the network as a vector in a low dimensional space,
using the eigenvectors of a suited graph matrix representation.
The vectors can then be divided into groups with, for instance,
k-means algorithm [29] of expectation-maximization [30], as
we do in the following. For static, weighted, and directed
networks, Ref. [31] showed that, even in the sparse regime
in which typically many spectral algorithms tend to fail, one
can obtain this embedding computing the k largest eigenvalues
of the weighted adjacency matrix, store them in the columns
of an embedding matrix X ∈ RN×k , and interpret its rows as
embedding vectors. For the temporal setting, we generalize
this technique by building the following matrix M ∈ RNT ×NT :

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

P(t0, τ ) hIN 0 . . . 0

hIN P(t1, τ ) hIN . . . 0

0 hIN P(t2, τ ) . . . 0
...

...
...

. . .
...

0 0 0 . . . P(tT , τ )

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where IN is the diagonal matrix of size N (the number of
nodes) and h > 0 is a regularization parameter that imposes
that the community label of each node must change slowly
across time. In our simulations, we set this regularizer value to
h = 0.2 p, where p is the sum of all entries of P. Every row of
this matrix, and consequently of its eigenvectors, is associated
with a node at a given time instant. The derivation of M can be
obtained following the steps described in [28], computing the
Hessian matrix of the naïve mean-field free energy (instead of
the Bethe free energy) related to the same Hamiltonian matrix.

On top of the flexibility that allows one to deal at once
with weighted, directed, temporal, and sparse graphs, a major
advantage of this approach is that one can estimate the number
of communities k in an unsupervised fashion. In fact, M is
non-Hermitian, hence its eigenvalues are generally complex.
In a model-based approach, however, the largest of these
eigenvalues, are associated with its expectation that is—by
definition—supposed to be symmetric of rank k. Hence, the
first k largest eigenvalues of M are real and by identifying the
position of the first complex eigenvalue one can also estimate
the number of communities, a typically hard task to solve.

C. Minimal reaction dispersal model

Here we introduce a minimal model for reaction disper-
sal dynamics happening on top of the network. We aim at
modeling the evolution of a generic tracer concentration field
[32] across the Mediterranean that is affected by the intrinsic
reactive process as well as dispersal due to ocean currents.
We start defining a concentration tensor vector for which each
entry ni(t ) corresponds to the concentration in the node i of the
network at the discrete time t . Then, we assume that the tracer
concentration at a given node is redistributed by currents, and
experiences growth and decay. We model such processes ad-
vecting the tracer concentration by left-multiplying n(t ) with
the network adjacency matrix P and implementing simple
logistic dynamics. We can thus write the concentration in node
i at time t + τ as

ni(t + τ ) = (μ + 1)
∑

j

P ji(t, τ )n j (t )

− μ

K

[∑
j

P ji(t, τ )n j (t )

]2

, (2)

where P ji(t, τ ) are entries of the row-normalized adjacency
matrix of the transport networks to be considered. The param-
eters μ and K are the growth rate and the carrying capacity of
the logistic reactive dynamics.

We also introduce three metrics to characterize the spatial
patterns of the tracer field ni(t ) across time. We first define
the fraction of colonized nodes as the proportion of nodes that
present a nonzero concentration at a given time t . Then, being
M the number of nodes in the network, we denote the spatial
mean of ni(t ) as

1

M

M∑
i=1

ni(t ) (3)

and its spatial standard deviation as√√√√ 1

M

M∑
i=1

n2
i (t ) −

(
1

M

M∑
i=1

ni(t )

)2

. (4)

III. RESULTS AND DISCUSSION

We here discuss the main results of our analysis, which is
based on comparing the degree distribution, the community
structure, and the population dynamics on the temporal and
aggregated transport networks.

A. Properties of degree distribution

1. Seasonal data

We first investigate the differences in general statistical
properties of the temporal and aggregated networks. In Fig. 2,
we compare the global features of 12 month-by-month ma-
trices and their corresponding aggregated matrix. Figure 2(a)
shows that, as expected, the average degree of the aggregated
matrix is always larger than the average degree of any of the
twelve month-by-month matrices, making the aggregated ma-
trix significantly denser. We note that the difference between
the density of single snapshots and of the aggregated matrix is
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FIG. 2. Degree distribution of the aggregated and temporal trans-
port matrices. (a) Average degree of the transport networks at
different months, 〈kt 〉, divided by the average degree of the aggre-
gated matrix (〈k〉 ≈ 250). (b) Similarly to (a), standard deviations
of the average degree of the temporal networks σi and of the ag-
gregated one (σ ≈ 130). (c) degree distribution corresponding to
one snapshot (dotted red line) and the degree distribution for the
aggregated network (continuous blue line). (d)–(f) Similar to panels
(a)–(c) but for the interannual temporal networks. (g) Similar to (a),
but average degree of snapshots is divided by the average degree
of the pruned network (〈k〉 ∼ 50). (h) Similar to (b), but standard
deviation of snapshots is divided by the standard deviation of the
pruned network (〈σ 〉 ∼ 20). (i) Degree distributions corresponding
to the pruned network (dashed green line), and one monthly network
corresponding to January (dotted red line).

due to changes in connectivity within snapshots, i.e., links that
appear and disappear across the temporal sequence. We thus
conclude that the snapshots links geometry undergoes several
changes during the observation time window. Figure 2(b)
shows that also the degrees standard deviation is larger in the
case of the aggregated matrix, meaning that there is an over-
all increase of the second moment of the aggregated degree
distribution. Furthermore, both in (a) and (b) we observe n
temporal pattern that we associate with seasonality which is
not accounted for in the aggregated matrix. To further investi-
gate connectivity fluctuations, we plot in Fig. 2(c) the degree
distribution of the aggregated matrix together with one of the
temporal snapshots. We observe a neat discrepancy between
the two distributions, meaning that the aggregation process
does not mean a trivial homogeneous shift in the degrees of
the temporal matrices. Indeed, the degree distribution of the
temporal snapshots peaks around the mean of the distribution,
while the aggregated distribution is much flatter. Therefore,
in the aggregated network, small degrees can occur with a
similar probability as much larger degrees. Based on this ob-
servation, we assume that while the destinations of some links
change significantly between snapshots, the links of other
nodes may remain relatively constant through the one-year
evolution.

2. Interannual data

We replicate the analysis conducted in Sec. III A with
the dataset describing ocean transport in the same month

but across ten different years (2002–2011). In the plots in
Figs. 2(d)–2(f), we observe a similar behavior to the monthly
dataset with differences observed in the degree distribution of
the different temporal snapshots and the aggregated matrix,
corresponding to bigger connectivity and degree variability in
the latter.

3. Pruned network

The pruned network reduces both the variability of degrees
and the average degree to values that are closer to the single
temporal snapshots, as we expected [see Figs. 2(g) and 2(h)].
However, the degree distribution for the pruned network is
bimodal and presents a sharp peak, making it very different
from the typical degree distribution of the temporal network
[see Fig. 2(i)]. Therefore, the snapshot aggregation generates
deep structural changes that cannot be removed from a simple
pruning of the less connections.

B. Community structure

Community structures in networks denote groups of nodes
that are more densely connected among them with respect to
the rest of the network. For Lagrangian flow networks this
translates into areas of the sea well mixed internally but with
little exchange among them, with potentially crucial conse-
quences for the biological processes taking place inside. To
understand how these communities are influenced by seasonal
(short term) and interannual (long term) variability, we ap-
ply our temporal community detection algorithm to quantify
temporal changes between snapshots. In the top panels of
Fig. 3(a), we plot the community structure in color code
for four months and show that, while there is some level of
persistence, community structures are evolving over different
months. We remark that some communities have a rather
small size (most of them reflecting shallow oceanic regions
such as continental shelves), and their variability is shaped
by interseasonal flows as evidenced by the Sankey plots in
Fig. 3(c). On the other hand, communities across different
years are very stable, as shown in Fig. 3(b), highlighting once
more the relevance of seasonal flows for the network structure.

To conclude, this implies that a dynamical process running
on the network at the time scale of months is expected to
have significant differences if one uses the temporal or the
aggregated network. On the opposite, a less prominent role of
time should be observed at the scale of years.

C. Reaction dispersal dynamics

To conclude our analysis, we simulate the time evolution
of a reaction dispersal process on the network using the model
introduced in Sec. II C. Our approach does not have the am-
bition of providing a realistic description of tracer dynamics,
but it aims to understand if the temporal nature of the dis-
persal kernel can generate different spatiotemporal patterns
of a generic concentration field, even assuming an extremely
simplified dynamics. To this end, we model the evolution of
the concentration tensor ni(t ) across 48 consecutive months.
We initialize its entries to 1 for a subset of 20 contiguous
nodes centered in the middle of the central Mediterranean
Sea, setting the remaining ones to zero. We run the dynamics
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FIG. 3. Dynamical community detection on the Temporal flow
networks. Community detection is performed on the transport net-
works and six communities (represented by the colors) are detected.
The four panels in (a) show the results for four monthly transport
networks (Jan., Apr., Jul., and Oct. 2002). (b) Sankey plot of the
community structure evolution over time for the interannual graph.
Each column refers to a snapshot (here a month of a different year)
and the height of the bars are proportional to the number of nodes in
a given community. The flows connecting the bars are associated to
nodes changing their label across time. (c) same as in (b) but referred
to the seasonal data. Here each snapshot corresponds to a month in
the same year. The plots in (a) refer to the same community structure
reported here.

defined in Eq. (2) with three independent settings, each using
a different adjacency matrix: the temporal one, the simple av-
eraged, and the pruned network. Moreover, we also compare
the case of a purely passive dispersal process, setting μ = 0,
with the one of a reactive dispersal with μ = K = 1.

In Fig. 4, we show different spatial statistics of ni(t ) across
time for the above-mentioned model settings. We observe
that, when the temporal adjacency matrix is used, the time
variability of the statistics computed increases. For the passive
dispersal case, the fraction of colonized nodes (i.e., nodes with
nonzero concentration values) reaches 1 with different speeds
in the temporal and the average settings, while it does not
saturate to 1 when using the pruned matrix. This is because
the network pruning creates disconnected components in the
network making impossible the connection between every
pair of nodes. We also note that the spatial standard deviation
initially declines but after 10–20 months starts to slowly in-
crease. This phenomenon is explained by the presence of sets

of nodes acting as sinks that accumulates tracer concentration
over time. We see qualitative and quantitative differences also
in the reactive setups of the model, both for the spatial mean
and standard deviation of the concentration fields.

Overall, in both passive and reactive cases, we observe that
the tracer dynamics obtained from a temporal dispersal kernel
cannot be always approximated by either the simple averaged
or the pruned-average adjacency matrices. We also note that
the difference between the temporal and the aggregated ap-
proaches seems to be more relevant during transients of the
dynamics affecting the speed at which quasiasymptotic states
are reached. However, exactly this transient dynamics could
play a crucial role for biological processes as it unfolds at a
comparable time scale.

IV. CONCLUSIONS

In this work, we analyzed temporal networks describing
time-dependent transport processes in the ocean and com-
pared them with their time-averaged counterparts. Analyzing
their topology, we observe that both the total number of
links and the heterogeneity of nodes degree is bigger in the
aggregated temporal networks than for single temporal snap-
shots. While this is expected, as the number of links can
only increase through the aggregation process, the variability
increase is our first indicator of deep structural differences
between the aggregated and temporal networks. The pruned
network, designed to reduce the number of links to values
comparable to those observed in single snapshots, still ex-
hibits significant differences from the degree distribution of
the temporal network. Therefore, we can conclude that ag-
gregating temporal snapshots induces some deep structural
changes that cannot be easily avoided.

We observed that the temporal scales play a crucial role
when evaluating the significance of time dependency in
oceanic transport. While temporal changes within communi-
ties are apparent on a monthly basis, they become less evident
when examining the network’s evolution over the years. We
explain the difference between the across-month and across-
year evolution as a dominance of seasonality over interannual
variability. This is consistent with a seasonal scale dominated
by the solar cycle and the consequent strong changes of the
heat input toward the ocean and weather configuration pat-
terns. The interannual scales are instead influenced by climate
dynamics, essentially ENSO and NAO, and their effects on
the Mediterranean circulation are more elusive.

Our minimal reaction-dispersal model shows that the struc-
tural differences pinpointed so far have an impact on the
predicted evolution of tracers. In particular, aggregated net-
works tend to produce faster advection patterns. This effect
has already been observed in epidemiological modeling, in
which denser aggregated networks artificially speed up the
spreading of an infectious disease [33].

To summarize, the preferred option to build faithful
descriptions of oceanic transport within a year should rely
on a temporal network framework. However, due to a lack
of data or computational resources, this might be unfeasible
depending on the application. In such cases, one should
bear in mind that averaging networks is a subtle task, which
might require sophisticated methods to prevent structural
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FIG. 4. Reaction dispersal model outputs. We show the temporal evolution of the fraction of colonized nodes, spatial mean, and spatial
standard deviation for both the passive (left column) and reactive (right panel) model setups. In each panel we plot the results obtained using
as adjacency matrix the full temporal (blue), the simple average (red), and pruned average (green).

network changes during aggregation. Thus, future work
should be directed toward building and refining methods that
can aggregate networks while preserving structural properties
(e.g., [33]). We also envisage that this work can motivate
theoretical studies aimed at parametrizing the temporal
dependence of oceanic transport networks and building
effective generative models.
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