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Abstract 

Background One of the main challenges of the COVID‑19 pandemic is to make sense of available, but often het‑
erogeneous and noisy data. This contribution presents a data‑driven methodology that allows exploring the hospi‑
talization dynamics of COVID‑19, exemplified with a study of 17 autonomous regions in Spain from summer 2020 to 
summer 2021.

Methods We use data on new daily cases and hospitalizations reported by the Spanish Ministry of Health to imple‑
ment a Bayesian inference method that allows making short‑term predictions of bed occupancy of COVID‑19 patients 
in each of the autonomous regions of the country.

Results We show how to use the temporal series for the number of daily admissions and discharges from hospital to 
reproduce the hospitalization dynamics of COVID‑19 patients. For the case‑study of the region of Aragon, we esti‑
mate that the probability of being admitted to hospital care upon infection is 0.090 [0.086‑0.094], (95% C.I.), with the 
distribution governing hospital admission yielding a median interval of 3.5 days and an IQR of 7 days. Likewise, the 
distribution on the length of stay produces estimates of 12 days for the median and 10 days for the IQR. A comparison 
between model parameters for the regions analyzed allows to detect differences and changes in policies of the health 
authorities.

Conclusions We observe important regional differences, signaling that to properly compare very different popula‑
tions, it is paramount to acknowledge all the diversity in terms of culture, socio‑economic status, and resource avail‑
ability. To better understand the impact of this pandemic, much more data, disaggregated and properly annotated, 
should be made available.

Keywords Bayesian inference, Hospitalization dynamics, Covid‑19, Regional differences, Public health

Background
During the early stages of the COVID-19 pandemic, one 
of the greatest public health concerns was the adequacy 
of healthcare resources to treat infected cases. With cases 
growing exponentially, and roughly 10% of the detected 
cases needing hospitalization in intensive care units, it 
was soon realized that national health systems could be 
easily overwhelmed [1–3]. To slow the advance of the 
epidemic and protect national health systems, many 
countries implemented strict lockdowns during the first 
wave of the epidemic. Further waves also forced the 
application of important non-pharmaceutical interven-
tions, reducing the effective reproduction rate of the 
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disease and preventing the collapse of the healthcare sys-
tems [4–7].

At the same time, this event is the largest pandemic 
in the Digital Age, with wide access to the internet and 
ubiquity of social networks, representing a complete par-
adigm shift in terms of communication, data collection, 
storage, and dissemination at all scales [8, 9]. Yet, many 
healthcare systems were ill-prepared for an event of 
such scale. For instance, a group of researchers, journal-
ists and non-profit organizations studied the COVID-19 
data dashboards for each state in the US and concluded 
that the US lacked “standards for state-, county-, and 
city- level public reporting of this life-and-death informa-
tion”, calling it an “information catastrophe” [10]. Many 
numbers had important lags, with a quarter of deaths 
reported less than 6 days after they had occurred while 
another 25% were reported more than 45 days later [11]. 
Furthermore, even if open data was available, it often 
lacked the granularity necessary to understand the gen-
der, racial, ethnic and economic disparities created or 
amplified by the pandemic [12].

Similar problems can also be found in many countries 
in the EU [13]. In the case of Spain, during the first wave, 
the reporting delay was highly variable, ranging from 
a few days in early March to over 2 weeks in April [14]. 
The problem was further exacerbated due to the high 
decentralization of the health system in Spain, man-
aged by each autonomous region independently, which 
caused many problems of data synchronization and case 
definition [15]. In March 2021, already 1 year into the 
pandemic, a report on child mortality of COVID-19 in 
Europe showed that Spain had the highest mortality of 
all the countries analyzed [16]. A deeper investigation 
revealed that some patients over 100 years old had been 
incorrectly labeled as underaged, resulting in an abnor-
mal number of children deaths which was later amended, 
yielding results compatible with other European coun-
tries [17]. Thus, it is important to devise methodologies 
that can fully exploit these public data sources and detect 
errors, inconsistencies or underlying methodological 
changes that are not correctly addressed by the providers.

Besides these considerations regarding the use of data, 
and despite its importance, the literature on short-term 
predictions of bed occupancy for the COVID-19 pan-
demic is relatively limited [18]. The earliest models were 
adapted from the Erlang loss models used to dimension 
isolated wards [19, 20], but their main limitation was that 
they assumed a constant influx of patients, something 
unsuitable for the dynamics of the COVID-19 pandemic 
[21]. To solve this, Baas et al. used a network of infinite 
server queues to predict the occupancy in individual 
hospitals. However, their method focuses on predicting 
occupancy at single hospitals for which they require a 

complete record of time stamps for patient admissions, 
transfers and discharges [3]. Bekker et  al. follow a quite 
different approach since they try to avoid the use of any 
external information [18]. Their model is based on pre-
vious admissions, together with information on individ-
ual length of stay (LoS) and can provide accurate 7-day 
ahead predictions. They also provide a good overview of 
the related literature for occupancy predictions both for 
COVID-19 and other scenarios [18]. Castro et  al. fol-
lowed a similar approach given the lack of consistent and 
timely hospitalization data [22].

Other authors explored classical disease transmission 
models. These modeling works tend to study the whole 
dynamics of the pandemic and the effect of non-pharma-
ceutical interventions, assuming a certain rate of hospi-
talization while focusing on infections and deaths [5, 7, 
23–26]. Along these lines, Campillo-Funollet et  al. used 
a SEIR-D model with 8 parameters to estimate both the 
transmission and hospitalization rates under the assump-
tion of no policy changes within the period under study 
[27]. Chin et al. analyzed the forecasting power of some 
influential models and found them to be “highly inac-
curate” for ICU bed utilization [28]. Donker et al. based 
their predictions on the value of another important 
parameter of epidemic models, the reproduction number 
(Rt), but failed to account for the introduction of non-
pharmaceutical interventions, leading to an important 
overestimation of bed occupancy [29]. Garcia-Vicuña 
et al. used general population growth models to predict 
new admissions [30]. Lastly, de Barros Braga et  al. pro-
posed an approach based on artificial neural networks 
which provided better results for cumulative variables 
than for daily estimations [31].

A crucial element on any of these models is to account 
for the regional differences, something that many 
papers - especially those focused on modeling - seldom 
do. Indeed, both the admission rate and the length of 
stay may depend on the specific characteristics of the 
patients, the socioeconomic status of the population, or 
by local or national policies. For instance, in two popu-
lations with the same socioeconomic characteristics and 
transmission dynamics, the admission rate will be lower 
in the one with the largest testing capacities. Similarly, 
the LoS might be shorter in areas with low hospitaliza-
tion capacity. Further, these differences may evolve in 
time following policy changes. As such, it is also impor-
tant to contextualize properly the period under study.

In this context, Hoekman et al. studied the number of 
COVID-19 hospitalized patients per 100,000 inhabitants 
in the Netherlands at the regional level, to avoid testing 
bias, during the first wave [32]. They found large heter-
ogeneity with higher hospitalization rates in the initial 
epicenter. Similar results for the first wave were found in 
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Italy [33], Saudi Arabia [34], Scotland [35] or New York 
City [36]. In terms of LoS, an early systematic review 
conducted in April 2020 found a median of 14 days in 
China and 5 days in the rest of the world [37]. Using indi-
vidual patient records of the first wave, Vekaria et al. esti-
mate the average LoS to be between 8 and 9 days in the 
United Kingdom [38]. Similarly, López-Cheda et al. used 
individual records from patients in the region of Galicia, 
Spain, and obtained a median LoS of 11 days. However 
little work exists in relation to regional differences in hos-
pital dynamics, and even less after the first wave.

In this paper, we focus on the context of hospi-
tal dynamics and present a simple model to translate 
detected incidence into hospital admissions and bed 
occupancy. Initially, the model was implemented to esti-
mate bed occupancy in the autonomous region of Aragon 
during the fourth wave of the pandemic, but it is here 
applied to study the temporal dynamics of hospitaliza-
tions of other regions of the country too. Besides, we also 
show that this tool can also be used to detect changes 
underlying the data which cannot be easily detected oth-
erwise. Lastly, we apply the methodology to compare the 
evolution of the 17 autonomous regions in Spain and 
relate it to the testing policy implemented in each region. 
Our methodology can therefore be used to scrutinize the 
unfolding of the disease and its impact, together with the 
NPIs adopted, on hospital occupancy. As a result, it can 
also be employed as a tool for preparedness and health-
care planning, alleviating the high and yet-to-assess 
delays in diagnosis and treatment of other -potentially 
deadly, e.g., cancer, tuberculosis, etc.- diseases caused by 
the pandemic.

Methods
Overview
The model estimates daily admissions and bed occupancy 
based on the daily incidence data reported by the authori-
ties. To do so, we estimate the probability of being admit-
ted into a hospital upon being confirmed as a positive case, 
as well as the delay between detection and admission, and 
the length of stay (LoS). We employ a Bayesian inference 
model trained on data from July 2020 to late November 
2020, inspired by [4,47]. This technique allows us to inte-
grate prior information with data and is flexible enough as 
to be easily applied to other regions. With this information, 
we can reproduce the hospital dynamics in the autono-
mous region of Aragon -taken here as a case study- from 
December 2020 to June 2021, and produce forecasts on 
hospitalization based on any technique for predicting the 
daily incidence. In addition, we show the generality of the 
methodology by applying it to all the autonomous regions 
of Spain. This allows us to study their evolution, and 

analyze their differences, strategies for case detection and 
the effects of the first stages of the vaccination campaigns.

Datasets
We use the open data provided by the Spanish Health 
Ministry, which reports the number of confirmed cases by 
symptom onset, or notification date minus 3 days if it is not 
available, and the number of daily hospital admissions [39]. 
We further complement this dataset with the one provided 
by the regions of Aragon and Catalonia for some specific 
analysis [40, 41]. In particular, the main dataset provided by 
the Spanish Health Ministry does not contain information 
on discharges or bed occupancy, limiting regional compari-
sons to new admissions.

There is an alternative repository focused on hospitali-
zation but has several gaps since it is not updated on Sat-
urdays, Sundays and special holidays [42]. Furthermore, 
the data on discharges “might not be collected exhaus-
tively.” Thus, for the analysis involving bed occupancy, we 
resort to the regional repository. Note also that the qual-
ity, accessibility and depth of each regional repository 
varies greatly, and not always matches the data provided 
by the Ministry, as we show later for the case of Catalo-
nia. Another example is the incidence data provided by 
the government of Aragon, which is based on the noti-
fication date, while the incidence data provided by the 
Spanish Health Ministry is based on symptoms’ onset. 
Therefore, we perform the comparisons among different 
regions using the standardized data provided by the Span-
ish Health Ministry.

Model
For each region r, given the number of daily cases on day i, 
Cr
i  , we estimate the daily number of hospital admissions at 

time t as

where prH is the regional probability of hospitalization 
and φr(t − i) is a delay function that yields the probabil-
ity of being admitted to the hospital on day t given that 
the case was notified on day i. Data on the characteristics 
of all hospitalized individuals between early August and 
late November provided by the Health Department of the 
region of Aragon indicates that φ can be approximated by 
a Half-Cauchy distribution:

(1)Ar(t) =
t−1

i=0

Cr
i p

r
Hφ

r(t − i)

(2)
f (x|β) = 2

πβ

[

1+
(

x
β

)2
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where β is the scale parameter. Similarly, to determine 
the daily number of discharges, we can apply a convolu-
tion between the number of daily admissions and the dis-
tribution of the length of stay, ψ,

In this case, the data showed that ψ can be well approxi-
mated by a log-normal distribution:

where μ is the location parameter and σ the standard 
deviation. So that the bed occupancy in region r, on day 
t, given the daily incidence up to that day will be given by

In the Supplementary Information (Figs. S8-S10), we also 
explore the results when the admission delay is approxi-
mated by an Exponential distribution and the length of 
stay by a Gamma distribution.

Bayesian inference
To estimate the parameters, we implement a Bayes-
ian statistical model using PyMC3 3.11.5 with Python 
3.8 [43]. Note that all parameters cannot be esti-
mated simply from bed occupancy data (Eq. (5)) since 
a larger probability of hospitalization with small LoS 
can yield the same occupancy as a small probability 
of hospitalization with large LoS. Thus, we first esti-
mate the set of model parameters for the daily admis-
sions, θr =

{

prH , β
r ,αr

}

 , using Bayesian inference with 
Markov-chain-Monte-Carlo (MCMC). We assume that 
the likelihood of observing the real-world data point, 
Âr(t) , is given by NegBinomial(μ = Ar (t| θ), α) to allow 
for over-dispersion. We run 4 independent chains 
using NUTS with 2000 burn-in steps and 5000 steps to 
approximate the posterior distribution of the param-
eters with uninformed priors.

With these parameters and Eq. (1) we can obtain the 
daily number of admissions as a function of the num-
ber of new detected cases. This information, together 
with Eq. (5) and the observed bed occupancy, B̂r(t) , 
can be used to estimate the parameters of the log-
normal distribution governing discharges. In this case 
we assume that the likelihood of observing the real 
data point is given by Normal(μ = Br(t| θ), σ), but oth-
erwise the training procedure is the same as for the 
admissions.

(3)Dr(t) =
t−1
∑

i=0

Ar(i)ψr(t − i)

(4)f (x|µ, σ) = 1
x
√
2ψ

exp

(

− (logx−µ)
2

2σ

)

(5)Br(t) =
t
∑

i=0

(Ar(i)− Dr(i))

Forecasting
The previous model can translate new infections into new 
admissions, use the distribution of LoS and, finally, esti-
mate bed occupancy for the short-term (2-3 days). Thus, 
to increase the prediction window, it is necessary to fore-
cast future incidence. There are many techniques avail-
able to do this, ranging from classical compartmental 
models to Bayesian inference akin to the one used here, 
detailed agent-based models, metapopulation models, 
branching processes, machine learning and deep learning 
techniques or other time-series forecasting tools [44–50]. 
Since this is not the main purpose of this work, we resort 
to a simple heuristic that yields satisfactory results and is 
easier to communicate to non-technical stakeholders.

First, we computed the evolution of the effective repro-
duction number in the region of Aragon from early July 
to mid-November. Then, we explored how this quantity 
changed from day to day by dividing the value at time 
t, R(t), over its value on the previous day, R(t − 1). This 
analysis revealed that during the growing phase of an 
outbreak, the daily increase on R(t) is below 5%. Simi-
larly, during the shrinking phase induced by the non-
pharmaceutical interventions imposed by the authorities, 
the daily decrease is close to 5%, see Fig. S3. Given this 
observation, we can forecast the value of the reproduc-
tion number as

with the sign chosen depending on whether the outbreak 
is growing or decreasing. Then, we can estimate the num-
ber of new cases by multiplying this quantity iteratively 
by the number of cases observed or estimated in the 
previous days and introduce it in Eq. (5) to forecast bed 
occupancy.

Results
Estimating model parameters for daily admissions
To estimate the model parameters, we choose the period 
between July 1, right before the second wave of infec-
tions started in Spain, and December 1, right before the 
beginning of the Christmas wave. In Fig. 1, we show the 
number of daily admissions obtained using Eq. (1), while 
in Fig. S1 we depict the corresponding prior and poste-
rior distributions. The period before December 1 can 
be regarded as the training period for the model. After-
wards, the prediction is labeled “informed forecast” since 
it requires knowledge of the number of new cases.

We estimate an admission probability of pARH = 0.090 
[0.086-0.094] (95% C.I.), while the scale parameter of the 
Half-Cauchy distribution governing hospital admission 
is βAR= 3.557[2.579-4.564] (95% C.I.). More specifically, 

(6)R(t + i) = ±1.05R(t + i − 1)
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this distribution yields a median interval of 3.5 days and 
an IQR of 7 days for the delay between case detection and 
hospital admission.

Estimating model parameters for daily discharges
As described in the Methods section, we use the infor-
mation on bed occupancy to estimate the model param-
eters for daily discharges. In Fig. 2, we show the observed 
daily occupancy of hospital beds in Aragon together 

with the estimated one. We observe that the agreement 
is exceptionally good, even after vaccination started, 
until the beginning of April 2021. From that point on, 
the estimated occupancy is lower than the observed one. 
Given that the estimated admissions still agree with the 
observed values of this variable, this implies that the 
length of stay for the age groups admitted to the hospi-
tal during those dates is larger than the average. Whether 
this is the effect of protecting the oldest individuals from 

Fig. 1 Number of daily admissions to hospitals in the region of Aragon. To estimate the parameters of the model, we use the information 
available up to December 1, 2020. From December 1 the number of admissions is obtained using the estimated parameters and the observed 
number of daily detected cases, applying Eq. (1). The solid line represents the median value of the estimation and the shaded area the 95% 
C.I, while the dots represent the observed data. Note that on December 28 the vaccine roll‑out started in Spain. The estimated parameters are 
{

pARH , βAR, αAR
}

= 0.09, 3.56, 38.06  

Fig. 2 Daily number of beds occupied by COVID‑19 patients in Aragon. To estimate the parameters of the model, we used information up to 
December 1, 2020. From December 1, the occupancy is obtained using the number of new detected cases, together with Eqs. (1) and (5). The 
solid line represents the median value of the estimation and the shaded area its 95% C.I., while the dots represent the observed data. Note that on 
December 28 vaccine roll‑out started. The estimated parameters are 

{

µAR, σAR, σARN
}

= 2.48, 0.62, 42.63
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severe infection, or due to the circulation of new variants, 
is something that cannot be addressed unless more disag-
gregated data is released (e.g., discharges by age-group).

We estimate that the Log-Normal distribution used to 
approximate the distribution on the LoS has μAR= 2.476 
[2.441-2.512] (95% C.I.) and σAR= 0.620 [0.554-0.688] 
(see Fig. S2 and Table S1 for a summary of the estimated 
parameters). This distribution yields a median of 12 days 
with an IQR of 10 days.

Bed occupancy in Aragon
In Fig.  3, we show the forecasts performed during the 
Christmas wave. Each Monday, the algorithm ran on 
the data collected up to that date and forecasted bed 
occupancy as a function of the expected change of R(t). 
Three scenarios were considered: pessimistic (+ 5%), 
neutral (+ 0%) and optimistic (− 5%), which could be 
chosen depending on domain expertise and the unfold-
ing of events, such as the imposition of new containment 
measures (see the section Surveillance data in Aragon in 
the Supplementary Material for the rationale behind this 
choice). A summary of all the estimated parameters used 
in the forecast is presented in Table S1.

Estimation of new admissions in the rest of Spain
The model can be used to compare the characteristics 
and temporal evolution of the outbreaks in each auton-
omous region of Spain. This comparison is especially 
interesting since each region manages its own healthcare 

service and response to the pandemic, which might lead 
to different values for the parameters of the model. Thus, 
we have implemented the model to estimate new admis-
sions for each of the 17 autonomous regions in Spain (the 
2 autonomous cities, Ceuta and Melilla, have been dis-
carded due to their small size). In Fig. S5, we show the 
number of new daily admissions up to May 1, 2021, in 
each region. As in the previous case, we compute their 
corresponding parameters 

(

prH , β
r
)

 using data from July 
1, 2020, to December 1, 2020. The model can estimate 
very well the number of new admissions in all regions, 
although there are some territories in which the estima-
tion is slightly worse (see Table S2).

In Fig. 4, we present a summary of the prH and βr val-
ues obtained in the estimation of new admissions for all 
the autonomous regions of Spain. We observe that most 
regions cluster together around the same values, with a 
value for the probability of an infected individual needing 
hospital care upon detection around 9% and a delay of 3 
to 4 days between detection and admission.

Discussion
COVID-19, the largest pandemic of the Digital Age, has 
revolutionized the way in which public health informa-
tion is created, stored and shared. At the same time, it 
has highlighted the weaknesses of the information sys-
tems of many governmental and healthcare institutions. 
Even when the data is openly shared, the lack of infor-
mation on how it was obtained, continuous changes in 

Fig. 3 Forecasting bed occupancy in Aragon during the 2020‑2021 Christmas wave. Dots show the actual value of bed occupancy, while solid lines 
represent the median value of the forecast, and their shaded regions display the 95% C.I. of the forecast for the week starting at the indicated date. 
At each date depicted in the figure, rather than using the observed incidence as in Fig. 2, the prediction algorithm runs on the number of cases 
detected up to that date and forecasts occupancy assuming a certain change of R(t). In the prediction made on January 11, 2021, the change is 
assumed to be + 0%. Following the introduction of several containment measures on January 15, the daily change was assumed to be − 5%
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government policies, and availability of resources, makes 
it challenging to use the data and perform proper com-
parisons between different regions. This can be easily 
seen when data from various sources, or from the same 
source but for different observables, are compared.

The model presented here focuses on incidence and 
bed occupancy data. In particular, it reproduces the 
dynamics associated with hospitalization as a function 
of the number of detected cases. In the case of Aragon, 
the hospital admission distribution yields a median inter-
val of 3.5 days and an IQR of 7 days, which is remarkably 
close to the estimated values based on individual data 
provided by the regional government (median 4 days, 
IQR 6 days). Note that minor differences are expected 
since the way in which hospitals record case detection 
and admission might not be the same as the one provided 
by the Ministry of Health. For instance, while the Min-
istry of Health reports new cases as a function of symp-
toms’ onset, the regional government provides new cases 
based on notification date.

Similarly, we estimate that the distribution on the 
length of stay has a median of 12 days with an IQR of 
10 days. Data provided by the regional government shows 
that the median value is between 8 and 9 days with an 
IQR of 8 days for surviving patients, while for deceased 
patients the median LoS is 9 days and the IQR is 11 days. 
Note that in our model we do not distinguish the rea-
son for discharge. Besides, even though this quantity 
is less prone to biases due to the quality of the surveil-
lance system, some noise might be introduced depending 
on the discharge policy (for instance, it is uncommon to 

discharge patients during weekends). Nevertheless, these 
values are compatible with those provided by the regional 
authorities, as well as the ones found in the literature for 
other parts of the world [37].

Hospital admissions in Aragon
Focusing on the estimation of new hospital admissions 
in Aragon, a few remarks are in order. First, the region 
of Aragon was severely hit during the training period, 
with two infection waves, while other Spanish regions 
only had one. Second, the number of daily admissions 
can vary substantially, yielding a large prediction cred-
ible interval. Third, we observe that the prediction is 
reliable until late May since the probability of hospitali-
zation estimated in summer 2020 still gives satisfactory 
results until that date. Lastly, the rising wave of infections 
in early summer 2021 was associated specifically with 
individuals between 15 and 25 y.o., and several outbreaks 
were linked to summer parties celebrated after the end of 
the academic year, leading to the closure of nightlife in 
several regions [51]. A similar pattern was also observed 
in the Netherlands [27]. This significant difference in the 
age profile explains why the incidence is not translated 
into hospital admissions.

There are several hypotheses that may explain why the 
probability of hospitalization barely changes even after 
the introduction of vaccination during the first half of 
2021. First, early vaccination was focused on the most 
vulnerable, a relatively small group of the population, 
which can be attended in medicalized nursing homes 
rather than in hospitals. Thus, reducing infections among 

Fig. 4 Admission dynamics in each region of Spain. Estimated value of the probability of being admitted into the hospital upon detection,  pH, 
versus the parameters of the Half‑Cauchy distribution governing the delay between detection and admission, β. The horizontal and vertical 
errorbars indicate the 95% C.I. Labels represent the ISO abbreviation of each autonomous region in Spain. The complete list of equivalences in 
shown in Table S2
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that small group had a minor impact in both cases and 
hospitalizations. Second, another possible explanation 
is that vaccination reduced the severity of cases, hinder-
ing case detection. Indeed, since vaccination reduces the 
chance of suffering severe disease, it is possible that those 
infections might have been undetected, not contributing 
to lower the value of pH. Third, the vaccines’ effects might 
have been hidden by the presence of a more virulent vari-
ant of SARS-CoV-2, yielding a scenario similar to the one 
in late 2020. Lastly, it has been proposed that the pro-
file of hospitalized cases shifted towards un-vaccinated 
groups, compensating the effect of vaccination and leav-
ing pH unaltered. Surveillance data shows that, indeed, 
the fraction of hospitalizations corresponding to the old-
est age groups (older than 80 y.o.) steadily declined since 
vaccination started. Conversely, the hospitalization rate 
within the 40 to 49 and 50 to 59 y.o. groups increased (see 
Fig. S4), especially in May. Note that the vaccination of 
these groups started precisely in May, which explains the 
observed pattern. Recently, daily incidence data disag-
gregated by age has been made publicly available by the 
Ministry. Further studies should use this data to better 
estimate the hospitalization dynamics by age-group and 
its relationship with vaccination.

Bed occupancy in Aragon
We observe that, albeit the prediction of new cases is 
relatively simplistic, the forecast of occupancy is remark-
ably good, especially during the first days of the predic-
tion. In particular, the procedure can correctly estimate 
the maximum bed occupancy and the date when the ten-
dency shifts downwards. Admittedly, the ±5% scenarios 
may not be suitable for other regions or other circum-
stances, as they were specifically tailored for the situation 
in Aragon (see the section Surveillance data in Aragon in 
the Supplementary Material). Expert opinion and local 
knowledge have been commonly used in the unfolding 
of the pandemic in the absence of data [18, 27, 29, 48]. 
However, their power is limited, and models should be 
updated as soon as new data is available [52, 53]. For-
tunately, our model can be applied to the output of any 
incidence prediction algorithm, and thus it can be easily 
adapted to other regions, or more complex scenarios.

Regional comparison of new hospital admissions
As seen in Fig. S5 and Table S2, the estimation of new 
hospital admissions is slightly worse in a handful of 
regions. A lower quality of the fit usually signals that 
the region changed its testing capacities, rather than 
other external factors such as emergence of new vari-
ants. For instance, in the Principality of Asturias, we 
observe that after mid-November the model tends 
to overestimate new admissions. The reason for this 

discrepancy can be that either some interventions 
reduced the value of pH, or that the surveillance sys-
tem was improved, and more cases were detected. It 
turns out that Asturias was one of the three regions, 
together with the Canary Islands and the Balearic 
Islands, which did not use antigen tests in their sur-
veillance system. This situation changed on Novem-
ber 10, 2020, which would explain why our predictions 
overestimate occupancy after mid-November 2020. An 
analogous situation can be observed from mid-January 
2021 in the Balearic Islands, which can be related to 
a massive testing campaign using antigen tests that 
started on mid-January 2021 and extended up to Feb-
ruary 2021. Lastly, we also observe a slight overesti-
mation of occupation in the region of Madrid. In this 
region, the health department of the autonomous com-
munity redefined contact tracing on September 28, 
2020, excluding social encounters from the surveil-
lance system. This change was reverted on November 
20, 2020. The first change would force pH to increase, 
while the latter would produce a larger number of 
detected cases. The combination of both would result 
in a larger estimation of bed occupancy from late 
November, therefore nicely explaining the divergence 
obtained in the model.

Focusing on the estimated values for the admission 
delay and admission probability (Fig.  4), the regions 
with the most different values are those for which the 
prediction is worst, as previously describe. It is inter-
esting to mention that Catalonia (CT) has the lowest 
admission probability, which could indicate that the 
region is detecting more cases than the rest. However, 
as shown in Fig. S6, this is not indeed the case as the 
observed difference is a consequence of the data alone. 
Certainly, there are significant differences between the 
values reported by the Spanish Health Ministry and 
the regional government of Catalonia. Using the values 
provided by the latter, the hospitalization probability is 
8.5%, in line with the rest of the regions.

Finally, it would also be possible to hypothesize that 
the observed differences among the regions in which 
the prediction was successful to the characteristics 
of their populations. For instance, one of the drivers 
of these differences could be that some regions have 
a larger fraction of the population within the eldest 
age-groups, which are more prone to need hospital 
care. However, in Fig. S7, we show that the correla-
tion between these variables is very weak and cannot 
explain the difference.

Strengths and limitations
The methodology presented here, as we have shown, 
can easily be used evaluate the effect of interventions 
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on the hospitalization dynamics during a pandemic. 
Many models found in the literature usually fit the inci-
dence to agnostic growth models, with parameters that 
do not have a clear interpretation in terms of epidemic 
spreading, and even assume that there are no interven-
tions during a wave. The over-parametrization of these 
growth models may even lead to convergence problems 
[3]. At the same time, the model we proposed to trans-
late cases into occupancy is independent from the one 
used to estimate incidence. Hence, it is possible to sub-
stitute the latter by any other model, including complex 
compartmental models with advanced features such 
as contact tracing schemes, seasonality or multi-scale 
interactions.

Another important strength of the model is the use 
of Bayesian inference, as it allows us to integrate prior 
information with data in a flexible way. Besides, it just 
requires aggregated statistics which are relatively easy 
to obtain (new cases, new hospitalizations and current 
occupancy) even at the regional level. This way, and 
thanks to the interpretability of its parameters, it pro-
vides a unifying framework to study the hospitalization 
dynamics of multiple areas, enabling the evaluation of 
the effect of different policies. As we have discussed, 
the model can be used to detect changes in the dynam-
ics, and to study several waves at the same time, some-
thing that models based on growth equations fitted to a 
single wave cannot do.

Our model also has several limitations. The use of 
aggregated data facilitates its applicability, but also limits 
its potential if individual data is available. For instance, 
models based on queues could use individual informa-
tion to predict precisely when a specific person will be 
discharged. Our choice to model the incidence was heav-
ily based on the observations in the area of interest, and 
might not be directly applicable in others. Note, how-
ever, that it is completely decoupled from the model of 
the hospital dynamics, and thus it can be improved with-
out changing the main model. Another limitation is that 
to train the model it is necessary to have information of 
a period of a few weeks. Even though the predictions can 
then be used for periods much larger than the one used 
for training, as shown in the paper, it is not suited for the 
very first days of an emerging pandemic. Lastly, in Bayes-
ian frameworks the choice of priors can be problematic, 
but we showed that in this case with uninformative pri-
ors convergence is correctly achieved.

Conclusions
This analysis shows that the situation is far from being 
static. During the course of the epidemic in Aragon, 
we have identified nontrivial changes in the LoS, and 

noticeable modifications on the detection capabilities in 
other regions of Spain. Furthermore, we have seen that 
there are significant differences in the hospital dynamics of 
each region, and the quality and quantity of data provided 
by their institutions. Data for the same region, extracted 
from two different sources, can yield quite different values, 
which might cast doubts on its reliability. Lastly, the lack 
of disaggregated data on very basic characteristics, such 
as age, limits the conclusions that can be obtained, such 
as the possible role of emerging variants. This problem is 
especially important for underrepresented populations, for 
which this type of analysis cannot be performed, and who 
are usually those who would benefit the most from research 
that could unravel, induced or endemic, inequalities of the 
population.

Although in the absence of information the param-
eters that we have estimated can be used to conduct 
several analyses in other parts of the world, including 
parameterizing epidemiological models, we have also 
seen that there can be significant differences across 
regions of a relatively small country. Thus, it is impor-
tant to bear this in mind when comparing the effect 
of the pandemic in very different regions of the world, 
with diverse cultures and varying resource accessibil-
ity. The explosion on the availability of almost real-time 
data all over the world, represents a huge opportunity 
for the advancement of science and the education of 
society. Yet, at the same time, it shows that many of our 
information systems are still immature and that there 
is much work left to be done before we are ready for 
future pandemics.
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