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Higher-order interactions shape collective
dynamics differently in hypergraphs and
simplicial complexes

Yuanzhao Zhang 1,5 , Maxime Lucas 2,3,5 & Federico Battiston 4

Higher-order networks have emerged as a powerful framework to model
complex systems and their collective behavior. Going beyond pairwise inter-
actions, they encode structured relations among arbitrary numbers of units
through representations such as simplicial complexes andhypergraphs. So far,
the choice between simplicial complexes and hypergraphs has often been
motivated by technical convenience. Here, using synchronization as an
example, we demonstrate that the effects of higher-order interactions are
highly representation-dependent. In particular, higher-order interactions
typically enhance synchronization in hypergraphs but have the opposite effect
in simplicial complexes. We provide theoretical insight by linking the syn-
chronizability of different hypergraph structures to (generalized) degree
heterogeneity and cross-order degree correlation, which in turn influence a
wide range of dynamical processes from contagion to diffusion. Our findings
reveal the hidden impact of higher-order representations on collective
dynamics, highlighting the importance of choosing appropriate representa-
tions when studying systems with nonpairwise interactions.

For the past three decades, networks have been successfully used to
model complex systems with many interacting units. In their tradi-
tional form, networks only encode pairwise interactions1,2. Growing
evidence, however, suggests that a node may often experience the
influence of multiple other nodes in a nonlinear fashion and that such
higher-order interactions cannot bedecomposed intopairwiseones3–7.
Examples can be found in a wide variety of domains including human
dynamics8, collaborations9, ecological systems10, and the brain11,12.
Higher-order interactions not only impact the structure of these
systems13–21, they also often reshape their collective dynamics22–27.
Indeed, they have been shown to induce novel collective phenomena,
such as explosive transitions28, in a variety of dynamical processes
including diffusion29,30, consensus31,32, spreading33–35, and evolution36.

Despite many recent theoretical advances37–42, little attention
has so far been given to how higher-order interactions are best
represented43. There are two mathematical frameworks that are

most commonly used to model systems with higher-order inter-
actions: hypergraphs44 and simplicial complexes45. In most cases,
the two representations have been used interchangeably and the
choice for one or the other often appears to be motivated by
technical convenience. For example, topological data analysis46

and Hodge decomposition47 require simplicial complexes. Here,
we ask: Are there hidden consequences of choosing one higher-
order representation over the other that could significantly
impact the collective dynamics?

Answering this question is important given that, currently, reliable
real-world hypergraph data are still scarce (with most existing ones
concentrated in social systems), especially for complex dynamical
systems such as the brain. For these systems, in order to study the
effect of higher-order interactions, we have to start from data on
pairwise networks and infer the potential nonpairwise connections48. A
popular practice is to assume homophily between pairwise and
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nonpairwise interactions (e.g., by attaching three-body interactions to
closed triangles in the network), effectively choosing simplicial com-
plex as the higher-order representation. However, if different ways of
adding hyperedges can fundamentally change the collective dynamics,
then conclusions drawn from investigating a single higher-order
representation could be misleading.

To explore this issue, we focus on synchronization—a para-
digmatic process for the emergence of order in populations of
interacting entities. It underlies the function of many natural and
man-made systems49,50, from circadian clocks51 and vascular
networks52 to the brain53. Nonpairwise interactions arise naturally
in synchronization from the phase reduction of coupled oscillator
populations54–58. A key question regarding higher-order interac-
tions in this context is: When do they promote synchronization?
Recently, hyperedge-enhanced synchronization has been
observed for a wide range of node dynamics39,41,59–61. It is thus
tempting to conjecture that nonpairwise interactions synchronize
oscillators more efficiently than pairwise ones. This seems phy-
sically plausible given that higher-order interactions enable more
nodes to exchange information simultaneously, thus allowing
more efficient communication and ultimately leading to
enhanced synchronization performance.

In this article, we show that whether higher-order interactions
promote or impede synchronization is highly representation-
dependent. In particular, through a rich-get-richer effect, higher-
order interactions consistently destabilize synchronization in simpli-
cial complexes. On the other hand, higher-order interactions tend to
stabilize synchronization in a broad class of hypergraphs, including
random hypergraphs and semi-structured hypergraphs constructed
from synthetic networks as well as brain connectome data. Offering a
theoretical underpinning for the representation-dependent synchro-
nization performance, we link the opposite trends to the different
higher-order degree heterogeneities under the two representations.
Furthermore, we investigate the impact of cross-order degree corre-
lations for different families of hypergraphs. Since degree hetero-
geneity and degree correlation play a key role not only in
synchronization but also in other dynamical processes such as diffu-
sion and contagion, the effect of higher-order representations dis-
covered here is likely to be crucial in complex systems beyond coupled
oscillators.

Results
Higher-order interactions hinder synchronization in simplicial
complexes but facilitate it in random hypergraphs
To isolate the effect of higher-order interactions from node dynamics,
we consider a simple system consisting of n identical phase
oscillators39, whose states θ = (θ1,⋯ , θn) evolve according to

_θi = ω+
γ1

hkð1Þi
Xn
j = 1

Aij sinðθj � θiÞ+
γ2

hkð2Þi
Xn
j,k = 1

1
2
Bijk

1
2
sinðθj + θk � 2θiÞ: ð1Þ

Equation (1) is a natural generalization of the Kuramoto model62

that includes interactions up to order two (i.e., three-body interac-
tions). The oscillators have natural frequency ω and the coupling
strengths at each order are γ1and γ2, respectively. The adjacency
tensors determine which oscillators interact: Aij = 1 if nodes i and j have
a first-order interaction, and zero otherwise. Similarly, Bijk = 1 if and
only if nodes i, j and k have a second-order interaction. All interactions
are assumed to be unweighted and undirected. The (generalized)
degrees are given by kð1Þ

i =
Pn

j = 1 Aij and kð2Þ
i = 1

2

Pn
j,k = 1 Bijk , respectively.

Here, we normalize Bijk by a factor of two to avoid double counting the
same 2-simplex.

Following refs. 59,63, we set

γ1 = 1� α, γ2 =α, α 2 ½0, 1�: ð2Þ

The parameter αcontrols the relative strength of the first- and
second-order interactions, from all first-order (α =0) to all second-
order (α = 1), allowing us to keep the total coupling budget constant
and compare the effects of pairwise and non-pairwise interactions
fairly. In addition, we normalize each coupling strength by the average
degree of the corresponding order, 〈k(ℓ)〉.

Finally, we normalize the second-order coupling function by an
additional factor of two so that each interaction contributes to the
dynamics with an equal weight regardless of the number of oscillators
involved. Note that another interaction term of the form sinð2θj �
θk � θiÞ appears naturally in other formulations obtained from phase
reduction54,55,57. This type of term was shown to be dynamically
equivalent to that in Eq. (1) when considering the linearized dynamics
around full synchrony39. Indeed, they yield the same contribution to
the Laplacian as long as they are properly normalized by the factor in
front of θi, as we did.

Synchronization,θi = θj for all i ≠ j, is a solution of Eq. (1) andwe are
interested in the effect of αon its stability. The system allows analytical
treatment following the multiorder Laplacian approach introduced in
ref. 39. We define the second-order Laplacian as

Lð2Þij = kð2Þ
i δij �

1
2
Að2Þ
ij , ð3Þ

which is a natural generalization of the graph Laplacian Lð1Þij �
Lij = kiδij � Aij . Here, we used the generalized degree kð2Þ

i = 1
2

Pn
j,k = 1 Bijk

and the second-order adjacency matrix Að2Þ
ij =

Pn
k = 1 Bijk .

Using the standard linearization technique, the evolution of a
generic small perturbation δ θ = (δθ1,⋯ , δθn) to the synchronization
state can now be written as

δ _θi = �
Xn
j = 1

LðmulÞ
ij δθj, ð4Þ

in which the multiorder Laplacian is defined as

LðmulÞ
ij =

1� α

hkð1Þi
Lð1Þij +

α

hkð2Þi
Lð2Þij : ð5Þ

Fig. 1 | Synchronization is enhanced by higher-order interactions in random
hypergraphs but is impeded in simplicial complexes. The maximum transverse
Lyapunov exponent λ2 is plotted against α for random hypergraphs (blue) and
simplicial complexes (green). As α is increased, the coupling goes from first-order-
only (α =0) to second-order-only (α = 1). Each point represents the average over 50
independent hypergraphs or simplicial complexes with n = 100 nodes. The error
bars represent standard deviations. We set p = p△ =0.1 for random hypergraphs
and p =0.5 for simplicial complexes.
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We then sort the eigenvalues of the multiorder Laplacian
Λ1 ≥Λ2 ≥… ≥Λn−1 ≥Λn = 0. The Lyapunov exponents of Eq. (4) are
simply the opposite of those eigenvalues. We set λi = −Λn+1−i so that
0 = λ1 ≥ λ2 ≥… ≥ λn. The second Lyapunov exponent λ2 = −Λn−1 deter-
mines synchronization stability: λ2 < 0 indicates stable synchrony, and
larger absolute values indicate a quicker recovery from perturbations.

We start by showing numerically the effect of α (the proportion of
coupling strength assigned to second-order interactions) on λ2. By
considering the two classes of structures shown in Fig. 1: simplicial
complexes and random hypergraphs, we find that these two canonical
constructions exhibit opposite trends.

The construction of randomhypergraphs is determined by wiring
probabilities pd: a d-hyperedge is created between any d + 1 of the n
nodeswith probability pd64. Here, we focus on d up to 2, so the random
hypergraphs are constructed by specifying p1 = p and p2 = p△. Simpli-
cial complexes are special cases of hypergraphs and have the addi-
tional requirement that if a second-order interaction (i, j, k) exists, then
the three corresponding first-order interactions (i, j), (i, k), and (j, k)
must also exist. We construct simplicial complexes by first generating
an Erdös-Rényi graph with wiring probability p, and then adding a
three-body interaction to every three-node clique in the graph (also
known as flag complexes).

Figure 1 shows that higher-order interactions impede synchroni-
zation in simplicial complexes, but improve it in random hypergraphs.

For simplicial complexes, the maximum transverse Lyapunov expo-
nent λ2 increases with α for all p (data shown for p =0.5 in Fig. 1). For
random hypergraphs, the opposite monotonic trend holds for p≃ p△.
For p significantly larger than p△, the curve becomes U-shaped, with
the minimum at an optimal 0 < α* < 1, as shown in Fig. 2.

Our findings also hold when we control the simplicial complex
and randomhypergraph to have the same number of connections (see
Supplementary Fig. S1) and for simplicial complexes obtained by filling
empty triangles in random hypergraphs33, as shown in Supplementary
Fig. S2. We note that instead of filling every pairwise triangle in the
graph, we can alsofill the triangleswith a certain probability. As long as
the probability is not too close to zero, the results in the paper remain
the same (see Supplementary Fig. S3). One can also construct simpli-
cial complexes from structures other than Erdös-Rényi graphs, such as
small-world networks65. The results above are robust to the choice of
different network structures. In Supplementary Figs. S4 and S5, we
show similar results for simplicial complexes constructed from more
structured networks, including small-world and scale-free networks.

Linking higher-order representation, degree heterogeneity, and
synchronization performance
To gain analytical insight on synchronization stability, we note that the
extreme values of the spectrum of a Laplacian can be related to the
extreme values of the degrees of the associated graph: λn can be
bounded by the maximum degree kmax from both directions,
n

n�1 kmax ≤ ∣λn∣ ≤ 2kmax
66; and λ2 can be bounded by the minimum

degree kmin from both directions, 2kmin � n +2 ≤ ∣λ2∣ ≤ n
n�1 kmin

67. For

the multiorder Laplacian, the degree kðmulÞ
i is given by the weighted

sum of degrees of different orders, in this case

kðmulÞ
i = 1�α

hkð1Þi k
ð1Þ
i + α

hkð2Þi k
ð2Þ
i = LðmulÞ

ii . In Fig. 2, we show that n
n�1 kmin is a

good approximation for ∣λ2∣in random hypergraphs and is able to
explain the U-shape observed for λ2(α).

These degree-based bounds allow us to understand the opposite
dependence on α for random hypergraphs and simplicial complexes.
For simplicial complexes, the reason for the deterioration of syn-
chronization stability is the following: Adding 2-simplices to triangles
makes the networkmore heterogeneous (degree-richnodes get richer;
well-connected parts of the network become even more highly con-
nected), thus making the Laplacian eigenvalues (and Lyapunov expo-
nents) more spread out.

To quantify this rich-get-richer effect, we focus on simplicial
complexes constructed from Erdös-Rényi graphs G(n, p). In this case,
we can derive the relationship between the first-order degrees k(1) and
second-order degrees k(2) (below we suppress the subscript i to ease
the notation when possible). If node i has first-order degree k(1), then

there are at most kð1Þ

2

� �
2-simplices that can potentially be attached

to it. For example, when node i is connected to nodes j and k, then the
2-simplexΔijk is present if andonly if node j is also connected tonode k.
Because the edges are independent inG(n, p), when the network is not

too sparse, we should expect about p kð1Þ

2

� �
2-simplices attached to

node i:

kð2Þ ≈ E½kð2Þ�=p kð1Þ

2

 !
=pkð1Þðkð1Þ � 1Þ=2: ð6Þ

This quadratic dependence of k(2) on k(1) provides a foundation for
the rich-get-richer effect. To further quantify how the degree hetero-
geneity changes going from the first-order interaction to the second-

Fig. 2 | Pairwise and non-pairwise interactions synergize to optimize synchro-
nization. a U-shaped curves are observed for λ2(α) corresponding to random
hypergraphs over a wide range of pvalues. b Degree-based bound ∣λ2∣≤ n

n�1 kmin

predicts the non-monotonic dependence on α. Each data point represents a 100-
node random hypergraph and the three-body connection probability is set
to p△ =0.05.

Fig. 3 | Higher-order interactions increase degree heterogeneity in simplicial
complexes. a First-order degrees k(1) and second-order degrees k(2) follow Eq. (6)
for simplicial complexes constructed from Erdös-Rényi graphs. The heterogeneity
ratio r is well approximated by Eq. (8). b Degree heterogeneity of the three-body
couplings is larger than thatof the pairwise couplings in simplicial complexes for all
values of p (i.e., r is always greater than 1).
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order interaction, we calculate the following heterogeneity ratio

r =
kð2Þ
max=k

ð2Þ
min

kð1Þ
max=k

ð1Þ
min

: ð7Þ

If r > 1, it means there is higher degree heterogeneity among
2-simplices than in the pairwise network, which translates into worse
synchronization stability in the presence of higher-order interactions.
Plugging Eq. (6) into Eq. (7), we obtain

r ≈ kð1Þ
max=k

ð1Þ
min ≥ 1: ð8Þ

This shows that the coupling structure of 2-simplices is always
more heterogeneous than 1-simplices for simplicial complexes con-
structed fromErdös-Rényi graphs.Moreover, themore heterogeneous
the pairwise network is, the greater the difference between first-order
and second-order couplings in terms of heterogeneity. Specifically,
because Erdös-Rényi graphs aremore heterogeneous for smaller p, the
heterogeneity ratio r becomes larger for smaller p.

Figure 3a shows k(1) vs. k(2) for three simplicial complexes with
n = 300 and various values of p. The relationship between k(1) and k(2) is
well predicted by Eq. (6). The heterogeneity ratio r is marked beside
eachdata set and closely follows Eq. (8). Figure 3b shows r as a function
of p for n = 300. The error bar represents the standard deviation esti-
mated from 1000 samples. The data confirm our prediction that r > 1
for all considered simplicial complexes, and the difference between
the first-order and second-order degree heterogeneities is most pro-
nounced when the pairwise connections are sparse.

Next, we turn to the case of randomhypergraphs and explain why
higher-order interactions promote synchronization in this case
(assuming that p = p△). For Erdös-Rényi graphs G(n, p), the degree of
each node is a random variable drawn from the binomial distribution

Bðk;n,pÞ= n
k

� �
pkqn�k , where

n
k

� �
is the binomial coefficient and

q = 1 − p. There are somecorrelations among the degrees, because if an
edge connects nodes i and j, then it adds to the degree of both nodes.
However, the induced correlations are weak and the degrees can
almost be treated as independent random variables for sufficiently
large n (the degrees would be truly independent if the Erdös-Rényi
graphs were directed). The distribution of the maximum degree for

large n is given in ref. 68:

P kð1Þ
max <pn+ ð2pqn lognÞ1=2f ðn,yÞ

� �
≈ e�e�y

, ð9Þ

where f ðn, yÞ= 1� log logn
4 logn � logð

ffiffiffiffiffi
2π

p
Þ

2 logn + y
2 logn :

For generalized degrees k(2), the degree correlation induced by
three-body couplings is stronger than the caseof pairwise interactions,
but it is still a weak correlation for large n. To estimate the expected
value of the maximum degree, one needs to solve the following pro-
blem from order statistics: Given a binomial distribution and n inde-
pendent random variables ki drawn from it, what is the expected value
of the largest random variable E½kmax�? Denoting the cumulative dis-
tribution ofB(N, p) as F(N, p),whereN = (n − 1)(n − 2)/2 is the number of
possible 2-simplices attached to a node, the cumulative distribution of
kð2Þ
max is simply given by F(N, p)n. However, because F(N, p) does not

have a closed-form expression, it is not easy to extract useful infor-
mation from the result above.

To gain analytical insights, we turn to Eq. (9) with n replaced
by N, which serves as an upper bound for the distribution of kð2Þ

max.
To see why, notice that Eq. (9) gives the distribution of kð1Þ

max for n
(weakly-correlated) random variables kð1Þ

i drawn from B(n, p). For
kð2Þ
max, we are looking at n random variables kð2Þ

i with slightly
stronger correlations than kð1Þ

i , now drawn from B(N, p). Thus, Eq.
(9) with n replaced by N gives the distribution of kð2Þ

max if one had
more samples (N instead of n) and weaker correlations. Both
factors lead to an overestimation of E½kð2Þ

max�, but their effects are
expected to be small.

To summarize, we have

P kð2Þ
max <pN + ð2pqN logNÞ1=2f ðN, yÞ

� �
> e�e�y

: ð10Þ

Solving e�e�y0 = 1
2 gives y0 ≈ 0.52. Plugging y0into the left-hand

side of Eq. (9) and (10) yields an estimate of the expected values
of kð1Þ

max and kð2Þ
max, respectively. (Note that here for simplicity, we

use the median to approximate the expected value). Through
symmetry, one can also easily obtain the expected values of kð1Þ

min
and kð2Þ

min. To measure the degree heterogeneity, we can compute
the heterogeneity indexes

hð1Þ = E½kð1Þ
max� � E½kð1Þ�

� �
= E½kð1Þ�,

hð2Þ = E½kð2Þ
max� � E½kð2Þ�

� �
=E½kð2Þ�,

ð11Þ

which controls λ2 through degree-based bounds. Here, the expected

values of the mean degree are given by E½kð1Þ�=pn and E½kð2Þ�=pN,
respectively.

Now, how do the first-order and second-order degree hetero-
geneities compare against each other? Using Eq. (9) to (11), we see that

hð1Þ

hð2Þ >
ð2qn�1 lognÞ1=2f ðn,y0Þ
ð2qN�1 logNÞ1=2f ðN,y0Þ

: ð12Þ

For large n, we can assume f(n, y0) ≈ f(N, y0) ≈ 1 and simplify Eq. (12)
into

hð1Þ

hð2Þ >
ðn�1 lognÞ1=2

ðN�1 logNÞ1=2
≈

ffiffiffi
n

p

2
: ð13Þ

First, note that hð1Þ

hð2Þ > 1 for almost all n, which translates into better

synchronization stability in the presence of higher-order interactions.
The scaling also tells us that, as n is increased, the difference in degree

Fig. 4 | Higher-order interactions decrease degree heterogeneity in random
hypergraphs. The degree heterogeneity (measured by h(1) and h(2)) is stronger in
the first-order Laplacian L(1) than in the second-order Laplacian L(2), and the dif-
ference increases with system size n. The theoretical lower bound of hð1Þ

hð2Þ is given byffiffi
n

p
2 and is independent of p. The simulation results are obtained from random
hypergraphs with different sizes n, using 500 samples for each n. The connection
probabilities are set to p = p△ =0.1.
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heterogeneities becomes more pronounced. The theoretical lower
bound [Eq. (13)] is compared to simulation results in Fig. 4, which show
good agreement. Intuitively, the (normalized) second-order Laplacian
has a much narrower spectrum compared to the first-order Laplacian
with the same p becausebinomial distributions aremore concentrated
for larger n (i.e., there is much less relative fluctuation around the
mean degree for k(2) compared to k(1)).

Exploring the hypergraph space with synthetic networks and
brain networks
So far we have focused mostly on simplicial complexes and random
hypergraphs, which offered analytical insights into how higher-order
representations influence collective dynamics.However, a vast portion
of the hypergraph space is occupied by hypergraphs that are not
simplicial complexes or random hypergraphs. What is the effect of
higher-order interactions there? To explore the hypergraph space
more thoroughly, we first construct simplicial complexes from both
synthetic networks and real brain networks. We then study the syn-
chronization stability of these structures as they move further and
further away from being a simplicial complex. We find that as the
distance to being a simplicial complex is increased, higher-order
interactions quickly switch from impeding synchronization to pro-
moting synchronization. This echoes the analytical results obtained
above for simplicial complexes and random hypergraphs, and it sup-
ports our conclusion that higher-order interactions enhance syn-
chronization in a broad class of (both structured and random)
hypergraphs, exceptwhen they are close tobeing a simplicial complex.

Specifically, we consider the animal connectome data from Neu-
rodata.io (https://neurodata.io/project/connectomes/), which consists
of neuronal networks fromdifferent brain regions anddifferent animal
species. We chose brain networks because it has been shown that
nonpairwise interactions and synchronization dynamics are both
important in the brain5,69. For the sake of computational efficiency, we
selected six networks spanning three different species (worm, mon-
key, and cat) that are neither too dense nor too sparse. Specifically, for
each brain network, we first construct a simplicial complex by filling all
3-cliques (i.e., closed triangles) with 2-simplices. In reality, not all
3-cliques imply the existence of three-body interactions, and not all
three-body interactions reside within 3-cliques. Thus, we continue by
shuffling each 2-simplex to a random location in the hypergraph with
probability ps. This allows us to explore hypergraph structures beyond
simplicial complexes and random hypergraphs, with ps also serving as
a proxy for the distance between the hypergraph structure and the
original simplicial complex.

Figure 5 shows the synchronization stability λ2(α) for hyper-
graphs constructed from the six brain networks at different values of
shuffling probability ps. Here, each curve represents an average λ2(α)
over 100 independent realizations of the hypergraph structure at a
given ps. We see that as ps is increased, for all systems, the curves
change from going upward (or staying level for the disconnected C.
elegans posterior network) with α to going downward with α, sig-
naling a transition from hyperedge-impeded synchronization to
hyperedge-enhanced synchronization. Thus, the opposite trends we
observed for simplicial complexes and random hypergraphs remain
valid for a broad class of hypergraphs constructed from real-world
networks.

Fig. 5 | Synchronization stability of hypergraphs constructed from brain net-
works. For each of the six brain networks, we start by attaching 2-simplices to
closed triangles and turning the network into a simplicial complex. We then con-
struct hypergraphs at different distances from the simplicial complex by randomly
shuffling the 2-simplices with probability ps. For each value of ps, we plot

synchronization stability λ2 as a function of the control parameter α (averaged over
50 independent realizations). It is clear that as the hypergraphs move further away
frombeing a simplicial complex, synchronization stability is consistently improved.
The role of higher-order interactions also generally transitions from impeding
synchronization to promoting synchronization as ps is increased.

Fig. 6 | Nonpairwise interactions typically enhance synchronization in hyper-
graphs, exceptwhen theyare close to beinga simplicial complex.This plot uses
the same data as in Fig. 5 and explicitly shows the transition in how higher-order
interactions affect synchronization as the hypergraph structure loses resemblance
to simplicial complexes. Points in the upper-left half of the square represent
hypergraphs for which higher-order interactions impede synchronization, while
points in the lower-right half of the square represent hypergraphs for which higher-
order interactions promote synchronization. As the shuffling probability ps is
increased (ps =0 corresponds to simplicial complexes), all six systems swiftlymove
across the diagonal line and into the synchronization-promoting region.
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Figure 6 summarizes the same result from a different perspective
by plotting λ2(α =0.5) against λ2(α =0) at different values of ps (other
choices of the two α values give similar results). As psis increased from
0 to 1 and the hypergraph structure moves further away from being a
simplicial complex,we see all six systems transition from theupper-left
half of the plot (higher-order interactions impeding synchronization)
to the lower-right half of the plot (higher-order interactions promoting
synchronization). Moreover, the transitions happen fairly rapidly, with
all systems crossing the diagonal line at ps <0.2.

We also find similar results for hypergraphs constructed from
synthetic networks including scale-free and small-world networks,
which we show in Supplementary Figs. S6 and S7, and for real-world
hypergraphs (Supplementary Fig. S8). One additional thing worth
noting in Supplementary Figs. S6 and S7 are that as long as the network
is not too sparse or dense, changing the network density mostly shifts
all curves together in the vertical direction without affecting the
transition from hyperedge-impeded synchronization to hyperedge-
enhanced synchronization.

The role of degree correlation
Cross-order degree correlation, defined as the correlation between the
degree vectors at each order, DC= corrðfkð1Þ

i g, fkð2Þ
i gÞ, has been shown

to affect epidemic spreading and synchronization, where it can pro-
mote the onset of bistability and hysteresis70,71. By construction,
degree correlation is large and positive in simplicial complexes due to
the inclusion condition and close to zero in random hypergraphs.
Here, we investigate the effect of cross-order degree correlation on
synchronization to provide a more complete picture of why higher-
order representations matter.

To isolate the effects of degree correlation from those of degree
heterogeneity, we propose a method to fix the latter while changing
the former. Starting from a simplicial complex, we first select two
nodes: a node i included in only a few triangles (low kð2Þ

i ) and a node
j included in many triangles (large kð2Þ

j ). Then we swap their respec-
tive values of k(2) by swapping the 2-simplices to which node i and
node j belong. The hyperedge membership swap has the expected
effect: it lowers the degree correlation without changing the degree
heterogeneity. The extent to which the swap lowers the correlation
depends on the respective degrees of the nodes at each order. In

particular, a simple way to maximize this effect is to iteratively swap
the nodes that have the lowest and the largest k(2). Note that this
swapping procedure is different from the shuffling procedure used
for Figs. 5 and 6 (shuffling does not preserve the second-order
degree sequence).

In Fig. 7, we show the result of the hyperedge membership swap
on the cat brain network. The starting simplicial complex is the one
used in Fig. 5, for which we do not swap any memberships. Then, we
build two hypergraphs from it by selecting 5 and 15 pairs of nodes
and swapping their 2-simplices as described above. As a result, λ2 is
lowered for intermediate values of α. Importantly, though, the end-
points λ2(α = 0) and λ2(α = 1) remain unchanged, since only one order
of interactions is present. These observations are confirmed on
hypergraphs constructed from the other five brain networks (Sup-
plementary Fig. S9) and from synthetic networks (Supplementary
Fig. S10).

To summarize, lowering the cross-order degree correlation can
help improve the synchronization stability when there is a mixture of
pairwise and nonpairwise interactions. Intuitively, this makes sense
because negative correlation allows the degree heterogeneity from
two different orders of interactions to compensate each other and
homogenize the hypergraph structure.

Discussion
To conclude, using simple phase oscillators, we have shown that
higher-order interactions promote synchronization in a broad class of
hypergraphs but impede it in simplicial complexes. We have identified
higher-order degree heterogeneity and degree correlation as the
underlying mechanism driving these opposite trends. Although we
only considered two-body and three-body couplings, this framework
naturally extends to larger group interactions.

Do the lessons learned here for phase oscillators carry over to
more general oscillator dynamics? The generalized Laplacians used
here have been shown to work for arbitrary oscillator dynamics and
coupling functions41. Moreover, the spread of eigenvalues of each
Laplacian carries critical information regarding the synchronizability
of the corresponding level of interactions. Thus, once different orders
of coupling functions have been properly normalized, we expect the
findings here to transfer to systemsbeyond coupledphase oscillators.
That is, for generic oscillator dynamics, higher-order interactions
should in general promote synchronization if the hyperedges are
more uniformly distributed than their pairwise counterpart. In the
future, it would be interesting to generalize our results to
systems with nonreciprocal interactions72–75.

Finally, while here we focused on the synchronization of coupled
oscillators, our results are likely to have implications for other pro-
cesses. These includeprocesses asdifferent asdiffusion30, contagion70,
and evolutionary processes36, in which degree heterogeneity and
degree correlation play a key role, and yet the differences between
simplicial complexes and hypergraphs have been mostly treated as
inconsequential. All in all, our results suggest that simplicial complexes
and hypergraphs cannot always be used interchangeably and
future research should consider the influence of the chosen repre-
sentation when interpreting their results.

Data availability
The brain connectome data used in Figs. 5 to 7 can be found at https://
neurodata.io/project/connectomes/. All other data needed to evaluate
our results are present in the paper. Additional data related to this
paper may be requested from the authors.

Code availability
The code to reproduce the main results is available at https://github.
com/maximelucas/HOI_shape_sync_differentlyor on Zenodo https://
doi.org/10.5281/zenodo.766211376, and makes use of the XGI library77.

Fig. 7 | Cross-order degree correlation affects synchronization stability in
systems with mixed pairwise and nonpairwise interactions (0 <α < 1), but not
in the uniform cases (α =0 and α = 1). The hypergraphs are constructed from the
cat brain dataset. For each curve, we indicate the number of pairs of nodes selected
for the hyperedge membership swapping procedure (see text for details). The
procedure changes the cross-order degree correlation (DC) without affecting the
degree sequences (thus preserving the degree heterogeneity ratio as well). We can
see that more negative cross-order degree correlation translates into better syn-
chronization stability.
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