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ABSTRACT
Studying information propagation in social media is an important
task with plenty of applications for business and science. Generat-
ing realistic synthetic information cascades can help the research
community in developing new methods and applications, testing
sociological hypotheses and different what-if scenarios by simply
changing few parameters.

We demonstrate WoMG, a synthetic data generator which com-
bines topic modeling and a topic-aware propagation model to cre-
ate realistic information-rich cascades, whose shape depends on
many factors, including the topic of the item and its virality, the
homophily of the social network, the interests of its users and their
social influence.

CCS CONCEPTS
•Human-centered computing→ Social networks; Social network
analysis; •Computingmethodologies→ Agent / discrete models;
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1 INTRODUCTION
The analysis of information cascades in social media has received a
great deal of attention recently due to its many applications such as
viral marketing [6, 14] and social advertising [8, 9, 12]. Furthermore,
the analysis of the spread of information through the users of a
social network enables studying important sociological phenomena
such as homophily and social influence [1, 2, 11], the evolution of
social networks [16] and the formation of communities [3, 13]; it
can also help to tackle important issues of modern democracies,
such as understanding the role played by social bots [10] and mis-
information [15] in influencing public opinion and tempering the
political debate. In this context, having synthetic data generators
enables one to produce an unlimited amount of data, overcoming
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the limitation imposed by the social media platforms and by privacy
regulations.

More importantly, synthetic data generation enables studying, in
vitro, specific phenomena of interest by fine-tuning the parameters
of the models and controlling how each set of assumptions affects
the resulting propagations.

In this demo, we introduce WoMG (Word-of-Mouth Cascade
Generator), a synthetic data generator of information cascades in
social networks. WoMG combines many different ingredients to
produce realistic information-rich cascades: the structure of the
social network, the interests of each individual (which can exhibit
more or less homophily w.r.t. the structure of the network), the
strength of influence that individuals can exert on their peers, the
specific items that propagate in the network (described explicitly
by a set of keywords and implicitly as a probability distribution
in a topic space). WoMG, whose concept is depicted in Figure 1,
builds on top of recent results in network embeddings, topic models,
and social influence analysis [7], and it is distributed as a Python 3
library available in GitHub1 and pypi2.
Competitors. To the best of our knowledge, WoMG is the first
Python library for information diffusion which incorporates a topic
model. Nevertheless, it shares some common features with other
libraries. Nepidemix3 and GEMFsim4 deal with the epidemiological
diffusion processes. Other packages, such as nxsim5 and NDlib6,
provide a more general approach to diffusion modeling and imple-
ment information and opinion diffusion processes. None of these
libraries, however, integrate topic models to describe people’s in-
terests and items’ topics in a coherent way.
Roadmap. Next section provides a high-level overview of the con-
ceptual model behindWoMG, while Section 3 describes its software
architecture. Section 4 provides a preview of the usage of WoMG
and the demo outline.

2 MODEL
WoMG is based on the model described in our previous paper [7].
Its main inputs are as follows:
(I1) a directed social graph G = (V ,E) where the nodes V rep-
resent the set of individuals involved in the social network, and
a directed link (u,v ) ∈ E represents v being a follower of u. As
1https://github.com/FedericoCinus/WoMG
2https://pypi.org/project/womg
3http://nepidemix.irmacs.sfu.ca/
4http://www.ece.k-state.edu//netse/software
5https://github.com/kentwait/nxsim
6https://ndlib.readthedocs.io
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WoMG	
i22: {Obama, healthcare, bill, GOP} 

Figure 1: Bird’s-eye view of WoMG: the items propagating
in the network are described by a bag of words and a distri-
bution over a topic space; the users of the social network are
described by a vector of interests defined over the same topic
model.

such, v has visibility of the items shared by u; therefore, v can be
influenced by u to share further, thus allowing the propagation of
information. The social graph can be any directed graph and can
be loaded from disk in a variety of formats or, alternatively, it can
be generated thanks to the integration with NetworkX.
(I2) a topic model defined over a space of k topics, as produced
by, e.g., the Latent Dirichlet Allocation (LDA) method [5]. The
topic model is used by WoMG to describe users’ interests and to
create new items: for each new item i a distribution over topics
γi is sampled from a Dirichlet distribution, then a bag of words
describing i is sampled from γi and the topic space. If a topic model
is not available, it can be created by running LDA over a corpus
of documents (this functionality is provided directly by WoMG).
Alternatively to creating synthetic items, WoMG allows one to use
directly the real-world documents of the corpus, after they have
been processed by LDA.

The first element that is generated by WoMG is the interests
vector for each individual v ∈ V : i.e., a k-dimensional vector de-
scribing how much each individual is interested in each of the k
topics. Generating realistic interests vectors, given a known net-
work structure and a tunable level of homophily is a complex task,
that we tackle by means of a method based on non-negative ma-
trix factorization, which is shown experimentally to outperform
non-trivial baselines [7]. Besides the interests vectors, other factors
playing a key role in shaping propagations in a multi-topic setting,
are the virality of the items, the influence capability of each node,
or how the initial activations are generated. All parameters are
described in more detail in Section 3.1.

Once generated the interest vectors,WoMG starts producing the
information cascades by feeding items into the social graph and
letting them propagate according to a propagation model inspired
by the topic-aware linear threshold model of Barbieri et al. [4]. When

a new item enters the network, it starts propagating: nodes can
activate on it based on their interests. Once a node u activates on
the item (i.e., they like or repost the item), their followers become
aware of the item, and based on their interests and u’s strength of
influence, they might activate and propagate the item further. The
output of this process includes the following elements:

(O1) the vector of interests for each node v ∈ V ;
(O2) a set of items I , where each item i ∈ I is described by a

bag-of-words and a distribution in the topic space;
(O3) a propagation trace for each item i ∈ I , where a propaga-

tion trace is a relation (i,v, t ) representing the fact that the
item i was adopted by node v at time t .

A concrete example of WoMG’s output is given in Section 4.

3 SOFTWARE ARCHITECTURE
WoMG is distributed as a Python library through the package-
management system pip. It offers two main interfaces to its users:
a command-line tool and a Python function. Those two interfaces
are functionally equivalent.

The typical usage of WoMG requires to provide, through its
main interface, the input social graph, and the topic model. Both
inputs can be specified in different ways. The graph can be provided
as an external file with the edge list or—if the user is using WoMG
as a Python function—as a NetworkX graph instance. The topic
model can be provided as a CSV file, as a Numpy matrix, or it can
be automatically generated by WoMG from a given file containing
textual documents. In this case, WoMG uses LDA to find a suitable
topic distribution, and then WoMG employs it to generate textual
representations of the generated items that are coherent with their
propagations on the network. In order to provide this textual func-
tionality, WoMG relies on the Gensim library.7 To accommodate
users that wish to generate propagations but are not interested
in the textual aspect, we also provide a separate Python package
(womg-core), in order to avoid them the unnecessary large depen-
dency on Gensim. In a transparent way for the user, womg-core is
implemented as a dependency for the main WoMG package.

WoMG’s software architecture is designed in a modular and
extensible way. In this way, it is possible to implement different
alternative approaches for the main factors of the propagation: dif-
ferent topic modeling choices, diffusion processes, and interplays
with the underlying network. As presented in Figure 2,WoMG’s
architecture is characterized by three class hierarchies, each cor-
responding to one of these aspects. The two inputs (graph, topic
model) and the main output (diffusion trace) are managed by each
respective abstract class. The class tlt (topic-aware linear threshold
model) provides the default diffusion process. It inherits from the
general diffusion_model class initialization, iteration of the process,
and the conditions to stop.

Since the diffusion model is based on a topic-aware model, it is
necessary to represent both nodes and items in the same topic space.
In other words, we need to express which topics characterize an
item, and which topics appeal to a user. These aspects are handled
by the two abstract classes which inherit from network_model and
topic_model, respectively. The first provides the representation of

7https://radimrehurek.com/gensim/index.html
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network_model

+graph: dict

+info: dict

+graph_format()

topic_model

+items_description: dict

+topics_description: dict

diffusion_model

-network_model_instance

-topic_model_instance

+run()

+iteration()

+stop_criterior()

tlt_network_model

+weights_generator()

tlt

-steps: int

-virality_coefficient:float

-single_activator: bool

-nodes_sets : dict

-path: string

+iteration()

+update_sets()

+stop_criterior()

+set_sets()

+godNode_config()

tlt_topic_model

+viralities: dict

+get_item_descript()

tn

+users_influence: dict

+users_interests: dict

-homophily: float

-influence_strength: float

-gn_strength: float

-path: string

+network_setup()

+set_interests()

+set_influence()

+weights_generator()

lda

-topics: int

-docs: int

-training_path: str

-items_descript_path: str

-items_path: str

+set_mode()

+set_viralities()

+gen_items_descript()

+get_items_descript()

+load_items_descript()

+gen_topics_descript()*

+get_topics_descript()*

+load_topics_descript()

Input
1

Input

Figure 2: UML of WoMG’s software architecture.
The methods marked with an asterisk are part of the
minimal womg-core package.

the network for the propagation model. Our concrete implementa-
tion, tn represents an interests-based network: in other words, it
defines the topic-dependent weights of the network—how strong a
node can influence another a specific topic.

The abstract class topic_model provides the representation of
items in the topic space. Its concrete implementation is lda, which
wraps LDA, bridging it to the propagation model. It models the
distribution of topics in items, relying on the given topic model
(possibly learning it from a given corpus of documents with Gen-
sim).

3.1 Parameters
Despite the simplicity offered by a single-function interface,WoMG
presents many ways to shape the generated cascades. By manip-
ulating this small set of easily interpretable “knobs”, we can test
different assumptions about the propagation process. However,
each of the parameters has a default value that is able to produce
realistic cascades.

The two main parameters are the number of items (i.e., the num-
ber of cascades), and the number of steps. The latter is by default
infinite: the spreading process continues as long as needed until
each node is either sharing the item or not interested. The number
of topics k instead is defined by the topic model.

One of the main ingredients of WoMG’s model is the interests
of each node in each topic, which must be consistent with a given
level of homophily and with the network structure. The homophily
parameter ranges from 0 to 1, controlling how much the resulting
interests vectors are similar among connected individuals: a value
of 1 results in high homophily in interests vector, while a value of
0 results in them being closer to random.

The parameter called gn_strength is a positive real number that
allows one to set how much the items are successful in the environ-
ment in convincing an individual to share them. A low gn_strength

results in items propagating mostly from neighbors, while a strong

one means that items are often arriving at a node from exogenous
factors.

A parameter called infl_strength (a positive real number) con-
trols how much the influential capabilities of an individual have
an effect on convincing in neighbors: a high influence strength
comports that influential individuals are able to affect their neigh-
bors (regardless of the topics); a low influence strength results in
propagation being guided mostly by their individual topic-based
interests.

Finally, two parameters are provided to control the virality of
each item: virality_exp and virality_resistance; these are again
positive real numbers. The former shapes the distribution of the
virality of the set of items. Specifically, a larger virality_exp re-
sults in a more unequal distribution of item virality. The latter,
virality_resistance, multiplies the threshold used by the linear
threshold model, thus directly controlling how hard is for users to
be influenced by their peers.

WoMG also provides a seed parameter in order to make all the
simulations perfectly reproducible.

4 DEMONSTRATION
In the demonstration, the audience will be guided through the
functionalities offered by WoMG. The library will be used through
a Jupyter notebook. Jupyter provides, in fact, an easy way to ex-
periment with different inputs, parameters, and to inspect the ob-
tained propagations on the fly. WoMG is seamlessly integrated
with Jupyter, thanks to the use of appropriate libraries (such as the
NetworkX output format, and graphical progress bars).

In the first phase, we show the audience an immediate example
of WoMG usage. After showing how to installWoMG easily thanks
to pip, we demonstrate how to generate propagations on a synthetic
graph that are coherent with a given news corpus in one line of
code. As reported in Listing 1, the womg function can be imported
from the homonym module and can take as input a folder path
containing the items and a NetworkX graph instance.

1 from womg import womg

2 import networkx as nx

3

4 g = nx.random_geometric_graph (100, .3)

5 prop = womg(graph=g, docs_path='demo_corpus/')

Listing 1: WoMG command to generate cascades from
a NetworkX random graph and a corpus of documents
provided in a local folder.

The womg function returns the outputs and saves the default files
in the Output/ folder. The Propagations file contains the tuple (time,
item, node) which completely describes one activation. Moreover,
Topics_description and Items_description files represent, respec-
tively, the linear combination of words which defines each topic,
and the topics-dimensional vector of each item.
$ head -n 2 Output/Propagations0.txt

time item user

0 0 1

0 0 4

$ head Output/Topics_descript0.txt

[(0, '0.021*"said" + 0.015*"percent" + 0.011*"million" +

0.008*"new" + 0.008*"year" + ...'), ...]
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plt.imshow(WordCloud ().generate(prop.text [0]))

activations = np.zeros(N)

for _time , node in prop.propagations [0]:

activations[node] = 1

nx.draw_networkx_nodes(g,

node_color=activations ,

cmap=plt.cm.binary)

nx.draw_networkx_nodes(g,

node_color=prop.interests [0])

Figure 3: Visualization of WoMG output. Above the figure,
we report the code used to produce eachfigure fromWoMG’s
output prop. From left to right: we show an item words list;
we display the nodes that reshared that item inWoMG’s sim-
ulation; finally, we show the most interested nodes (in yel-
low) in the main topic of that item.

$ head -n 1 Output/Items_descript0.txt

0 [0.06345216 , 0.20021512 , 0.6291118 , 0.10482439 ,...]

Listing 2: Example of WoMG output files.

We inspect the output of WoMG in different ways. We show a
significative excerpt of the code and its output in Figure 3. First, we
look at the text of the synthetically generated items; specifically,
we show a word cloud of the item text with the wordcloud Python
library. Then, through NetworkX, we display the activated nodes
on that item by simply plotting WoMG’s output. Finally, we check
the underlying topical interests generated by WoMG, observing
that they are coherent with the propagations; to do so, we simply
plot the interests generated by WoMG relative to the topic most
significative for that item.

In a second phase, we investigate, together with the audience,
the different knobs offered by the WoMG package. Its parameters,
in fact, can be used to simulate in vitro different scenarios, each
one characterized by different assumptions. This exploration can
be useful to investigate the properties of topic-based propagation
through a what-if game we play with the audience. What will hap-
pen if the network does present a very small degree of homophily?
What if the propagations are largely driven by exogenous factors?
What if a small set of individuals is able to influence heavily the

1 # setting the womg parameters

2 womg(graph=g,

3 int_mode='nmf',

4 numb_docs =10,

5 numb_steps =100,

6 homophily =.5,

7 gn_strength =13,

8 infl_strength =12,

9 virality_exp =8,

10 virality_resistance =13)

Listing 3: Modifying WoMG’s parameters

others? We show how WoMG allows any user to simulate these
settings easily.

The generated propagations can be used both to investigate the
results of a topic-aware word-of-mouth process, as well as to test
any algorithm that wishes to operate on a textual propagation data
set. As we show in the demonstration, WoMG gives its user the
possibility to generate text and propagation, at the same time, in a
coherent way. Such a data set is of immediate use and allows one
to experiment thoroughly with any technique users wish to test
in different settings. This can be useful for instance for propaga-
tion classifiers, network analysis techniques, or text-graph hybrid
embeddings.
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