
WiFi networks and malware epidemiology
Hao Hua,b, Steven Myersb, Vittoria Colizzac, and Alessandro Vespignanib,c,1

aDepartment of Physics, Indiana University, 727 East Third Street, Bloomington, IN 47405; bSchool of Informatics, Indiana University, 901 East Tenth Street,
Bloomington, IN 47408; and cComplex Networks Lagrange Laboratory, Institute for Scientific Interchange, 10133 Turin, Italy

Communicated by Giorgio Parisi, University of Rome, Rome, Italy, November 25, 2008 (received for review September 28, 2007)

In densely populated urban areas WiFi routers form a tightly
interconnected proximity network that can be exploited as a
substrate for the spreading of malware able to launch massive
fraudulent attacks. In this article, we consider several scenarios for
the deployment of malware that spreads over the wireless channel
of major urban areas in the US. We develop an epidemiological
model that takes into consideration prevalent security flaws on
these routers. The spread of such a contagion is simulated on
real-world data for georeferenced wireless routers. We uncover a
major weakness of WiFi networks in that most of the simulated
scenarios show tens of thousands of routers infected in as little as
2 weeks, with the majority of the infections occurring in the first
24–48 h. We indicate possible containment and prevention mea-
sures and provide computational estimates for the rate of en-
crypted routers that would stop the spreading of the epidemics by
placing the system below the percolation threshold.

computer security � wireless routers � epidemic spreading

The most common wireless access points are implemented by
WiFi routers that supply all of the basic services necessary to

access the internet. The use of WiFi routers is becoming close to
mainstream in the U.S. and Europe, with 8.4% and 7.9% of all
such households having deployed such routers by 2006 (1), and
a WiFi market expected to grow quickly in the next few years as
more new digital home devices are being shipped with WiFi
technology.

As WiFi deployment becomes more and more pervasive,
however, there is a larger risk that massive attacks exploiting the
WiFi security weaknesses could affect large numbers of users.

Malware is the name given to a broad range of software,
including viruses and worms, that has malicious or fraudulent
intent. Recent years have witnessed a change in both the
designers of malware attacks and their motivations. Malware
creators have shifted from programmer enthusiasts attempting
to get peer credit from the ‘‘hacker’’ community to organized
crime engaging in fraud and money laundering through varying
forms of online crime. In this context, WiFi routers represent
valuable targets when compared with the PCs that malware
traditionally infects, because they are the perfect platform to
launch a number of attacks (2–5) that previous security tech-
nologies have reasonably assumed were unlikely (6). Unlike PCs,
they tend to be always on and connected to the internet, and
currently there is no software aimed at specifically detecting or
preventing their infection. Routers need to be within relatively
close proximity to each other to communicate wirelessly, but an
attack can now take advantage of the increasing density of WiFi
routers in urban areas that creates large ad hoc geographical
networks where the malware can propagate undisturbed, making
WiFi vulnerabilities considerably more risky than previously
believed (5, 7).

Here, we assess the vulnerability of WiFi networks of different
U.S. cities by simulating the wireless propagation of a malicious
worm spreading directly from wireless router to wireless router.
We construct an epidemiological model that takes into account
several widely known and prevalent weaknesses in commonly
deployed WiFi routers’ security (2, 8) [e.g., default and poor
password selection and cracks in the wired equivalent privacy
(WEP) cryptographic protocol (9)]. The WiFi proximity net-

works over which the attack is simulated are obtained from
real-world geographic location data for wireless routers. The
infection scenarios obtained for a variety of U.S. urban areas are
troublesome in that the infection of a small number of routers in
most of these cities can lead to the infection of tens of thousands
of routers in a week, with most of the infection occurring in the
first 24 h. We address quantitatively the behavior of the spread-
ing process, and we provide specific suggestions of increased
usage of the WiFi Protected Access (WPA) encryption protocol
and strong administrative passwords to minimize the WiFi
network weakness and mitigate an eventual attack.

Results and Discussion
WiFi Networks. WiFi routers, even if generally deployed without
a global organizing principle, define a self-organized proximity
communication network. Indeed, any 2 routers that are in the
range of each other’s WiFi signal can exchange information and
may define an ad hoc communication network. These networks
belong to the class of spatial or geometric networks in that nodes
are embedded in a metric space, and the interaction between 2
nodes strongly depends on the range of their spatial interaction
(10–13).

In this perspective, one might wonder whether the actual
deployment of WiFi routers is sufficient at the moment to
generate large connected networks spanning sizeable geographic
areas. This problem, equivalent to the percolation of giant
connected components in graph theory (14, 15), is, however,
constrained by the urban area’s topology and demographic
distribution dictating the geographical locations of WiFi routers.
Here, we consider WiFi networks as obtained from the public
worldwide database of the Wireless Geographic Logging Engine
(WiGLE) website.* The database collects data on the worldwide
geographic location of wireless routers and at the time of our
study counted �10 million unique WiFi data points on just �600
million observations, providing good coverage of the wireless
networks in the U.S. and in North Central Europe. The data
provide a wealth of information that include, among other
things, the routers’ geographic locations [expressed in latitude
(LAT) and longitude (LON)] and their encryption statuses. In
particular, we focused on the wireless data extracted from 7
urban areas or regions within the U.S.—Chicago, Boston, New
York City, San Francisco Bay Area, Seattle, and Northern and
Southern Indiana. Starting from the set of vertices correspond-
ing to georeferenced routers in a given region, we construct the
proximity network (10–13) by drawing an edge between any 2
routers i and j located at �pi � (LONi, LATi) and �p j � (LONj,
LATj), respectively, whose geographical distance d( �pi, �pj) is
smaller than the maximum interaction radius Rint (i.e., d( �pi, �pj) �
Rint). In the WiFi networks, the maximum interaction radius Rint
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strongly depends on the local environment of any specific router.
In practice, Rint ranges from 15 m for a closed office with poor
transmission to �100 m outdoors (16). For simplicity, we assume
that Rint is constant, independent of the actual location of a given
router, and we consider 4 different values of the maximum
interaction radius—Rint �{15 m, 30 m, 45 m,100 m}—analyzing
the resulting networks for each of the 7 regions under study. A
more detailed account of the network construction procedure
and the filtering methods used to minimize potential biases
introduced by the data collection mechanisms are described in
Materials and Methods.

In Fig. 1A, we report an illustration of the giant component of
the network obtained in the Manhattan area for different values
of Rint. It is possible to observe that despite the clear geograph-
ical embedding and the city constraints, a large network of
�36,000 routers spans the downtown area for Rint set to 45 m.
The degree distributions of the giant components, i.e., the
probability that any giver router is within range and connected
to k other routers (see Fig. 1B), are characterized by an
exponential decrease (12) with a cutoff clearly increasing with
the interaction radius, because a larger range increases the
number k of nodes found within the signal area. Very similar
properties are observed in all of the networks analyzed, and a
detailed account of their topology is reported in supporting
information (SI). It is important to stress that the metric space
embedding exerts a strong preventative force on the small-world
behavior of the WiFi networks, because the limited WiFi inter-
action rules out the possibility of long-range connections.

Infecting a Router. The infection of a susceptible router occurs
when the malware of an already infected router is able to
interface with the susceptible’s administrative interface over the
wireless channel. Two main technologies aim at preventing such
infection through (i) the use of encrypted and authenticated
wireless channel communication through the WEP and WPA
cryptographic protocols and (ii) the use of a standard password
for access control. Encryption should provide an initial level of
security, because it needs to be bypassed before a potential
attacker could attempt to bypass the administrative password.
Most users do not currently employ their routers’ encryption

capabilities—indeed the encryption rates in the considered cities
vary from 21% to 40% of the population, as shown in Materials
and Methods. For the purposes of this work, we assume that WPA
encryption is not vulnerable to attack, and therefore, any router
that uses it is considered immune to the worm. Because of
cryptographic flaws in WEP, this protocol can always be broken,
given that the attacker has access to enough encrypted commu-
nication. This can be achieved by waiting for the router to be
used by legitimate clients or by deploying more advanced active
attacks. Bypassing WEP encryption is therefore feasible and only
requires a given amount of time.

Once the malware has bypassed any cryptographic protocol
and established a communication channel, it may then attempt
to bypass the password. A large percentage of users do not
change their password from the default established by the router
manufacturer, and these passwords are easily obtainable. Here,
we use as a proxy for this percentage the fraction of users who
do not change their routers default service set identifier (SSID).
For all of the other routers, we assume that 25% of them can
have the password guessed with 65,000 login attempts, based on
the evidence provided by security studies (17) that showed that
�25% of all users’ passwords are contained in a dictionary of
65,000 words. We then assume, based on previous worms, that
another 11% of passwords are contained in a larger library of
approximately a million words (18). No back-off mechanism
exists on the routers, which prevents systematic dictionary
attacks. In case the password is not found in either dictionary, the
attack cannot proceed. Alternatively, if the password has been
overcome, the attacker can upload the worm’s code into the
router’s firmware, a process that typically takes just a few
minutes. In Materials and Methods, we report a list of the typical
time scales related to each step of the attack strategy.

Construction of the Epidemic Model. The construction of the
wireless router network defines the population and the related
connectivity pattern over which the epidemic will spread. To
describe the dynamical evolution of the epidemic (i.e., the
number of infected routers in the population as a function of
time), we use a framework analogous to epidemic modeling that
assumes that each individual (i.e., each router) in the population
is in a given class depending on the stage of the infection (19).
Generally, the basic modeling approaches consider 3 classes of
individuals: susceptible (those who can contract the infection),
infectious (those who contracted the infection and are conta-
gious), and recovered (those who recovered or are immune from
the disease and cannot be infected). Analogous schemes have
been used in the past to simulate computer viruses spreading on
the wired internet and e-mail networks (20–22). These studies
have pointed out the importance of the heterogeneity of the
internet networks that might eventually lead to the virtual lack
of epidemic threshold. The regular internet virus spreads, how-
ever, on network topologies where connections and transmis-
sions do not have a finite range, whereas in the present case, the
WiFi underlying network is deeply influenced by geographical
embedding and by finite range of transmission.

Furthermore, the heterogeneity of the WiFi router population
in terms of security attributes calls for an enlarged scheme that
takes into account the differences in the users’ security settings
(other sources of heterogeneity in the router platforms are
discussed in SI). We consider 3 basic levels of security and
identify the corresponding classes: routers with no encryption,
which are potentially the most exposed to the attack, are mapped
into a first type of susceptible class S; routers with WEP
encryption, which provides a certain level of protection that can
be eventually overcome with enough time, are mapped into a
second type of susceptible class denoted SWEP; routers with
WPA encryption, which are assumed to resist any type of attacks,
correspond to the removed class R. This classification, however,
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Fig. 1. Visualization and degree distribution of the WiFi proximity networks.
(A) Map representation of the giant components of the WiFi network in the
Manhattan area as obtained with different values of Rint. (B) The degree
distribution for different values of the interaction radius Rint show an expo-
nential decay and a cutoff that depends on Rint. The result is obtained as
averages over 5 different randomization procedures to redefine the location
of each router.
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needs to be refined to take into account the password settings of
the users that range from a default password to weak or strong
passwords and finally to noncrackable passwords. For this rea-
son, we can think of the nonencrypted class S as being subdivided
into 4 subclasses. First, we distinguish between the routers with
default password Snopass and the ones with a password Spass1. The
latter contains routers with all sorts of passwords that undergo
the first stage of the attack that employs the smaller dictionary.
If this strategy fails, the routers are then classified as Spass2 and
undergo the attack that employs the larger dictionary. Finally, if
the password is unbreakable, the router is classified as Rhidden.
The last class represents routers whose password cannot be
bypassed. However, their immune condition is hidden in that it
is known only to the attacker who failed in the attempt, whereas
for all of the others, the router appears in the susceptible class
as it was in its original state. This allows us to model the
unsuccessful attack attempts of other routers in the dynamics.
WEP encrypted routers have the same properties in terms of
password, but the password relevance starts only when the WEP
encryption (if any) has been broken on the router. At this stage
of the attack it can be considered to be in the nonencrypted state,
and therefore no subclasses of SWEP have to be defined. In
addition to the above classes, the model includes the infected
class (I) with those routers that have been infected by the
malware and have the ability to spread it to other routers.

The model dynamics is specified by the transition rates among
different classes for routers under attack. Transitions will occur
only if a router is attacked and can be described as a reaction
process. For instance the infection of a nonencrypted router with
no password is represented by the process Snopass � I3 2I. The
transition rates are all expressed as the inverse of the average
time needed to complete the attack. In the above case, the
average time of the infection process is � � 5 min and the
corresponding rate � for the transition Snopass � I 3 2I is � �
��1. Similarly the time scale �WEP needed to break a WEP
encryption will define the rate �WEP ruling the transition from
the SWEP to the nonencrypted class. In Materials and Methods, we
report in detail all of the transition processes and the associated
rates defining the epidemic processes.

One of the most common approaches to the study of epidemic
processes is to use deterministic differential equations based on
the assumption that individuals mix homogeneously in the
population, each of them potentially in contact with every other
(19). In our case, the static nonmobile nature of wireless routers
and their geographical embedding make this assumption com-
pletely inadequate, showing the need to study the epidemic
dynamics by explicitly considering the underlying contact pattern
(21, 23–26). For this reason, we rely on numerical simulations
obtained by using an individual-based modeling strategy. At
each time step, the stochastic disease dynamics are applied to
each router by considering the actual state of the router and
those of its neighbors as defined by the actual connectivity

pattern of the network. It is then possible to measure the
evolution of the number of infected individuals and keep track
of the epidemic progression at the level of single routers. In
addition, given the stochastic nature of the model, different
initial conditions and stochastic noise realizations can be used to
obtain different evolution scenarios.

Because multiple-seed attacks are likely, we report simulations
with initial conditions set with 5 infected routers randomly
distributed within the population under study. Single-seed at-
tacks and different number of initial seeds have similar effects
and are reported in SI. The initial state of each router is directly
given by the real WiFi data or is obtained from estimates based
on real data, as detailed in Materials and Methods. Finally, for
each scenario, we report the averages of �100 realizations.
Reports on single realizations and their properties are in SI.

Spreading of Synthetic Epidemics. According to the simulation
procedure outlined above, we study the behavior of synthetic
epidemics in the 7 urban areas we used to characterize the
properties of WiFi router networks. The urban areas considered
are quite diverse in that they range from a relatively small college
town (West Lafayette, IN) to big metropolises such as New York
City and Chicago. In each urban area, we focus on the giant
component of the network obtained with a given Rint that may
vary consistently in size.

Here, we report the results for a typical epidemic spreading
scenario in which the time scales of the processes are chosen
according to their average estimates. In the SI, we report the
best- and worst-case scenarios obtained by considering the
combination of parameters that maximize and minimize the rate
of success of each attack process, respectively. The networks
used as substrate are obtained in the intermediate interaction
range of 45 m. The sensitivity analysis to the change of this
parameter is reported in SI.

The 3 snapshots of Fig. 2 provide an illustration of the
evolution of a synthetic epidemic in the Manhattan area; shown
in red are the routers that are progressively infected by malware.
The striking observation is that the malware rapidly propagates
on the WiFi network in the first few hours, taking control of
�55% of the routers after 2 weeks from the infection of the first
router. The quantitative evidence of the potential impact of the
epidemic is reported in Fig. 3A, where the average profile of the
density of infected routers is reported for all of the urban areas
considered in the numerical experiment. Although it is possible
to notice a considerable difference among the various urban
areas, in all cases, we observe a sharp rise of the epidemic within
the first couple of days and then a slower increase, which after
2 weeks leaves �10% to 55% of the routers in the giant
component controlled by malware. The similar time scale in the
rise of the epidemic in different urban areas is not surprising
because it is mainly determined by the time scale of the specific
attacks considered in the malware spreading model. In general

After 24 hours

Susceptible
Infected
Removed

  After 6 hours

Susceptible
Infected
Removed

  After 1 hour

Susceptible
Infected
Removed

Fig. 2. Illustration of the spread of a wireless worm through Manhattan in several time slices. In this series, the result is based on 1 randomization procedure
for the location of each router and the maximum interaction radius Rint is set to 45 m.
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the sharp rise of the epidemic in its early stages is due to the
nonencrypted routers that are infected in a very short time. This
is clearly shown in Fig. 3B, where the fraction of infected routers
belonging to different classes is reported. Obviously, nonen-
crypted routers are those that are most affected by the epidemic.
The slower progression at later stages is instead due to the
progressive infection of WEP routers whose attack time scale is
�1 order of magnitude longer (see the SI for more details on
single-realizations behavior).

A more complicated issue is understanding the different
attack (infection) rates that the epidemic attains in different
urban area networks. The pervasiveness of the epidemic can be
seen as a percolation effect on the WiFi network (27, 28). The
WPA-encrypted routers and those with unbreakable passwords
represent obstacles to the percolation process and define an
effective probability that each router may be infected at the end
of the spreading process. This probability has to be compared
with the percolation probability threshold of the network, above
which it is possible to have a macroscopic spanning cluster of
connected and infected routers (28–30). The larger the effective
percolation probability with respect to the threshold, the larger
the final density of infected routers. On the other hand, the
epidemic thresholds of the networks are not easy to estimate
because they are embedded in the particular geometries of the
cities’ geographies. In random networks, large average degree
and large degree fluctuations favor the spreading of epidemics
and tend to reduce the network percolation threshold (21, 31).
Fig. 4A shows an appreciable statistical correlation between the
attack rate and these quantities. On the other hand, there are
many other network features that affect the percolation prop-
erties of the networks. First, the cities have different fractions of
encrypted routers. Although these fractions are not extremely
dissimilar, it is clear that, given the nonlinear effect close to the
percolation threshold, small differences may lead to large dif-
ference in the final attack rate. For instance, San Francisco, with
the largest fraction of encrypted routers corresponding to �40%
of the population, exhibits the smallest attack rate among all of
the urban areas considered. Second, the geometrical constraints
imposed by the urban area geography may have a large impact
on the percolation threshold, which can be rather sensitive to the
local graph topology. For instance, network layouts with 1D
bottlenecks or locally very sparse connectivity may consistently

lower the attack rate by sealing part of the network, and thus
protecting it from the epidemic. Indeed, a few WPA routers at
key bottlenecks can make entire subnetworks of the giant
component impenetrable to the malware.

Conclusions
Based on the previous results, we note that there is a real concern
about the wireless spread of WiFi-based malware. This suggests
that action needs to be taken to detect and prevent such
outbreaks, and more thoughtful planning for the security of
future wireless devices needs to occur, so that such scenarios do
not occur or worsen with future technology. For instance, given
the increasing popularity of the IEEE 802.11n standard for WiFi
networks with its increased wireless communications range, the
possibility for larger infections to occur is heightened, because of
the larger connected components that will emerge (see SI).
Furthermore, it is highly likely that we will only see the proliferation
of more wireless standards as time goes by, and all of these
standards should consider the possibility of such epidemics.

There are 2 preventive actions that can be easily considered to
successfully reduce the rates of infection. First, force users to change
default passwords, and second, the adoption of WPA, the crypto-
graphic protocol meant to replace WEP, which does not share its
cryptographic weaknesses. In Fig. 4B, we report the impact of the
epidemic when we progressively increase the fraction of routers
with encryption. We perform the experiment under the restrictive
assumption that, among the encrypted routers, only the usual 30%
uses the safe WPA and keep the same statistics for the password
choices as for the baseline simulations. The fraction of infected
routers after 2 weeks is quickly dropping when the encryption
percentage falls between 60% and 70%. This would correspond to
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Hu et al. PNAS � February 3, 2009 � vol. 106 � no. 5 � 1321

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

http://www.pnas.org/cgi/content/full/0811973106/DCSupplemental
http://www.pnas.org/cgi/content/full/0811973106/DCSupplemental


a fraction of immune WPA routers of �20% to 30% at which the
percolation threshold is reached, and the epidemic is not able to
spread across the network. It should be noted that because of the
different topologies of the networks in different cities, we should
not expect a single percolation threshold to hold for all locals. In SI,
we provide a more precise measurement of the threshold by using
as a proxy the divergence of the average infected cluster size (28,
32). Finally, better results can be achieved by improving the
password choices in the rest of WEP-encrypted routers.

Unfortunately, the dangers of poorly chosen user passwords
have been widely publicized for at least 2 decades now, and there
has been little evidence of a change in the public’s behavior. In
addition, there are many barriers to public adoption of WPA on
wireless routers. The use of only 1 device in the home that does
not support WPA, but that does support the more widely
implemented WEP, is sufficient to encourage people to use
WEP at home. For this reason, a detailed study of the impact of
targeted deployment of WPA routers in key locations of the
network needs to take place.

Materials and Methods
WiFi Data and Networks. WiFi data are downloaded from wigle.net for 7 urban
areas in the U.S. and is processed to eliminate potential biases introduced by
data collection. Records that appear as probe in their type classification are
removed from the dataset because they correspond to wireless signals origi-
nating from nonrouters. Such records represent a very small percentage of the
total number in every city considered. For example, in the urban area of New
York City, there were 2,586 probe records, corresponding to 5.4% of the total
(additional details for all urban areas under study are provided in SI).

A preliminary spatial analysis of the data for each urban area reveals the
presence of sets of several WiFi routers sharing an identical geographic
location. To avoid biases due to overrepresentation of records, we checked for
unique basic service set identifier (BSSID) (i.e., MAC address) and assume that
each of these locations could contain at most n overlapping routers, where n
was fixed at 20 to provide a realistic scenario, such as a building with several
hot spots. For New York City, this procedure led to the elimination of 216
records, which represent 0.5% of the total number of WiFi routers. This also
takes into account the exclusion of the vertical dimension of the problem,
namely the presence of WiFi routers in very tall buildings, that is, however, not
relevant for the geographical spreading of the epidemics.

More importantly, we adopt a randomized procedure to redefine the
position of each router in a circle of radius Rran centered on the GPS coordi-
nates provided by the original data. This procedure is applied to approximate
the actual location of each router, which would be otherwise localized along
city streets, due to an artifact of the wardriving data collection method. The
newly randomized positions for the set of routers completely determine the
connectivity pattern of the spatial WiFi network and its giant component
substrate for the epidemic simulation. Results presented here are obtained as
5 averages over several randomization procedures. Fig. 5A reports the main
topological indicators of the giant components of each urban area extracted
from the WiFi network built assuming that Rint � 45 m. It is important to stress
that the many properties cannot be easily deduced by models based on
uniform distribution of points in a 2D Euclidean space, because the emerging
degree and clustering distribution are deeply affected by the geographical
and demographic properties of each given urban area.

Epidemic Model. Fig. 5B shows the flow diagram of the transmission model.
Initial conditions set the number of routers belonging to each of the following
compartments: Snopass (routers with no encryption and default password),
Spass1 (routers with no encryption and user set password), SWEP (routers with
WEP encryption), and R (routers with WPA encryption, here considered im-

mune). The classes Spass2 and Rhidden are void at the beginning of the simula-
tions because they represent subsequent stages of the infection dynamics.
Encrypted routers are identified from original data, and the fraction of R of
the total number of encrypted routers is assumed to be 30%, in agreement
with estimates on real-world WPA usage. Analogously, we assume that the
nonencrypted routers are distributed according to the following proportions:
50% in class Snopass and 50% in class Spass1.

The infection dynamics proceeds as follows. A router with no encryption
enters the infectious class with unitary rate if attacked. The attack to a router
in class Spass1 is characterized by a transition rate �1 and has 2 possible
outcomes: with probability (1 � p1), the router is infected and enters I,
whereas with probability p1 it enters Spass2 because the attacker is not able to
overcome the password, and the infection attempt requires additional time
and resources. Once in class Spass2, it can become infectious with probability
(1 � p2) if the attack is successful, or otherwise the router enters Rhidden with
probability p2 because the password has not been bypassed. This process
occurs with a transition rate p2. WEP-encrypted routers follow the same
dynamics once the encryption is broken, and they enter Spass1 with transition
rate �WEP .We do not allow the transition between SWEP and Snopass because we
assume that anyone who went to the trouble of enabling encryption would
also go to the trouble of changing the default password.

The numerical simulations consider the discrete nature of the individuals and
progress indiscretetimesteps.Weassumethat theattackerwill target therouter,
among its neighbors, with the lowest visible security settings. In addition, we do
not allow simultaneous attacks, so that each infected router will choose its next
target only among those routers that are not already under attack. Once an
attack has started, the attacker will keep trying to bypass the security setting of
the same target until the attempt is finally successful or not. In both cases, the
attacker will then move to another target. The simulation’s unitary time step is
defined by the shortest time scale among all processes involved, i.e., the time �

needed to complete an attack to a nonencrypted router with no password. This
automatically defines as unitary the transition rate associated to the reaction
Snopass � I3 2I. Typical time scales for the other processes are: �1 � 6–15 min to
bypass a password in the smaller dictionary,�2 � 400–1,000 min to bypass a
password in the larger dictionary, �WEP � 2,880–5,760 min to crack the WEP
encryption. The corresponding transition rates can be analogously defined as
probabilities expressed in terms of their ratio with � that defines the unitary rate.

Simulations run for 4,032 time steps, corresponding to 20,160 min (i.e., 2
weeks). At each time step, we measure the global attack rate defined as the
number of infectious I(t) at time t over the total population of the network
discounted by the number of recovered, N � R. In this way, we can take into
account the differences of the encryption percentages observed in different
urban areas.
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