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Universality in the equilibration of quantum systems after a small quench
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A sudden change in the Hamiltonian parameter drives a quantum system out of equilibrium. For a finite-size
system, expectations of observables start fluctuating in time without converging to a precise limit. A new
equilibrium state emerges only in the probabilistic sense, when the probability distribution for the observable
expectations over long times concentrates around their mean value. In this paper we study the full statistic of
generic observables after a small quench. When the quench is performed around a regular (i.e., noncritical)
point of the phase diagram, generic observables are expected to be characterized by Gaussian distribution
functions (“good equilibration”). Instead, when quenching around a critical point a new, universal, double-peaked
distribution function emerges for relevant perturbations. Our analytic predictions are numerically checked for a
nonintegrable extension of the quantum Ising model.
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I. INTRODUCTION

Imagine preparing a closed quantum system in a given
initial state ρ0 and letting it evolve freely. After a sufficiently
long time, an equilibrium, average state ρ emerges. Because
of the unitary nature of the dynamics, in a finite system, the
evolved state ρ(t) cannot converge to ρ either in the strong
or in the weak topology.1 Equilibration in isolated quantum
systems only emerges in a probabilistic fashion. We say that the
observable O equilibrates to O if the expectation value 〈O(t)〉
is close to its average O most of the time. In other words, 〈O(t)〉
is seen as a random variable equipped with the (uniform)
measure dt/T in the interval t ∈ [0, T ], where T is the total
observation time which will be sent to infinity. The probability
distribution of O is P (o) := δ(o − 〈O(t)〉), where the bar
refers to temporal averages: f := limT →∞ T −1

∫ T

0 f (t)dt .
Broadly speaking, concentration phenomena for P (o) corre-
spond to quantum equilibration. The average value of a generic
observable is readily obtained as O := 〈O(t)〉 = tr(ρO), an
equation that defines the equilibrium state to be ρ = ρ(t).
Equilibration, however, is related to the concentration of the
distribution P (o), a convenient definition of which is encoded
in the variance �O2. In Refs. [1] and [2] it was shown that
the variance of any observable is bounded by the purity of
the equilibrium state P(ρ) := tr(ρ2): This is an encouraging
result: if P(ρ) is small, one has equilibration for every
observable. Equilibration should depend on the dynamic and,
possibly, on the initial state, not on the specific observable.

A convenient setting for probe quantum equilibration is that
of a sudden quench. The system is initialized in the ground
state of some Hamiltonian H1 and then evolved unitarily
with a small perturbation, H2 = H1 + δλV . This situation
is compelling from both a theoretical and an experimental
point of view, thanks to the recent advances in cold atom
technology [3–5].

*campos@isi.it
1For a different point of view see [28].

In this paper we analyze the full statistic of a generic
observable P (o) after a small quench. For small quenches
performed around a regular (i.e., noncritical) point, the
expected distribution P (o) is Gaussian in the generic case.
Equilibration is achieved in a standard fashion. Instead, for
quenches performed around a critical point the distribution of
generic observables tends to a new, universal, double-peaked
function which we are able to compute.

This behavior was first demonstrated in [6] for a particular
observable [the Loschmidt echo (LE)] on the hand of an exactly
solvable model (Ising model in a transverse field). Here we
show that the scenario first advocated in [6] is in fact general
to small quenches for sufficiently relevant perturbations.

II. CRITICAL SCALING OF THE TIME-AVERAGED STATE

Here we consider the equilibrium distribution for small
quench. When the quench is small one can either expand
the eigenvectors of the evolution Hamiltonian H2 with per-
turbation +δλV or expand the initial state with respect to
a perturbation −δλV . We take the latter point of view. Let
the t > 0 Hamiltonian be H2 = ∑

n En|n〉〈n|. The initial state
|ψ0〉 is the ground state of H1 = H2 − δλV . Then

|ψ0〉 = |0〉 + δλ
∑
n�=0

〈n|V |0〉
En − E0

|n〉 + O(δλ2)

(note the plus sign in V ). If the spectrum is nondegenerate, the
equilibrium state has the form ρ = ∑

n pn|n〉〈n| [1,2,6]. The
weights, up to second order in the quench potential, are given
by

p0 = |〈0|ψ0〉|2 = 1 − δλ2
∑
m�=0

|〈m|V |0〉|2
(Em − E0)2 ,

(1)

pn = |〈n|ψ0〉|2 = δλ2 |〈0|V |n〉|2
(E0 − En)2

, n �= 0.

Note that, up to the same order, the purity of the equilibrium
state is given by tr(ρ2) = p2

0. The weight p0 is precisely the
square of the well-studied ground-state fidelity F = |〈0|ψ0〉|
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[7–11], and its scaling properties are well known [12]. If the
perturbing potential is extensive and the quench is done around
a regular (i.e., noncritical) point, F ∼ exp(−const × δλ2Ld ),
where d is the spatial system dimension. Instead, for quenches
at a critical point F ∼ exp[−const × δλ2L2(d+ζ−�V )], ζ is the
dynamical critical exponent and �V is the scaling dimension
of the perturbation V . Indeed it is intuitively clear that by
shrinking δλ at will, one should be able to transfer most
of the spectral weight to p0, a limit in which the purity
is large. The preceding scalings tell us that we must have
δλ � L−Q with Q = d/2 (Q = d + ζ − �V = 1/ν) in the
regular (critical) case. These are the regimes of small quench
characterized by a large purity and, hence, large variances for
generic observables: in other words, poor equilibration.

However, the distributions of the pn for critical and regular
quenches are radically different. As we will see, this has direct
consequences for the general form of the distribution of generic
observables.

In the case of a critical quench there exist modes with
vanishing energy: Ek − E0 = vkζ , where k now is a quasimo-
mentum label. According to Eq. (2) the corresponding weight
pk becomes large and might even (apparently) diverge when
k → 0. In a finite system with periodic boundary conditions
the momenta are quantized as k = 2πn/L, then one would
infer that, for a certain weight, p1 ∼ δλ2L2ζ . This, however,
is not the correct scaling, as we did not include the scaling
of the matrix element. To find the exact scaling we can
reason as follows. Define the functions M(En) := |〈0|V |n〉|2,
and p(En) := pn. With the help of the density of states
ρ(E) = trδ(E − H ), one can write the fidelity susceptibility
χ as

χ =
∑
m�=0

|〈m|V |0〉|2
(Em − E0)2 =

∫ Emax

E1

M(E)

(E − E0)2
ρ(E)dE. (2)

We are interested in the scaling properties of M(E) after a
rescaling of the energy. At criticality it is natural to assume that
M(E) is a homogeneous function at the lower edge: M(E) ∼
(E − E0)α . Instead, the product ρ(E)dE is invariant under
rescaling of the energy. The scaling of the fidelity susceptibility
is known [12]: χ ∼ L2(d+ζ−�V ) ∼ E−2(d+ζ−�V )/ζ , so from
χ ∼ Eα−2, we obtain α = 2(�V − d)/ζ . Using the fact that,
for the operator driving the transition �V = d + ζ − 1/ν [13],
we obtain

p(E) ∼ δλ2E−2/(ζν). (3)

In this equation the energy is measured from the ground state,
so that, being the system critical, E can be arbitrarily close to
zero in the large size limit. The prediction, Eq. (3), agrees with
an explicit calculation of the quantum Ising model (p(ω) =
2c(ω) in [6]).

As a by-product of this analysis we obtain 〈0|V |k〉 ∼
Ld−�V = L−ζ+(1/ν). Note that here V is the extensive per-
turbation. If V = ∑

x V (x), for the intensive component we
get

〈0|V (x)|k〉 ∼ L−�V = L−ζ−d+(1/ν). (4)

Equation (4) is in agreement with the analysis in
Refs. [14–16] performed on the sine-Gordon model. In that
case d = ζ = 1 and one gets 〈0| cos[βφ(x)]|k〉 ∼ L−2+(1/ν).

In fact formula (12) in Ref. [16] can be written as
〈0| cos(βφ(x))|k〉 ∼ L−K , where K = 2 − (1/ν) is the scaling
dimension of the cosine term.

The content of Eq. (3) is the following. For a relevant
perturbation (d + ζ > �V ) of a critical point some spectral
weights pn tend to be large. At finite size, the lowest
modes have energy En = v(2πn/L)ζ , so that pn ∼ δλ2L2/ν .
In practice, since in the region of validity of perturbation
theory, p0 is already “large,” the sum rule

∑
n pn = 1

constrains to have only very few pn appreciably different
from zero. We expect this scenario to be more pronounced
for strongly relevant perturbations, in other words, when the
exponent 2/ν is large. When this is the case, the sum rule
can be saturated by taking a very small number of terms
nmax: 1 = ∑

n pn ≈ ∑nmax−1
n=0 pn. In our numerical simulations

(see the following) we have verified that, for a case with ν = 1,

the sum rule is already saturated by taking as little as three
terms, that is, nmax = 3. Moreover, most of the weight is split
between p0 and p1, while p2 is already orders of magnitude
smaller.

The same considerations can clearly be drawn for the am-
plitudes cn = 〈n|ψ0〉 = δλ〈n|V |0〉/(E0 − En) + O(δλ2) for
n > 0, for which pn = |cn|2. Defining the function c(En) = cn

with the same reasoning as used previously, one sees that, for
E → 0, c(E) ∼ δλE−1/(ζν). Alternatively, for some low-lying
excitations with quasimomentum k, ck = 〈k|ψ0〉 ∼ δλL1/ν .
Since c(E) is a rapidly decreasing function, and because of
the sum rule for the cn, one obtains a good approximation for
the time-evolved wave function by just resorting to very few,
nmax, amplitudes: |ψ(t)〉 ≈ ∑nmax−1

n=0 cne
−itEn |n〉.

III. EQUILIBRIUM DISTRIBUTION FOR
SMALL QUENCHES

Let us now illustrate the consequences of these findings
on the equilibration. Consider the time evolution of a generic
observable 〈O(t)〉. We also give results for the LE, as it is
attracting an increasing amount of attention [17–23]. The
Loschmidt echo is defined as L(t) = |〈ψ0|e−itH2 |ψ0〉|2. Note
that, as pointed out in [6], the LE can be written as the
expectation value of a particular observable 〈OL(t)〉, with OL
given by OL = |ψ0〉〈ψ0|. Expanding L(t) and 〈O(t)〉 in the
eigenbasis of H2, we obtain

L(t) = L +
∑
m>n

2pnpm cos[t(En − Em)], (5)

O(t) = O +
∑
n�=m

〈n|O|m〉cmcne
−it(Em−En)

= O +
∑
n>m

2〈n|O|m〉cmcn cos[t(Em − En)], (6)

where in the last line we assumed that both the observables
and the wave functions are real, as happens in most cases. As
we have seen, for a small quench around criticality both cn

and pn will be rapidly decreasing after their maximal value (in
modulus), and a good approximation to Eqs. (5) and (6) can be
obtained by retaining only a few terms. We have observed that
the following minimal prescription retaining only the three
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FIG. 1. (Color online) Probability distributions for a small
quench around a critical point. P (x) = δ(x − L(t)) and P (m) =
δ(m − 〈σ z

1 (t)〉) refer to the Loschmidt echo (left) and magnetiza-
tion (right), respectively. The thick lines were obtained using the
prediction of Eq. (7), with only the three largest weights. Note the
large spread of the distributions compared with their total support:
P (x) ∈ [0, 1] and P (m) ∈ [−1, 1]. Parameters L = 16, κ1 = κ2 =
0.4, h1 = 0.218, and δh = h2 − h1 = 0.04 are close to criticality
(see [24]). Data were obtained by Lanczos diagonalization of Eq. (8),
keeping as many lowest-energy vectors as necessary for the sum rule∑nmax−1

n=0 pn 
 1 to be satisfied within the prescribed accuracy.

largest components works fairly well:

F (t) = F + A cos(ωAt) + B cos(ωBt). (7)

For instance, A = 2p0p1 and B = 2p0p2 for the LE, while
A = 2O0,1c0c and B = 2O0,2c0c2 for a more generic ob-
servable O. The distribution function related to the time
signal, Eq. (7), P (f ) = δ(f − F (t)), has been computed
exactly in Ref. [6]. P (f ) is a symmetric function around
the mean F supported in [F − ||A| + |B||, F + ||A| +
|B||], with logarithmic divergences at f = F ± ||A| − |B||
(see Fig. 1).

This scenario can be summarized as follows: For a
small quench around a critical point, generic observables
equilibrate only very poorly. The distribution function for
a generic observable is a double-peaked distribution with a
relatively large mean, a behavior completely different from the
Gaussian one.

To complete the analysis let us now discuss the case of
a small quench in a regular point of the phase diagram. At
regular points there are no gapless excitations and the weights
are bounded by p(E) � M(E)/�2, where � is the smallest
gap. Since the theory is not scale invariant, M(E) will not be
a homogeneous function and, in particular, will not display
any singularity. The picture, then, is the following: In the
perturbative regime (δλ2Ld <∼ 1) we still have a “large” lowest
weight, but besides p0, no other pn dominates, and the sum
rule

∑
n pn = 1 is saturated only recurring to a relatively large

bunch of pn values.
In general, predicting the precise behavior of observables

in this case will be difficult, as one needs to have knowledge
of many different weights in Eqs. (5) and (6). However, we
can give a simple argument to expect a Gaussian behavior
for the generic case. As we have argued, the sum in
Eq. (6) now contains many terms. If the energy differences
En − Em are rationally independent, along the time evolution,
each variable Xn,m := 2〈n|O|m〉cmcn will span uniformly the
interval [−2|〈n|O|m〉cmcn|, 2|〈n|O|m〉cmcn|]. As long as the
variables Xn,m can be considered independent, O(t) − O can
be thought of as a sum of independent random variables. Since,
as we have seen, the sum is made over many variables, the

central limit theorem applies and the resulting distribution
will be Gaussian. This argument can fail when the variables
cannot be taken as independent. This can happen, for instance,
when a certain observable is pushed toward its maximum
or minimal value by the action of some field. Consider, for
example, the case of a transverse magnetization σ z

j in the
presence of a high field −h

∑
i σ

z
i . For increasing h the mean

of 〈σ z
j (t)〉 will be pushed toward 1. Since 〈σ z

j (t)〉 is supported
in [−1, 1], the corresponding distribution can cease to be
Gaussian as its mean is pushed against the (upper) border
of its support. In this case the distribution function will look
like a “squeezed” Gaussian. A similar effect was observed in
Ref. [6] to take place in the LE when the system size became
the largest scale of the system. In any case, however, if the
variables cannot be considered as independent, any possible
distribution function (and not only a squeezed Gaussian)
can arise.

IV. NUMERICAL TEST

We now check our predictions on the hand of a noninte-
grable model. As a test model we chose to use the so-called
TAM Hamiltonian (transverse axial next-nearest-neighbor
Ising model). The Hamiltonian is

H = −
L∑

i=1

(
σx

i σ x
i+1 − κσ x

i σ x
i+2 + hσ z

i

)
, (8)

and periodic boundary conditions are used (σx
L+i = σx

i ). A
positive κ frustrates the order in the σx direction. The
reason for our choice is, at least, twofold. (i) The TAM is a
nonintegrable generalization of the one-dimensional quantum
Ising model for which results are already available [6]. (ii) The
model, Eq. (8), has only a discreteZ2 symmetry (Pz = ∏

i σ
z
i );

consequently, the ground state lives in a large dGS = 2L−1

dimensional space. In practice, dGS is the effective Hilbert
space dimension, and we would like it to be as large as possible.
For instance, after a quench the purity of the equilibrium state
is bounded by tr(ρ2) � d−1

GS . This is to be contrasted with other
models used in the literature with larger symmetry groups [i.e.,
SU(2)], for which the dimension of the block containing the
ground state is still exponential in L but considerably reduced
with respect to that of the full Hilbert space 2L.

The model, Eq. (8), displays four phases (see, e.g.,
Refs. [24–27], and references therein): ferromagnetic, + +
++; antiphase, + + −−; paramagnetic; and a floating phase
with algebraically decaying spin correlations. In particular, for
small frustration κ � 1

2 , upon increasing the external field h

there is a transition from ferromagnetic to paramagnetic. This
transition is believed to fall in the Ising universality class, and
so the critical theory is described by a conformal field theory
with central charge c = 1

2 and d = ζ = ν = 1. We performed
our numerical simulation for the critical quench on this critical
line.

We illustrate our findings for two particular yet physically
well motivated observables: the LE, L(t) = |〈ψ0|e−itH2 |ψ0〉|2,
and the transverse magnetization m(t) = 〈ψ0(t)|σ z

i |ψ0(t)〉.
Since d = ζ = ν = 1, according to Eq. (3), we expect a

strong divergence at low energy: p(E) ∼ E−2. Consequently
we expect very few pn, n > 0, to have non-negligible weight
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FIG. 2. (Color online) Probability distributions for a small
quench around a regular point. P (x) = δ(x − L(t)) and P (m) =
δ(m − 〈σ z

1 (t)〉) refer to the Loschmidt echo (left) and magnetization
(right), respectively. The thick lines are Gaussian, with the same
mean and standard deviation. The quench was performed in the
paramagnetic phase; the parameters are L = 12, κ1 = κ2 = 0.3, h1 =
1.4, and δh = 0.04. Note the very small spread of the distributions.
Data were obtained by full diagonalization of the Hamiltonian,
Eq. (8). Histograms were obtained by sampling 40 000 random times
in an interval t ∈ [0, T ] with T = 16 000.

and, so, Eq. (7) to be a valid approximation. Indeed the results
based on numerical diagonalization compare well with the
prediction based on Eq. (7) (Fig. 1). Note the very large
spread of the distributions compared to their total support:
“poor equilibration.”

For comparison we performed a similar numerical sim-
ulation for a small quench in a regular point of the phase
diagram. As expected the resulting distribution functions are
approximately Gaussian (Fig. 2). Note the very small variances
of the distributions already for a relatively short size: “good
equilibration.”

V. CONCLUSIONS

In this paper we have investigated the detailed structure
of equilibration after a small quench; that is, the system is
initialized in the ground state of a given Hamiltonian H1

and then let to evolve with a slightly perturbed Hamiltonian,
H2 = H1 + δλV . In the limit δλ → 0 equilibration is trivial
in that, for all observables, P (o) = δ(o − 〈O(t)〉)t = δ(o −
〈O〉). However, this limit is approached very differently
depending on whether or not the Hamiltonian H1 is critical.
For quenches around a regular point of the phase diagram the
expected distribution for generic observables is a Gaussian
one. Equilibration arises in the most standard fashion. Instead,
for small quenches around a critical point the situation
is radically different. The distribution function for generic
observables P (o) tends to a universal double-peaked function
for relevant perturbations.

The key step in obtaining these results is to characterize the
overlaps cn = 〈n|ψ0〉 between the initial state |ψ0〉 and the
quenched Hamiltonian eigenstates |n〉. We have shown that, at
criticality, the function c(En) = cn (where En is the eigenen-
ergy) decays very rapidly, c(E) ∼ E−1/(ζν), and this in turn
generically implies the observed double-peaked distributions.
The analytical predictions have been checked numerically on
the hand of a nonintegrable extension of the quantum Ising
model.
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