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Undecidability in tensor network states
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Recent work has examined how undecidable problems can arise in quantum-information science. We augment
this by introducing three undecidable problems stated in terms of tensor networks. These relate to ideas of
Penrose about the physicality of a spin network representing a physical process, closed timelike curves, and
Boolean relation theory. Seemingly slight modifications of the constraints on the topology or the tensor families
generating the networks lead to problems that transition from decidable to undecidable to even always satisfiable.
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As the limitations of computers are ultimately governed
by the laws of physics, and as physical process can in
turn be viewed as computations, it is becoming increasingly
important to understand how to bridge computer science and
physics. In this setting, quantum mechanics can be thought
of as a generalization of classical computation. Most work
has focused on developing quantum-complexity theory and
algorithms governed by quantum theory. Building on these
successes, increasingly subtle ideas in computer science are
finding their way into quantum physics. An emerging theme
in this regard is decidability in quantum information [1–3],
wherein some undecidable problems in quantum-information
theory were discovered.

A tensor network state is a quantum state represented by
a tensor contraction network [4]; see [5] for a review. These
networks constitute a graphical representation which can be
thought of as quantum circuits augmented with preparations
and postselection [6]. We augment recent decidability work
[1,3] with an emphasis on finding additional problems natu-
rally phrased in terms of tensor network states. We address
three questions:

Question 1. Is every tensor network built from a library
F of n at most d-qubit quantum gates, chained together and
allowing one postselection per gate, physical?

For large enough n and d, this question is undecidable.
Theorems 1 and 2 offer alternative formulations of this result,
while Theorem 4 directly addresses Question 1. Suppose one
writes down a tensor network using some fixed library of
primitive operations, each constructed from some combination
of unitary gates, state preparations, and postselected measure-
ments. It may be that the resulting network is physically
impossible. That is, although each individual operation in
the network would be allowed in certain circumstances, their
combination would be impossible.

One way to prove this is by considering bell states and
postselected bell costates. We can then form postselected
closed timelike curves (P-CTC) [7]. Thus we can obtain a
zero tensor by inadvertently creating a grandfather paradox
[see the elementary example of a grandfather-type paradox in
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Fig. 1(a)]. We show that determining whether or not we can
do so is undecidable.

Theorem 1. Determining whether we can construct a tensor
network which contains a hidden-grandfather-paradox type
contradiction is undecidable.

Note that the question addressed is not whether exactly this
loop exists, but whether there is some contradiction which,
like the grandfather paradox, results in a tensor network
with value zero, and hence a situation which the theory
predicts is physically impossible. In general such paradoxes or
contradictions will be an intricate chain of events too complex
to follow by hand. The grandfather paradox provides a clear
example of such a contradiction where the contradiction is
easy to see.

The rank of a tensor is the least r such that it can be
expressed as a sum of r rank-one (product) tensors. Hastad
showed that given a tensor T described by a table of numbers,
the associated tensor rank decision problem “rank(T ) � r?”
is NP-hard [8]; in fact most tensor problems are NP-hard [9].
Theorem 4 implies that given a library F of tensors, the
question of whether we can construct a tensor network state �

on n qubits such that rank(�) � r is undecidable. Hence,
Theorem 2. The constructibility of rank-bounded tensors is

undecidable.
To examine carefully the boundary between decidability

and undecidability, we consider the subclass of Boolean
tensor network states. These give insight into the general
situation as the image of the support map. We address two
questions:

Question 2. Given a finite library F of tensors, can a given
Boolean tensor network state be built from F?

Question 3. Given a finite library F of tensors including
swap and fanout, can a given Boolean tensor network state be
constructed from F?

When swap and fanout are not included (as in Question 2),
the problem is undecidable. In contrast to this, and to illustrate
the subtlety of the issue, Corollary 2 explains how including
two specific tensors in F means that a quadratic algorithm
exists to solve Question 3.

This work is organized as follows. In Sec. I we restate a
not-well-known early conjecture by Penrose relating to the
physicality of a tensor network representation of a quantum
process. This leads to a discussion of tensor networks with

030301-11050-2947/2012/86(3)/030301(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.030301


RAPID COMMUNICATIONS

JASON MORTON AND JACOB BIAMONTE PHYSICAL REVIEW A 86, 030301(R) (2012)

•
σx

•

•

•
M

(a) (b) (c)

1

i σ2
i

=

U

•

Ψ

V

FIG. 1. (a), (b) Closed timelike curves. Grandfather paradox
(a) and unproved theorem paradox (b) tensor networks from [7],
with value 0 (left) and (1/

√
2)(|00〉 + |11〉) (right). The problem

of determining whether a tensor network can be constructed from
a set of generators such that it contains a grandfather-paradox-type
contradiction (is the zero tensor) is undecidable. The filled dot denotes
a copy tensor; in the qubit case, the copy tensor is CNOT ◦(〈0| ⊗ id). (c)
Quantum singular-value decomposition to implement an n×n integer
matrix up to global rescaling. The wire ending in the measurement �

has n states and the measurement is |�〉 = (
∑

i σ
2
i )−1

∑
i σi |i〉 where

σi are the singular values of M .

postselected outputs in Sec. II. Interestingly, many of the
results hold when restricted to the class of Boolean quantum
states. In Sec. III we study this class, first showing that
many problems in this class are naturally decidable, including
connecting the satisfiability problem with the physicality of a
quantum state. Seemingly slight modifications result in a host
of undecidable problems related to Boolean tensor network
states.

I. TENSOR NETWORKS AND THE GRANDFATHER
PARADOX

A grandfather-type paradox can result from loops in a
tensor network, enabling contradictions. The tensor network
formalism predicts the same result for the grandfather paradox
and unproved theorem paradox tensor networks as was
obtained mathematically and experimentally in [7], rather than
the result that would accord with Deutsch’s interpretation of
the grandfather paradox network in terms of a mixed-state
fixed point ρ = (|0〉〈0| + |1〉〈1|)/2 [10]. Thus [7] provides
experimental evidence for the tensor network formalism built
from unitary operators, preparations (e.g., into maximally
entangled states), and postselection—in particular, that a
tensor network is a zero tensor if and only if it is forbidden
by physical law. The following was argued by Penrose
in 1967.

Theorem 3 (Penrose, 1967 [11]). The norm of a spin network
vanishes if and only if the physical situation it represents is
forbidden by the rules of quantum mechanics.

Example 1 (examples of Penrose’s theorem). Consider
a Bell state �+ = |00〉 + |11〉. The amplitude of the first
party measuring |0〉 followed by the second party measuring
|1〉 is zero. This vanishing tensor network contraction is
given by 〈01,�+〉. For a second example, consider the norm
of a network of connected tensors thought to represent a
valid state |ψ〉. If the norm found from contracting the
state with a conjugated copy of itself 〈ψ,ψ〉 vanishes, the
network necessarily represents a nonphysical quantum state,
by Penrose’s theorem. We give examples below.

II. PHYSICALITY OF A TENSOR NETWORK WITH
POSTSELECTION

First we consider questions of measurement occurrence
(as in [1]). Suppose a candidate state is described as a tensor
network, in terms of locally physical operations. It is natural to
consider whether such a candidate state is physical. A library
of tensors can be composed by contraction to form a class. To
prove that the physicality question is undecidable for a given
class of tensor networks, we encode a known undecidable
problem ([12] surveys these). The undecidable question then
maps to the constructibility of a network with vanishing norm
(evaluated by contraction with a copy of itself).

Of course, the word problem for a finite subgroup of the
group of unitary n × n matrices is decidable by multiplying
out the words. The matrix mortality problem is also straight-
forward. Consider the question of whether there exists a
nonphysical (zero-norm) circuit built by chaining single-qutrit
gates together with an initial state and a measurement. This is
shown to be undecidable in [2] by directly embedding Post’s
correspondence problem.

Remark 1 (the word problem for linear groups is decidable).
Consider a group given as a (possibly infinite) list of generators
and relations. The word problem for groups asks whether two
words in the generators represent the same group element.
Even if we restrict to finitely presented (but not finite) groups,
this problem is undecidable. Thus one might hope that a
faithful unitary representation would lead to an undecidable
word problem for quantum circuits. However, not all finitely
presented groups (or even residually finite groups) have a
faithful representation in GL(n,K) for some n and field K.
Those that do are called linear, and have solvable word
problems: Given words σ , τ one can simply multiply out the
matrices and check whether στ−1 is the identity. Alternatively,
given a tensor with an input and output wire, one could
bend one of the wires to form a bell state or costate.
Checking whether the corresponding tensor network state
is the generalized bell state is decidable. In fact, the word
problem for linear groups in characteristic zero is solvable in
log space [13]. See [14] for background on such complexity
classes.

This yields the following observation:
Observation 1. The word problem for quantum circuits built

only from unitary gates (no measurements or comeasurements)
is solvable in log space and the mortality problem is trivial;
i.e., all such circuits are physical.

In contrast, in Theorem 4 we will show that if measurement
and postselection is included, the physicality problem becomes
undecidable. First we give a simple construction that will
be needed in the proof of undecidability. Let ‖M‖F be the
Frobenius norm.

Lemma 1. Let M be an n × n integer matrix. Then ‖M‖−2
F M

can be implemented using m = �log2 n	-qubit unitary gates,

m CNOT (=controlled-NOT) gates, ( m
2 ) SWAP gates, and one

m-qubit postselection operation.
The CNOT and SWAP gates are used to create a generalized

copy tensor.
Proof. Given an integer matrix M , write its singular-value

decomposition M = U�V 
; we can take U,V unitary (in
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fact real orthonormal) and implement � by a copy tensor and
postselection � as in Fig. 1(c). �

For example, a two-qubit copy tensor used as a fanout can
be implemented as (id⊗ SWAP ⊗id) ◦ {[CNOT ◦(〈0|| ⊗ id)]⊗2}.
Given a 3×3 integer matrix M , encode it as the two-qubit
(nonunitary) operator M ′ as follows:

M =
⎛
⎝

p 0 0
0 r 0
q s 1

⎞
⎠ M ′ =

|00〉
|01〉
|10〉
|11〉

〈00| 〈01| 〈10| 〈11|⎛
⎜⎝

p 0 0 0
0 r 0 0
q s 1 0
0 0 0 1

⎞
⎟⎠ .

It is sufficient for undecidability [15] to consider matrices of
the form M , p,r > 0, q,s � 0 together with the matrix

A =
⎛
⎝

1 0 1
−1 0 −1
0 0 0

⎞
⎠, A′ =

〈00|
〈01|
〈10|
〈11|

〈00| 〈01| 〈10| 〈11|⎛
⎜⎝

1 0 1 0
−1 0 −1 0
0 0 0 0
0 0 0 1

⎞
⎟⎠ .

We have the singular-value decomposition A′ = U�V 
. So
the postselection implementing � will be given by |�A〉 =
1
5 (2|00〉 + |01〉).

Now we can establish the undecidability of Question 1 for
large enough n and d by reducing to the matrix mortality
problem.

Theorem 4. When n � 8 and d � 2, or n = 2, d � 5,
Question 1 is undecidable.

Proof. Question 1 asks whether, given a set of
(postselection-including) operators M1,M2, . . . ,Mn, there is
a finite word such that Mi1Mi2 · · · Mik = 0. The vanishing of
the morphism defined by the contraction corresponding to the
word means the sequence is nonphysical.

By Lemma 1, we may assume our operators Mi are integer
matrices. Then applying results on the integer matrix mortality
problem gives undecidability for our problem. In [15], it
was established that eight 3 × 3 integer matrices sufficed for
undecidability, and we show above how to embed this into
two-qubit operators. In [16] it was shown that two 24 × 24
integer matrices also suffice, and these can be embedded in
five-qubit operators, which gives the second part of the result.�

We have so far been considering decidability in tensors
without restriction on the components. It turns out that many
decidability results can be obtained when considering the
subclass of Boolean tensor networks. These also afford an
illuminating connection to solving satisfiability instances, by
tensor network contraction.

III. BOOLEAN TENSOR NETWORK STATES

A quantum state is Boolean if and only if it can be written
in a local basis with amplitude coefficients taking only values
0 or 1. We relate such states to Boolean functions, allowing
for tools from algebra to be applied to their analysis.

Remark 2 (notation). Suppose x ∈ {0,1}n denotes an n-long
Boolean bit string, and use |x〉 as an index for a basis state. If
f : {0,1}n → {0,1} then |f (x)〉 also indexes a basis state.

Let f : {0,1}n → {0,1} be any Boolean function. Then
ψB = ∑

x |x〉|f (x)〉 is a representative in the class of Boolean
states. Hence every Boolean function gives rise to a quantum

state. A Boolean relation R of arity n is a subset of {0,1}n
(for example, an OR clause in 3-SAT can be thought of as a
relation OR ⊂ {0,1}3 as OR = {0,1}3 \ {111}). Every quantum
state written in a local basis with amplitude coefficients taking
values in {0,1} gives rise to a Boolean relation.

Theorem 5 (Boolean tensor network states). A tensor
network representing a Boolean quantum state is determined
from the classical network description of the corresponding
relation.

Theorem 5 was given in [17], where the quantum tensor
networks are found by letting each classical gate act on a linear
space and changing the composition of functions to contraction
of tensors. Raising or lowering an index transforms kets to bras
or vice versa, given a basis.

Example 2 (AND-tensors). As an example of a Boolean
tensor, consider the AND-tensor defined as ANDi

jk = |00〉〈0| +
|01〉〈0| + |10〉〈0| + |11〉〈1|. We depict the contraction of the
output of the AND-tensor with |1〉 and |0〉 as

In (a) the contraction results in the product state |11〉 and in
(b) the contraction yields |00〉 + |01〉 + |10〉.

A. Satisfiability in Boolean tensor network states

Theorem 6 (counting 3-SAT solutions). Let f be given
to represent a 3-SAT instance. Then the standard two-norm
length squared can be made to give the number of satisfying
assignments of the instance.

Proof. The quantum state takes the form ψf =∑
x |x〉〈f (x),1〉 = ∑

x f (x)|x〉. We calculate the inner prod-
uct of this state with itself ||ψ ||2 = ∑

xy f (x)f (y)〈x,y〉 =∑
x f (x) which gives exactly the number of satisfying inputs.

This follows since f (x)f (y) = δxy. We note that for Boolean
states, the square of the two norm equals the one norm. �

Remark 3 (counting 3-SAT solutions). Solving the counting
problem (6) is known to be #P-hard.

Corollary 1 (solving 3-SAT instances). The condition
||ψf || > 0 implies that the 3-SAT instance corresponding
to f has a satisfying assignment, which corresponds to an
NP-complete decision problem.

Remark 4 (graphical depiction). Below (a) gives a network
realization of the function and determining whether the
network in (b) contracts to a value greater than zero solves
a 3-SAT instance.

As we have considered simple restrictions on problems to
transform a generally undecidable problem into a decidable
one, we can also place suitable restrictions on satisfiability
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problems such that they result in a class of only satisfiable
instances.
Suppose a state is defined by a tree tensor network [5,18] such
that the support of the self-contraction of tensor T on each
node results in the identity map [i.e., Supp(T T †) = 1]. Then
the CSP defined by that state is satisfiable.

B. Decidability in Boolean tensor network states

Now consider the implementability question: Given a
Boolean tensor f , is there some wiring of a collection F of
Boolean tensors that produces it? This is a word problem for
planar operads, and such problems are in general undecidable.

Theorem 7. Question 2 is in general undecidable.
Proof. We rely on the proof of undecidability of Question

2 for Boolean predicates by Cook and Bruck [19]. As long
as we consider only Boolean predicates in our tensor network
and do not introduce swap or fanout (copy tensor), the result
applies directly here. �

Represent a function x : {1, . . . ,m}→R by a matrix with
entries xi

j ∈{0,1}, i =1, . . . ,m, j =1, . . . ,n. Given a Boolean
function f of arity m, a Boolean relation R of arity n, and
a function x : {1, . . . m} → R, denote by f (x) ∈ {0,1}n the
element (f (x1

1 , . . . ,x
m
1 ),f (x1

2 , . . . ,xm
2 ), . . . ,f (x1

n, . . . ,x
m
n )).

Definition 1. Let R be a Boolean relation of arity n and f a
Boolean function of arity m. We say that R is an invariant of f

if for any x : [m] → R, f (x)∈R, and that f is a polymorphism
of R if R is an invariant of f .

If S is a set of Boolean relations, let Pol(S) be the set of
polymorphisms of every relation R ∈ S. If B is a set of Boolean
functions, let Inv(B) be the set of invariants of every function
f ∈ B. By [20,21], the co-clone of S is Inv[Pol(S)] and the
clone of B is Pol[Inv(B)].

Theorem 8. Let F be a set of Boolean tensors containing
the copy tensor on three bits. Then the set of Boolean tensors
constructible from F is Inv[Pol(F)].

Proof. By [20,21], the co-clone of F is Inv[Pol(S)]. Thus
it remains to show that the notion of a co-clone of a set of
relations containing the all-equal relation, and constructible

tensor networks built from the corresponding Boolean tensors
is the same. A co-clone is closed under the Cartesian product,
identification of variables, and projection. In the category
of relations, the Cartesian product is the monoidal (tensor)
product. Closure under identification means connecting two
wires, from the same or different tensors. Closure under
projection is equivalent to connecting a plus state to a wire
of the relation; this can be implemented by identifying two
legs of a three-legged all-equal relation. �

Corollary 2. There is a quadratic algorithm for Question 3.
Proof. The set of Boolean predicates implementable by

wiring predicates in F , assuming swap and fanout, is the co-
clone generated by F , Pol[Inv(F)]. There exists a quadratic
algorithm determining whether a given Boolean relation r is
in the co-clone generated by a finite set of relations [22]. �

The qubit case is quite special. The equivalent im-
plementability problem (for qudits) with k > 2 states is
co-NEXPTIME-complete [23]. This further illustrates how
transitions among satisfiable, polynomial-time, NP- and #P-
complete, co-NEXPTIME-complete, and undecidable prob-
lems can be caused by seemingly small changes in the allowed
constructions.

IV. CONCLUSION

The physical significance of decidability has been explored
in recent work, and its relevance to quantum-information
science is a topic of current discussion. We added to this
discussion by focusing on decidability questions as they relate
to tensor network states. We have tried to focus here on
the subtle differences between an undecidable problem and
the slight variation of this problem to transform it into a
decidable one.
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