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ABSTRACT
Triangle-aware graph partitioning has proven to be a successful ap-
proach to finding communities in real-world data [8, 40, 51, 54]. But
how can we explain its empirical success? Triangle-aware graph
partitioning methods rely on the count of triangles an edge is con-
tained in, in contrast to the well-established measure of effective
resistance [12] that requires global information about the graph.

In this work we advance the understanding of triangle-based
graph partitioning in two ways. First, we introduce a novel triangle-
aware sparsification scheme. Our scheme provably produces a spec-
tral sparsifier with high probability [46, 47] on graphs that exhibit
strong triadic closure, a hallmark property of real-world networks.
Importantly, our sampling scheme is amenable to distributed com-
puting, since it relies simply on computing node degrees, and edge
triangle counts. Finally, we compare our methods to the Spielman-
Srivastava sparsification algorithm [46] on a wide variety of real-
world graphs, and we verify the applicability of our proposed spar-
sification scheme on real-world networks.

Secondly, we develop a data-driven approach towards under-
standing properties of real-world communities with respect to ef-
fective resistances, and triangle counts. Our empirical approach is
mainly based on the notion of ground-truth communities in datasets
made available originally by Yang and Leskovec [53]. We perform
a study of triangle-aware measures, and effective resistances on
edges within, and across communities, and we discover certain
interesting empirical findings. For example, we observe that the
Jaccard similarity of an edge used by Satuluri [40], and the closely
related Tectonic similarity measure introduced by Tsourakakis et
al. [51] provide consistently good signals of whether an edge is
contained within a community or not.
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1 INTRODUCTION
Community detection is the task of grouping the set of nodes of a
graph into clusters of densely connected nodes [42]. Given the di-
verse nature of real-world networks, the notion of what constitutes
a good cluster depends on the application context. In recent years,
motif-aware1 community detection has proven to be successful in
various applications. Motifs are basic interaction patterns that recur
throughout networks, much more often than in random networks
[34]. For instance, Satuluri, Parthasarathy, and Ruan designed an
elegant method for finding communities [40]. The core idea lies in
reweighing each edge 𝑒 = (𝑢, 𝑣) in the graph by the Jaccard simi-
larity coefficient, i.e., a function of the number of triangles 𝑡 (𝑢, 𝑣)
the edge is contained in, and the endpoints’ degrees 𝑑𝑒𝑔(𝑢), 𝑑𝑒𝑔(𝑣).
For the precise definition of the edge Jaccard similarity, see Ta-
ble 2. Benson et. al. in their Science paper introduce motif-aware
graph partitioning [8]. Tsourakakis et. al. introduce the notion of
motif-expanders, and give a foundational way of thinking about
motif-aware graph partitioning using appropriately defined ran-
dom walks. These random walks naturally give rise to motif-aware
notions of the graph conductance [51]. Furthermore, they provide
a similar spectral method to [8], and a heuristic called Tectonic
similar in spirit to the method of Satuluri et al. [40]. These works
show empirically that motif-aware graph partitioning solves effec-
tively various real-world problems ranging from bioinformatics to
social networks [8], and outperforms various popular community
detection methods on data where ground-truth communities are
available [51]. Since then, lots of other works have followed up
showing a variety of other applications, e.g., [16, 21, 29, 30, 35].

Despite the empirical success of motif-aware graph partitioning,
and certain theoretical advances, a deeper understanding of why it
succeeds on real-world network data evades us. It is natural to ask
how can it be that localized information about each edge can lead
us to reveal the global community structure of the graph? In this
work we focus on the triangle motif (i.e., a clique on three nodes)
that plays an important role in social networks. The latter tend to
be abundant in triangles, and this is considered a hallmark property
[43] due to the fact that friends of friends tend to become friends
themselves. To make a high-level analogy, the power of convex
optimization is based on the fact that from local information, we

1The authors will be using the term motif-aware as coined by Tsourakakis et al. [51]
instead of higher order as coined by Benson, Gleich and Leskovec [8]. The latter term
is also used in a different way within the same context of graph partitioning using
spectral methods, see [26].
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Figure 1: Effective Resistance of an edge, as a function of the
number of triangles it participates for the Facebook graph,
see Table 3

Triangles Eff. Res.
𝛿 = 0.25

Eff. Res.
𝛿 = 0.1

Amazon 0.7 136 891
DBLP 0.9 115 721
Flickr 12.5 366 2377
YouTube 2.3 349 2412

Table 1: Running time in seconds (secs) for triangle listing
and approximate effective resistance computation within
multiplicative (1 ± 𝛿) error using the fastest available im-
plementation, where 𝛿 = 0.25, 0.1 respectively on four real-
world networks, see Table 3.

can draw a safe conclusion about the global minimum of a convex
function [10], a property certainly not true for all functions.

In our setting, the well established measure of the effective resis-
tance2 requires global information about the graph, and captures
the importance of an edge with respect to connectivity. Specifically,
the effective resistance of an edge is equal to the probability that it
is included in a random spanning tree of the graph [12]. It is worth
remarking that the effective resistance plays a major role in spectral
graph theory and its applications [3, 46, 47], and graph clustering
[3]. Intuitively, an edge within a community has lower effective
resistance than an edge going across two communities.
• We prove (see Theorems 3.3, 3.4 for the precise statements)

that sampling each edge inversely to its overlap similarity or its
triangle count (see Table 2) produces a spectral sparsifier with high
probability. For the case of triangle-dense graphs (see Definition 3.1,
and [20] for a closely related random graph model) we prove that
it suffices to sample 𝑂 ( 𝑛 log𝑛

𝜖2 ) edges to obtain a (1 ± 𝜖)-sparsifier
(see Definition (1)).

The key intuition behind our sampling is illustrated in Figure 1;
this figure plots the effective resistance of each edge versus its
triangle count for the Facebook graph (see Table 3). The results
are representative of what we observe on real-world networks. For
the edges that participate in few triangles, we observe that the

2Formally, the effective conductance𝐶𝑒𝑓 𝑓 (𝑢, 𝑣) between two nodes𝑢, 𝑣 in a weighted
undirected graph 𝐺 (𝑉 , 𝐸, 𝑤), 𝑤 : 𝐸 → R+ is the value of the current from 𝑢 to 𝑣

when the potential difference between 𝑢 and 𝑣 is set to 1, and the edge weights
are interpreted as conductances. The effective resistance 𝑅𝑒𝑓 𝑓 (𝑢, 𝑣) is defined as
𝑅𝑒𝑓 𝑓 (𝑢, 𝑣) = 1

𝐶𝑒𝑓 𝑓 (𝑢,𝑣)
.

Symbol Definition Description

𝑁 (𝑢) {𝑣 : (𝑢, 𝑣) ∈ 𝐸 (𝐺) } Neighborhood
𝑑𝑒𝑔 (𝑢) |𝑁 (𝑢) | Node degree
𝑆 𝑆 ⊆ 𝑉 Node subset
𝑒 (𝑆) | { (𝑢, 𝑣) ∈ 𝐸 : 𝑢, 𝑣 ∈ 𝑆 } | # Induced edges
𝐷 𝑑𝑖𝑎𝑔 (𝑑𝑒𝑔) Degree matrix
𝐴 (standard) Adjacency matrix
𝐿 𝐷 −𝐴 Graph Laplacian
𝑅𝑒𝑓 𝑓 (𝑢, 𝑣) (𝑒𝑢 − 𝑒𝑣)𝑇 𝐿† (𝑒𝑢 − 𝑒𝑣) Effective Res.
𝑡 (𝑢, 𝑣) | {𝑧 : (𝑢, 𝑧), (𝑧, 𝑣) ∈ 𝐸 (𝐺) } | # Triangles

of edge 𝑒 = (𝑢, 𝑣)
𝑑𝑒 min(𝑑𝑒𝑔 (𝑢), 𝑑𝑒𝑔 (𝑣)) Min-degree

of edge 𝑒 = (𝑢, 𝑣)
𝑂𝐶 (𝑢, 𝑣) |𝑁 (𝑢)∩𝑁 (𝑣) |

min(𝑑𝑒𝑔 (𝑢),𝑑𝑒𝑔 (𝑣) ) Overlap sim.
𝐽 (𝑢, 𝑣) |𝑁 (𝑢)∩𝑁 (𝑣) |

|𝑁 (𝑢)∪𝑁 (𝑣) | =
𝑡 (𝑢,𝑣)

𝑑𝑒𝑔 (𝑢)+𝑑𝑒𝑔 (𝑣)−𝑡 (𝑢,𝑣) Jaccard sim.
𝑇𝑒𝑐𝑡 (𝑢, 𝑣) 𝑡 (𝑢,𝑣)

𝑑𝑒𝑔 (𝑢)+𝑑𝑒𝑔 (𝑣) Tectonic sim. [51]

𝑅𝑀𝑆𝐸 (𝜃 )
√∑𝑇

𝑡=1 (𝜃𝑡−𝜃𝑡 )2
𝑇

RMSE

Table 2: Notation.

effective resistance may range from low to large values. Therefore,
our sampling schemes sample edges with small triangle counts
with large probability, to make sure that edges that are critical for
connectivity are maintained. We sparsify more aggressively edges
with large triangle counts since they have low effective resistance.

Table 1 shows the runtimes in seconds for counting the number
of triangles each edge is contained in using a straight-forward
triangle listing algorithm, and the running time for computing the
effective resistance of each edge using the state-of-the-art Laplacian
solver [45]. While the seminal work of Spielman and Srivastava
outputs a (1 + 𝜖)-sparsifier of any graph𝐺 , having𝑂 ( 𝑛 log𝑛

𝜖2 ) edges
by sampling each edge proportionally to its effective resistance, we
see that our approach scales better to large-scale graphs.
•We complement our foundational contributions with a data-

driven approach for better understanding the power of local infor-
mation in real-world graphs. Our data-driven approach is inspired
by the work of Yang and Leskovec who introduced a benchmark of
graphs with ground-truth communities. Despite the fact that their
notion of ground-truth communities has received a fair amount of
criticism by the seminal work of Peel, Larremore, and Clauset [38],
this benchmark is the closest available to some acceptable notion
of ground-truth communities3. Furthermore, even for groups char-
acterized mostly by their meta-data, we find that certain but not all
triangle-aware measures can be helpful in uncovering them.

Our findings show that local information can be more than just
a good proxy of global connectivity measures such as the effec-
tive resistance. We find that in some datasets effective resistance
of edges spanning different communities are less on average than
the effective resistance of edges within communities. This finding
challenges the intuition that an edge crossing two communities
should always have higher effective resistance [3]. Furthermore,
we find that even if triangle counts can also be misleading in a
similar way to effective resistance (i.e., edges across communities

3These should be called labeled groups rather than ground-truth communities accord-
ing to the findings of [38].
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can participate on more triangles, than edges within), degree nor-
malized triangle counts are consistently good signals. The latter
empirical finding advances our understanding of Satuluri’s [40],
and Tsourakakis et al. [51] community detection methods.
•Weperform experiments on awide variety of real-world graphs.

Specifically, we compare our sparsification schemes against the
Spielman-Srivastava [46] sparsification with respect to the quality
of the produced sparsifier, and we observe that on real-world graphs
our approach produces faster high-quality spectral sparsifiers.

Finally, Table 2 introduces the notation we will use in the rest of
the paper.

2 RELATEDWORK

Community detection. Given an undirected graph 𝐺 (𝑉 , 𝐸), how
do we partition its vertex set into 𝑘 communities C = {𝐶1, . . . ,𝐶𝑘 }
[14, 23, 42]? Intuitively, a community is a set of nodes with more
and/or better intra- than inter-connections. An intuitive definition
of a community is based on internal edge density, namely it is a set of
nodes that induces lots of edges. This definition naturally drives the
development of dense subgraph discovery methods [17], including
the densest subgraph problem and other variations. Another intu-
itive definition of a community is based on howmany edges leave it
compared to the number of edges inside it. This intuition captures
the fact that a member of a community tends to connect more fre-
quently with members of the same community compared to outside
agents. We discuss briefly two important measures that capture
this intuition, modularity and conductance. Modularity is a popular
quality index for graph clustering. Specifically, for a given partition
C = {𝐶1, . . . ,𝐶𝑘 } of the vertex set𝑉 into 𝑘 clusters, the modularity
score 𝑄 (C) is defined as 𝑄 (C) = ∑𝑘

𝑖=1

(
𝑒 (𝐶𝑖 )
|𝐶𝑖 | − (

∑
𝑣∈𝐶𝑖

𝑑𝑒𝑔 (𝑣)
2𝑚 )2

)
[18], where𝑚 is the number of edges in the network. This measure
quantifies the difference between the number of edges induced by
each set of nodes 𝐶𝑖 compared to the expected number of induced
edges by 𝐶𝑖 in a random graph with the same degree distribution,
and sums the differences over all 𝑘 clusters. Optimizing modularity
over all possible partitions of 𝑉 into 𝑘 sets is a popular objective
[36], and also NP-hard [11].

The notion of conductance plays a major role in graph clus-
tering. The conductance 𝜙 (𝑆) of a set of nodes 𝑆 ⊆ 𝑉 is defined
as 𝜙 (𝑆) =

𝑒 (𝑆 :𝑆)
2𝑒 (𝑆)+𝑒 (𝑆 :𝑆) , where 𝑒 (𝑆 : 𝑆) is the number of edges

with one endpoint in 𝑆 and one endpoint in 𝑆 = 𝑉 \𝑆 , and 𝑒 (𝑆)
is the number of induced edges by 𝑆 . The graph conductance 𝜙𝐺
is defined as 𝜙𝐺 = min𝑆⊂𝑉 𝜙 (𝑆). A lot of work has focused on
developing approximation algorithms [5], but as noted in numer-
ous papers, spectral clustering [4] is considered to be the most
practical approach at the moment among methods that come with
solid theoretical guarantees. A wide variety of heuristics has been
also proposed. For instance, Louvain’s method is a near-linear time,
popular heuristic for modularity optimization [9].
The conductance 𝜙 (𝑆) of any set can be thought of as an escape
probability from 𝑆 of an appropriately defined standard random
walk, and 𝜙𝐺 is related to the rate of convergence to the stationary
distribution of a randomwalk [28].When𝜙𝐺 is large, then the graph
is well-connected, and vice versa, for a set 𝑆 to be a good community,
𝜙 (𝑆) has to be small [23]. Various variants of conductance have

been proposed, and have found numerous applications in social
networks’ analysis [19, 27].

Breaking the circular reasoning around community detec-
tion.AsAbrahao et al. eloquently state [2] “. . . an attempt to capture
community structure by maximizing a given objective function may
represent an un-realistic expectation”. An important line of work
in recent year is data-driven community detection, see [2, 27, 53].
These works play a major role in understanding and evaluating
measures and algorithms on meaningful communities. They aim
to understand what a community really is. Thus, they break the
“chicken-egg” problem: first define a “community” measure, and
then optimize it to find a community. Yang and Leskovec [53]
gathered 230 social, collaboration, and information networks with
explicit ground-truth, and studied various graph statistics. We use
some of these datasets in Section 4. In a subsequent work, Peel,
Larremore and Clauset [38] challenge the notion of ground-truth
communities. As they point out, by ground-truth, we usually refer
to a set of nodes sharing common metadata labels. However, some-
times these metadata are irrelevant to the network structure, that
community detection algorithms try to uncover. We experimen-
tally observe that, even in those cases, triangle aware measures can
provide a more accurate signal of whether two nodes belong to the
same class/community than global measures.

Motif-aware community detection.Motifs are building blocks
of complex networks [34]. Which motif is important for a complex
network depends on its nature [8]. Here, we focus on the triangle
motif that plays an important role in social networks [43].

Tsourakakis et al. defined the following random walk: when
at node 𝑢 the random walk chooses a neighbor 𝑣 ∈ 𝑁 (𝑢) with
probability proportional to 𝑡 (𝑢, 𝑣). Equivalently, when at node𝑢 the
random walker chooses a triangle that 𝑢 participates in uniformly
at random and then chooses an endpoint of that triangle, other
than 𝑢, uniformly at random. This random walk naturally defines
the notion of triangle conductance [51]. Benson et al. define the
triangle conductance as the ratio of the number of triangles (and
more generally of other motifs) cut by the partition by the minimum
of motif volumes [8]. These two notions of triangle conductance
differ by at most a constant, and hence are equivalent from an
approximation algorithms’ optimization perspective, but the two
approaches differ methodologically. Both works propose to reweigh
each edge 𝑒 by its triangle counts 𝑡𝑒 , and then perform spectral
clustering.

Two motif-aware heuristics based on triangle counts that work
well on detecting communities in real-world networks are the Tec-
tonic heuristic [51], and the method of Satuluri et al. that we refer
to as the SPR method [40]. These methods compute the Tectonic
and Jaccard similarity edge scores, and retain the edges with the
highest similarity scores. We describe these two similar methods
in pseudocode, see Algorithm 1. The connected components of the
sparsified graphs correlate well with ground-truth communities
across a variety of datasets, and they speed up graph clustering
algorithms without sacrificing quality as shown in [40, 51].

A key intuition that we formalize in this work is the following.
Roughly speaking, if we keep the edges that Algorithm 1 removes,
then we can obtain (under mild conditions) a spectral sparsifier. Fur-
thermore, our data-driven approach explains the empirical finding
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Algorithm 1 Tectonic [51] and the SPR method [40]
1: Input: Graph 𝐺 , fraction 𝑠%, threshold 𝜃
2: Output: Sparsified Graphs 𝐺𝑡𝑒𝑐𝑡𝑜𝑛𝑖𝑐 ,𝐺𝑆𝑃𝑅

3: 𝑉𝐺𝑡𝑒𝑐𝑡𝑜𝑛𝑖𝑐
, 𝐸𝐺𝑡𝑒𝑐𝑡𝑜𝑛𝑖𝑐

← 𝑉𝐺 , ∅
4: 𝑉𝐺𝑆𝑃𝑅

, 𝐸𝐺𝑆𝑃𝑅
← 𝑉𝐺 , ∅

5: for each edge 𝑒 = (𝑢, 𝑣) do
6: Calculate Tectonic similarity 𝑇𝑒𝑐𝑡𝑢𝑣 (Tectonic)
7: Calculate Jaccard similarity 𝐽𝑢𝑣 (SPR)
8: end for
9: Sort edges such that 𝐽𝑒1 ≥ . . . ≥ 𝐽𝑒𝑚 (SPR), and set 𝐸𝐺𝑆𝑃𝑅

to be
the top 𝑠% edges

10: 𝐸𝐺𝑡𝑒𝑐𝑡𝑜𝑛𝑖𝑐
← {(𝑢, 𝑣) ∈ 𝐸 : 𝑇𝑒𝑐𝑡𝑢𝑣 ≥ 𝜃 }

11: Return 𝐺𝑡𝑒𝑐𝑡𝑜𝑛𝑖𝑐 ,𝐺𝑆𝑃𝑅

of Tsourakakis et al. [51], namely that Tectonic performs better in
community detection, compared to the triangle spectral clustering
algorithm [8, 51].
Spectral sparsifiers. The notion of a spectral sparsifier was origi-
nally introduced by Spielman and Teng in their seminal work [48],
and generalized the notion of cut sparsifiers, that were originally
introduced by Karger [7, 24]. Given an undirected graph 𝐺 whose
Laplacian matrix representation is 𝐿𝐺 (see Table 2), and a parameter
𝜖 > 0, we say that a graph 𝐻 is a (1 + 𝜖)-spectral sparsifier of 𝐺 if
it satisfies the following property for all vectors 𝑥 :

(1 − 𝜖)𝑥𝑇 𝐿𝐺𝑥 ≤ 𝑥𝑇 𝐿𝐻𝑥 ≤ (1 + 𝜖)𝑥𝑇 𝐿𝐺𝑥 (1)
Spielman and Srivastava proved that sampling each edge 𝑒 pro-

portionally to its effective resistance 𝑅𝑒 𝑓 𝑓 (𝑒) (with replacement),
and reweighing it appropriately if it is kept in a sample of𝑂 ( 𝑛 log𝑛

𝜖2 )
edges results in a spectral sparsifier with constant probability. Later
Marcus, Spielman, and Srivastava proved constructively the exis-
tence of spectral sparsifiers with 𝑂 ( 𝑛

𝜖2 ) edges [32]. These algorith-
mic advances rely on theorems that have deep theoretical conse-
quences [33]. Spectral sparsifiers find applications in solving Lapla-
cian systems [? ], while can be also used to speed-up cut queries in
very large dense graphs.
Triangle dense subgraphs. It is a well-known fact that edge spar-
sity and high triangle density are properties observed across a wide
variety of graph datasets [43]. This phenomenon arises naturally
due to various biases/mechanisms (e.g. homophily), but also due
to recommender systems. For instance Facebook and other online
social networks perform triangle-based friend recommendation
[49, 50]. Recently Gupta et al. [20] proved interesting structural re-
sults for triangle dense graphs. From a graph theoretic perspective,
there exist various approaches to modeling triangle dense graphs.
For instance, Fox et al. define the notion of a 𝑐-closed graph, where
for every pair of vertices 𝑢, 𝑣 with at least 𝑐 common neighbors, 𝑢
and 𝑣 are adjacent [15]. Finally, it is worth remarking that counting
triangles is an algorithmic primitive with a rich set of exact and
approximation algorithms [13, 22, 37].
Theoretical preliminaries. To prove our key result, we apply
the following result from concentration of measure for random
matrices, see [52, Corollary 3]. The matrix norm is the operator
norm.

Theorem 2.1. Let 𝑋𝑘 ∈ R𝑑×𝑑 be independent random matrices
such that𝑋𝑘 ⪰ 0 and ∥𝑋𝑘 ∥ ≤ 𝑀 for all 1 ≤ 𝑘 ≤ 𝑛. Let 𝑆𝑛 =

∑𝑛
𝑘=1 𝑋𝑘

and 𝐸 =
∑𝑛
𝑘=1 ∥E [𝑋𝑘 ] ∥. Then for every 𝜖 ∈ (0, 1) we have

Pr [∥𝑆𝑛 − E [𝑆𝑛] ∥ > 𝜖𝐸] ≤ 𝑑 · 𝑒−
𝜖2𝐸
4𝑀 .

3 PROPOSED METHOD
Triangle-dense graphs. In the following we introduce the follow-
ing definition of a triangle-dense graph.

Definition 3.1 (Triangle-dense graph). We call a graph 𝐺 (𝑉 , 𝐸)
triangle-dense if and only if 𝑡𝑢𝑣 = Θ(min(𝑑𝑒𝑔(𝑢), 𝑑𝑒𝑔(𝑣))) for each
(𝑢, 𝑣) ∈ 𝐸 (𝐺).

Notice that always 𝑡𝑢𝑣 ≤ min(𝑑𝑒𝑔(𝑢), 𝑑𝑒𝑔(𝑣)). Definition 3.1 im-
plies that the number of triangles of an edge is asymptotically the
same as the minimum degree of its endpoints. Equivalently, this
implies that the ratio 𝑡𝑒

𝑑𝑒
is constant for all edges 𝑒 ∈ 𝐸 (𝐺). In Sec-

tion 4.3 (see Figure 3) we verify that it is reasonable to assume that
many real-world networks are approximately triangle-dense.

Our next lemma upper bounds the effective resistance of an edge
𝑒 as a function of the number of its triangles 𝑡𝑒 .

Lemma 3.2. The effective resistance 𝑅eff (𝑒) of any edge 𝑒 ∈ 𝐸 (𝐺)
satisfies the following inequality

𝑅eff (𝑒) ≤
2

𝑡 (𝑒) + 2
,

where 𝑡 (𝑒) is the number of triangles that contain edge 𝑒 .

Proof. Consider an edge 𝑒 = (𝑢, 𝑣). and let 𝑆𝑢𝑣 = 𝑁 (𝑢) ∩ 𝑁 (𝑣)
be their common neighbors. Clearly, |𝑆𝑢𝑣 | is equal to 𝑡 (𝑢, 𝑣), the
number of triangles that edge 𝑒 is contained in. Let’s define the
subgraph 𝐻𝑒 to be the subgraph of𝐺 with vertex set𝑉𝐻 = {𝑢, 𝑣} ∪
𝑆𝑢𝑣 and all the induced edges among them. We will also refer to
𝐻𝑒 as the book of triangles defined by edge 𝑒 . Observe that |𝑉𝐻 | =
2 + 𝑡 (𝑢, 𝑣), and |𝐸𝐻 | = 1 + 2 · 𝑡 (𝑢, 𝑣). Since 𝐻 is a subgraph of
𝐺 , 𝐿𝐻 ≼ 𝐿𝐺 and therefore in the (𝑡 (𝑢, 𝑣) + 1)-dimensional space
spanned by 𝐿𝐻 , 𝐿†𝐺 ≼ 𝐿

†
𝐻
4. Recall that the effective resistance

𝑅eff (𝑒) of the edge 𝑒 is equal to (𝑒𝑢 − 𝑒𝑣)𝑇 𝐿†𝐺 (𝑒𝑢 − 𝑒𝑣) where 𝑒𝑖 is
the 𝑖-th unit vector, 𝑖 = 1, . . . , 𝑛. Combining the above, we obtain
that

𝑅𝐺eff (𝑒) = (𝑒𝑢 −𝑒𝑣)
𝑇 𝐿
†
𝐺
(𝑒𝑢 −𝑒𝑣) ≤ (𝑒𝑢 −𝑒𝑣)𝑇 𝐿†𝐻 (𝑒𝑢 −𝑒𝑣) = 𝑅

𝐻
eff (𝑒) .

We compute the effective resistance of edge 𝑒 in its book of
triangles as follows. We have in parallel 𝑡 (𝑢, 𝑣) + 1 resistors. The
resistor corresponding to edge 𝑒 has resistance 1, whereas the rest
that correspond to (𝑢,𝑤), (𝑤, 𝑣) have resistance 2. The effective
conductance between the endpoints 𝑢, 𝑣 is equal to the sum of the
conductances in parallel, i.e., 𝐶𝐻

eff (𝑢, 𝑣) =
∑
𝑧∈𝑆𝑢𝑣

1
2 + 1 =

𝑡 (𝑢,𝑣)
2 + 1.

Therefore the effective resistance of edge 𝑒 in 𝐻 is equal to

𝑅𝐻eff (𝑒) =
1

𝐶𝐻
eff (𝑢, 𝑣)

=
2

𝑡 (𝑢, 𝑣) + 2
.

□

4where 𝐵 ≼ 𝐴 means that for any vector 𝑥 ≠ 0, 𝑥𝑇 (𝐴 − 𝐵)𝑥 ≥ 0
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Our sampling scheme is inspired by this inverse relationship
between the effective resistance of an edge and its triangle counts.
Specifically, we design two triangle-aware sampling schemes. Con-
sider the following sampling scheme.

𝑝𝑒 =
𝑞𝑒

𝑍
where 𝑞𝑒 =

𝑑𝑒

2 + 𝑡𝑒
, 𝑍 =

∑
𝑒

𝑑𝑒

2 + 𝑡𝑒
. (2)

Algorithm 2 Triangle-aware Spectral Sparsifiers

1: Input: Graph 𝐺 , 𝜖 ∈ (0, 1)
2: Output: Sparsifier 𝐺̃
3: for each edge 𝑒 = (𝑢, 𝑣) do
4: Compute 𝑞𝑢𝑣 according to Equation (2) ⊲ Second

Sparsification scheme uses Equation (3)
5: end for
6: 𝑍 ← ∑

𝑒∈𝐸 𝑞𝑒
7: 𝑝𝑢𝑣 ← 𝑞𝑢𝑣

𝑍
for each edge 𝑒 = (𝑢, 𝑣)

8: Sample𝑚′ edges from 𝐺 according to the multinomial distri-
bution {𝑝𝑒 }𝑒∈𝐸 as follows.

9: for each sampled edge 𝑒 do
10: if 𝑒 is sampled first time then
11: Add e to 𝐺̃ with weight (𝑚′𝑝𝑒 )−1

12: end if
13: if 𝑒 is re-sampled then
14: Increase the weight of edge 𝑒 in 𝐺̃ by (𝑚′𝑝𝑒 )−1

15: end if
16: end for
17: Return 𝐺̃

Our main theoretical result is stated as the next theorem, and
shows that Algorithm 2 can produce under certain mild conditions
a spectral sparsifier without computing explicitly effective resis-
tances.

Theorem 3.3. Let 𝐺 (𝑉 , 𝐸) be a connected, triangle-dense graph
of minimum degree 𝑐 , and let 𝐺̃ be the output of Algorithm 2 with
𝑚′ = Θ(𝑍 log𝑛

𝑐𝜖2 ) samples. Then, 𝐺̃ is a (1 + 𝜖) spectral sparsifier of𝐺
with high probability.

The main tool we use in our analysis is Theorem 2.1, that can
be seen as a Chernoff analog about the concentration of random
matrices.

Proof. We associate with each edge 𝑒 = (𝑖, 𝑗) aweighted version
of its edge-Laplacian 𝐿𝑒 , 𝑅𝑖 𝑗 = 1

𝑝𝑖 𝑗
𝐿𝑒 = 1

𝑝𝑖 𝑗
(𝑒𝑖−𝑒 𝑗 ) (𝑒𝑖−𝑒 𝑗 )𝑇 . Notice

that 𝑝𝑖 𝑗 > 0 according to equation 2. Let 𝑋 be the random matrix
that takes value 𝑅𝑖 𝑗 with probability 𝑝𝑖 𝑗 . Its expectation satisfies

E [𝑋 ] =
∑
𝑒

𝑝𝑒
1
𝑝𝑒
𝐿𝑒 =

∑
𝑒

𝐿𝑒 = 𝐿𝐺 .

Consider the average of𝑚′ samples as generated by Algorithm 2
𝐿
𝐺̃
= 1

𝑚′
∑𝑚′
𝑖=1 𝑋𝑖 . Clearly, E

[
𝐿
𝐺̃

]
= 𝐿𝐺 . We now show that using

𝑚′ samples results in strong concentration of 𝐿
𝐺̃
around its expec-

tation. We follow the key transformation of Spielman Srivastava
[46], see also [44, Section 17.4]. Let 𝐿+/2

𝐺
be the square root of the

pseudo-inverse of 𝐿𝐺 , and define Π = 𝐿
+/2
𝐺

𝐿𝐺𝐿
+/2
𝐺

. Notice that Π
is not the usual identity matrix, but this is only because 𝐿𝐺 has a
single eigenvalue equal to zero, and its null space is the all-ones
vector. Therefore Π is the identity matrix on the range of 𝐿𝐺 , and
its trace equals 𝑛 − 1. Therefore, we can rewrite the expectation of
𝐿
𝐺̃
as follows E

[
𝐿
+/2
𝐺

𝐿
𝐺̃
𝐿
+/2
𝐺

]
= Π.

Define for each sample 𝑖 = 1, . . . ,𝑚′ the random variable 𝑌𝑖 =
𝐿
+/2
𝐺

𝑋𝑖𝐿
+/2
𝐺

. Notice that E [𝑌𝑖 ] = Π, and its operator norm is upper
bounded by 2𝑍

𝑐 since

∥𝑌𝑖 ∥ ≤ max
(𝑖, 𝑗) ∈𝐸𝐺

1
𝑝𝑖 𝑗

(
𝐿
+/2
𝐺
(𝑒𝑖 − 𝑒 𝑗 )

) (
𝐿
+/2
𝐺
(𝑒𝑖 − 𝑒 𝑗 )

)𝑇
= max
(𝑖, 𝑗) ∈𝐸𝐺

𝑍 (𝑡𝑖 𝑗 + 2)
min(𝑑𝑒𝑔(𝑖), 𝑑𝑒𝑔( 𝑗)) (𝑒𝑖 − 𝑒 𝑗 )

𝑇 𝐿+𝐺 (𝑒𝑖 − 𝑒 𝑗 )︸                      ︷︷                      ︸
=𝑅𝑒𝑓 𝑓 (𝑖, 𝑗) ≤ 2

2+𝑡𝑖 𝑗

≤ 2𝑍
𝑐
.

We apply Theorem 2.1 by observing that 𝐿+/2
𝐺

𝐿
𝐺̃
𝐿
+/2
𝐺

= 1
𝑚′

∑𝑚′
𝑖=1 𝑌𝑖 ,

and we obtain

Pr

[




 1
𝑚′

𝑚′∑
𝑖=1

𝑌𝑖 − Π





 > 𝜖

]
≤ 𝑛 exp

(−𝜖2𝑐𝑚′

8𝑍

)
.

When𝑚′ ≥ 16𝑍 log𝑛
𝑐 we obtain a (1 + 𝜖) spectral sparsifier with

probability at least 1 − 1
𝑛 . □

Theorem 3.3 states that triangle density, combined with high
minimum degree yields a spectral sparsifier with high probability.
To see why 𝐺̃ has asymptotically less edges than 𝐺 notice that the
upper bound 2𝑍

𝑐 we obtain on the operator norm of each random
variable 𝑌𝑖 is asymptotically Θ(𝑚𝑐 ). When the minimum degree
is any (even slowly) growing function of 𝑛, i.e., 𝑐 = 𝜔 (𝑛) where
𝜔 (𝑛) → +∞, then we obtain a sparsifier with significantly fewer
edges. While our results are not optimal for generating spectral
sparsifiers (see [6, Theorems 3,4] for how the minimum degree con-
dition yields spectral sparsifiers for expanders), they are amenable
to implementation in a distributed framework.

Let’s consider also an example. The clique graph 𝐾𝑛 is a triangle-
dense graph, and 𝑐 = 𝑛 − 1. Furthermore, 𝑍 =

∑
𝑒∈( [𝑛]2 )

𝑛−1
𝑛−2+2 =

(𝑛−1)2
2 . According to the theorem, it suffices to sample𝑂 (𝑛 log𝑛/𝜖2)

edges. While this example is not surprising in the sense that our
sampling scheme becomes uniform sampling, our result states that
when these two conditions concur, then we can use simple triangle
counts to produce spectral sparsifiers.

Our second sampling scheme is inspired by Lemma 3.2. We
pretend that the upper bound is tight and instead of sampling pro-
portionally to the effective resistance as in the Spielman-Srivastava
scheme, we sample proportionally to the upper bound.

𝑝𝑒 =
𝑞𝑒

𝑍
where 𝑞𝑒 =

2
2 + 𝑡𝑒

, 𝑍 =
∑
𝑒

2
2 + 𝑡𝑒

. (3)

Using the same proof technique as in Theorem 3.3, we obtain
the following theorem.
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Theorem 3.4. Let𝐺 (𝑉 , 𝐸) be a connected, triangle-dense graph,
and let 𝐺̃ be the output of Algorithm 2 with𝑚′ = Θ( 𝑛 log𝑛

𝜖2 ) samples.
Then, 𝐺̃ is a (1 + 𝜖) spectral sparsifier of 𝐺 with high probability.

We omit the details as the proof follows precisely the proof of
Theorem 3.3, but we outline the main difference. The number of
samples needed is 𝑂 (𝑍 log𝑛

𝜖2 ). The normalizing constant 𝑍 is Θ(𝑛)
for triangle dense graphs. To see why, notice that there exists some
constant 𝑐 such that for any edge 𝑒 , 𝑡𝑒 ≥ 𝑐 min𝑑𝑒 .Therefore,

𝑍 =
∑
𝑒∈𝐸

2
2 + 𝑡𝑒

≤
∑
𝑒∈𝐸

2
2 + 𝑐𝑑𝑒

≤
∑

𝑒=(𝑢,𝑣) ∈𝐸

( 2
2 + 𝑐 · 𝑑𝑒𝑔(𝑢) +

2
2 + 𝑐 · 𝑑𝑒𝑔(𝑣)

)
=
∑
𝑢∈𝑉

2𝑑𝑒𝑔(𝑢)
2 + 𝑐 · 𝑑𝑒𝑔(𝑢) = Θ(𝑛).

For the last step of the inequality, we use the fact that each node𝑢
is incident to 𝑑𝑒𝑔(𝑢) edges, and each contributes a term 2

2+𝑐 ·𝑑𝑒𝑔 (𝑢) .

4 EXPERIMENTATION
4.1 Experimental setup
In our experiments, we use real-world datasets of undirected net-
works that are summarized in Table 3. For six of those (Amazon,
DBLP, YouTube, PPI, BlogCatalog and Flickr) we also have knowl-
edge of the ground-truth communities. The networks we use are
mainly social networks that observe strong triadic closure, which
was the motivation of our work. Extension to other types of net-
works (e.g. bipartites, where other motifs should be explored) is an
area for future research. If a network is disconnected, we only keep
its largest connected component. All experiments were performed
on a personal laptop with a 2.3GHz Dual-Core Intel i5 CPU and
16GB of memory. For smaller networks (less than 15,000 nodes)
we calculate exactly the effective resistance of the edges using the
formula from Table 2, and for larger networks we get a (1 ± 0.05)-
approximation. We choose not to focus on reporting running times,
since as Table 1 shows, our sparsification scheme using exact trian-
gle listing is significantly faster than the fastest available software
for approximate effective resistance computation.

Our code for the experiments is at: https://www.dropbox.com/s/
0p0ybkpx19jt3ii/codeKDDTriangleAware.zip?dl=0.

4.2 Communities, triangles, and effective
resistances

Our first task is to investigate the extent to which different mea-
sures provide a strong signal of whether an edge connnects two
nodes belonging to the same community or it spans different com-
munities. We observe that local edge information can be a better
indicator than the widely accepted measure of the effective resis-
tance for deciding whether an edge spans two communities, or is
contained within a community in real data. Figure ?? shows our
empirical findings on graphs where (i) either ground-truth commu-
nities are available, or (ii) the partitions are generated by METIS
[25], a popular graph partitioning tool. For each edge 𝑒 = (𝑢, 𝑣), we
compute the effective resistance 𝑅𝑒 𝑓 𝑓 (𝑢, 𝑣), the number of triangles

Table 3: Datasets used in our experiments

Name Nodes Edges Triangles

Amazon [1] 334,863 925,872 667,129
BlogCatalog [39] 10,312 333,983 5,608,664
ca-HepPh [1] 11,204 117,649 3,357,890
ca-AstroPh [1] 17,903 197,031 1,350,014
ca-CondMat [1] 21,363 91,342 171,051
ca-GrQc [1] 4,158 13,428 47,779
DBLP [1] 317,080 1,049,866 2,224,385
Email-Enron [1] 33,696 180,811 725,311
Facebook [1] 4,039 88,234 1,612,010
Flickr [39] 80,513 5,899,882 271,601,126
PPI [39] 3,852 37,841 91,461
Youtube [1] 1,134,890 2,987,624 3,056,386

𝑡 (𝑢, 𝑣) containing edge (𝑢, 𝑣), the Overlap Similarity 𝑂𝐶 (𝑢, 𝑣), the
Jaccard similarity 𝐽 (𝑢, 𝑣), and the closely related Tectonic similar-
ity 𝑇𝑒𝑐𝑡 (𝑢, 𝑣). We distinguish two categories of edges, i.e., edges
within a community, and edges spanning two communities. For

the effective resistance we report
𝑅
𝑠𝑝𝑎𝑛𝑛𝑖𝑛𝑔

𝑒𝑓 𝑓

𝐴𝑣𝑔 (𝑅𝑖𝑛𝑠𝑖𝑑𝑒
𝑒𝑓 𝑓

) , while for the rest of

the measures the numerator corresponds to the value of the metric
for edges connecting nodes within the same community, and the
denominator to the average of the measure for edges spanning
different communities. This choice was made for consistency rea-
sons; the effective resistance of an edge across two communities
is according to common wisdom expected to be larger than the
effective resistance of an edge inside a community. In other words,
the ratio is expected to be greater than 1. Similarly, we expect that
edges within communities will participate in more triangles on
average than edges that span two different communities. Therefore,
we expect all ratios to be greater than 1. As we see in Figure 2,
for networks where the ground-truth community is known, triadic
measures provide a stronger signal of whether an edges spans two
communities or lies inside one community, than the effective resis-
tancemetric. Most importantly, the degree normalization performed
by both Jaccard and Tectonic measures seems to help distinguish
between the two cases. For example, considering the BlogCatalog
dataset, averages for effective resistance and triangle counts are in
contrast of what someone would expect – edges spanning commu-
nities in BlogCatalog have on average lower effective resistance
and participate in more triangles, than those within a community.
However, both Jaccard and Tectonic measures, more accurately
distinguish between the two cases. This finding is consistent across
all datasets, whether the notion of ground-truth community follows
the network structure (as in networks (a), (b), (c)), as well when this
is not always the case, as in networks (d), (e), and (f). These findings,
therefore, explain the success of triangle-aware graph partitioning
schemes, as well give insights into the structure that real-world
communities follow. For instance, it is common to observe that
edges connecting two communities have on average less triangles
and involve at least one high degree node, hence 𝑡 (𝑢,𝑣)

𝑑𝑒𝑔 (𝑢)+𝑑𝑒𝑔 (𝑣) is
small. This observation also explains why Tectonic and Jaccard
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Ground-truth communities

(a) Amazon (b) YouTube

(c) DBLP (d) Flickr

(e) PPI (f) BlogCatalog
METIS partitioning

(g) ca-AstroPh (h) ca-GrQc

(i) Facebook (ego-network) (j) Email-Enron

Figure 2: Mean and Standard Deviation of different mea-
sures for edges spanning communities and edges lying ex-
clusively inside a community. Values are normalized such as
the lowest expected value is equal to 1. E.g., in Amazon, Jac-
card Similarity for edges connecting nodes in the same com-
munity is on average two times higher than those spanning
different communities. Notice the inconsistent findings for
Effective Resistance.

similarity work better than the overlap similarity on real data; fre-
quently, an edge crossing communities involves one high degree
endpoint and one low degree endpoint.

In order to validate our findings even further, for each measure,
we perform Welch’s t-test5 for the two sets - edges with both end-
points inside a community (A) and edges spanning communities
(B). For each dataset and measure we calculate the 𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 of
the test that measures the difference of the mean values of two sets
normalized by the standard error. The 𝑡 −𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 for both Tectonic
and Jaccard Similarity is consistently larger in magnitude than the
one for effective resistance (with the exception of the YouTube
dataset, a sparse network with few triangles too), while as pointed
earlier it consistently indicates that the average of the two sets
follows common wisdom, as opposed to effective resistance (e.g.
for BlogCatalog). We note that we also tested similar normaliza-
tions (e.g., dividing by the sum of the endpoints) for the effective
resistance metric, as we did for triangle counts, however we did
not observe any improvement. The same was true for other mod-
ifications proposed for the effective resistance measure, as those
laid out in Luxburg et al. [31], like subtracting the sum of the re-
ciprocals of the degrees. Moreover, for large networks that we use
an approximation of the effective resistance metric, we did not see
any significant difference in consecutive runs.

For networks that we do not have knowledge of the ground
truth communities, we partition the graphs using METIS, a popular
graph partitioning scheme. We partition each graph into 20 almost
equally sized sets. We use METIS default parameters, except for
the following: We choose the best in terms of the edge-cut out of
100 different partitionings (default is 1), while we set the imbalance
factor (the size of largest set, divided by the average) to be at most
1.1 (default is 1.03). As we observe in Figure 2, the edges spanning
different partitions are better characterized by triadic measures (as
Tectonic and Jaccard similarity), rather than the effective resistance
metric. Therefore, this finding is not only true for networks with
ground truth communities, but also for the partitions generated by
one of the most popular graph partitioning schemes. While this
finding is tied to the algorithm used by METIS to create partitions,
rather the network structure itself, it is of interest, as METIS is
widely used by practitioners to partition a network into different
communities.

4.3 Motif-aware Spectral sparsifiers
Are real-world graphs triangle dense? In our results in Theo-
rems 3.3 and 3.4, we relied on the assumption that the network
under consideration is triangle dense, meaning that the number
of triangles an edge participates is asymptotically the same as its
minimum degree (at least a constant fraction of it). Though this
assumption may seem idealized, in Figure 3 we see that in reality
this is not at all far from true for the majority of edges in a graph.
Specifically, in this figure we depict a box-plot for the Overlap Sim-
ilarity of the edges, for every network used in our experiments.
The lower and upper bounds of the box represent the 25 and 75-
percentiles, with a line at the median, while whiskers extend from
the box to show the range of Overlap similarity. What we observe is
indicative of the level that real world networks adhere to the triadic
closure principle: For all but three networks, the median value of
overlap similarity is really high, most often close or even above 0.5.

5Due to space constraints, we will include the detailed crunching numbers, and statistic
values in an extended version of our work.
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Figure 3: Box Plot for the Overlap Similarity for various networks, sorted from left to right increasingly by the number of
edges.

(a) (b) (c) (d)

Figure 4: Root Mean Squared Error (RMSE) of the eigenvalues of the projection matrix, when including a fraction of the edges
sorted by different measures

This phenomenon is especially profound for social networks. For
example, in all co-authorship networks (ca-GrQc, ca-CondMat, ca-
HepPh, ca-AstroPh and DBLP) the median value is above 0.5. Also,
for some networks, like Facebook and ca-HepPh, even more than
75% of the edges have an Overlap Similarity value of 0.6 and above.
This empirical observation strengthens the ability of motif-aware
graph sparsification schemes to result into spectral sparsifiers, us-
ing a significantly smaller amount of edges than the original graph,
as we will demonstrate subsequently.

Spectral Sparsification In Section 3 we explained that if the ma-
trix Π̃ = 𝐿

+/2
𝐺

𝐿𝐻𝐿
+/2
𝐺

is close to Π = 𝐿
+/2
𝐺

𝐿𝐺𝐿
+/2
𝐺

, where 𝐻 is a
sparsified instance of 𝐺 , then 𝐿𝐻 is close to 𝐿𝐺 . Moreover, for a
connected undirected network, Π has 𝑛 − 1 eigenvalues equal to 1
and one eigenvalue equal to 0. As both SPR and Tectonic methods
sort the edges of the graph according to a specific measure, we do
the same here with the inclusion of simple triangle participation,
all in increasing order, and effective resistances in decreasing order.
Afterwards, we start including a fraction of those edges creating a
graph 𝐻 , and measure the Root Mean Squared Error (see Table 2
for the definition) between the eigenvalues of Π and Π̃. Figure 4
presents our findings for 4 representative networks (co-authorship,
social and biological). Not a surprise, effective resistance is the
measure that orders edges more effectively with respect to their
significance in retaining the spectral information of a graph. What
is surprising, however, is that for the real networks we consider,

triadic measures perform comparably well. Especially, just ordering
edges by their triangle counts leads to almost equally good results
with effective resistance, while SPR and Tectonic that order triangle
counts with some regularization (e.g. Tectonic divides the triangles
an edge participates by the sum of the degrees of the endpoints of
an edge) perform comparably well and always much better than
a random ordering baseline, the only exception being the Overlap
Similarity measure for BlogCatalog. This observation explains to
a great extent the success these techniques have in graph parti-
tioning schemes. For real world-networks, they remove edges that
are important in retaining the spectral information of a graph and
subsequently its connectivity. As we also see previously, edges hav-
ing low score in triadic measures, not only are important for the
connectivity of a graph, but also are a stronger signal of whether
an edge separates communities as those observed in real networks
than the effective resistance metric.

5 OPEN PROBLEMS
In this work we demonstrated the power edge triangle counts for
spectral sparsification, and also shed light into the performance
of two well performing community detection heuristics [41, 51].
An interesting broad question is the following. How well we can
predict global graph properties from local edge and node properties
on real world networks? Our work is a step towards this research
direction.
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