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Abstract

The statistical mechanical approach to complex networks is the dominant paradigm in describing natural and societal
complex systems. The study of network properties, and their implications on dynamical processes, mostly focus on locally
defined quantities of nodes and edges, such as node degrees, edge weights and –more recently– correlations between
neighboring nodes. However, statistical methods quickly become cumbersome when dealing with many-body properties
and do not capture the precise mesoscopic structure of complex networks. Here we introduce a novel method, based on
persistent homology, to detect particular non-local structures, akin to weighted holes within the link-weight network fabric,
which are invisible to existing methods. Their properties divide weighted networks in two broad classes: one is
characterized by small hierarchically nested holes, while the second displays larger and longer living inhomogeneities. These
classes cannot be reduced to known local or quasilocal network properties, because of the intrinsic non-locality of
homological properties, and thus yield a new classification built on high order coordination patterns. Our results show that
topology can provide novel insights relevant for many-body interactions in social and spatial networks. Moreover, this new
method creates the first bridge between network theory and algebraic topology, which will allow to import the toolset of
algebraic methods to complex systems.
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Introduction

Complex networks have become one of the prominent tools in

the study of social, technological and biological systems [1–3]. In

particular, weighted networks have been largely used to convey

not only the presence but also the intensity of relations between

nodes in a network. Real-world networks display however intricate

patterns of redundant links with edge weights and node degrees

usually ranging over various orders of magnitudes [4,5]. This

makes very hard to extract the significant network structure from

the background [6–9], especially in the case of very dense

networks [10,11]. Alongside topological filtering methods [12,13],

the typical approach to this problem is to choose a suitable

threshold for the edge weights, e.g. global [10] or local [14], and

study the reduced graph composed by only the edges of weight

larger (smaller) than the threshold parameter. In any case, some

properties of the original graph are inevitably lost under such

transformation.

To avoid this pitfall, given a weighted network G we consider

the set of all filtered networks, F (G), ordered by the descending

thresholding weight parameter, in the spirit of persistent homology

[15–18].

Persistent homology is a recent development in computational

topology designed for robust shape recognition and data-discovery

from high dimensional datasets [19]. It has found successful

application in various fields, ranging from biological systems

(e.g.brain correlation networks [20] and breast cancer diagnosis

[15]), computer vision and sensor network coverage problems [15]

all the way to the analysis of large scale cosmological structure

[22]. Its central device is the construction of a simplicial filtration of

the original dataset: data points are usually embedded in a metric

space in order to extract from their configuration a sequence of

growing simplicial complexes, which approximates with increasing

precision the original dataset. Studying the changes of the

topological structure along such filtration provides a natural

measure of robustness for the topological features emerging across

different scales. In analogy to the metric example, we call the set

F (G) graph filtration: considering the set of all filtered networks

captures the link weights and connectivity structure over all weight

scales, without the need to resort to any assumption on an eventual

metric structure underlying the graph structure. The graph

filtration of a network V is built following these steps :

N Rank the weights of links from vmax to vmin: the discrete

parameter Et scans the sequence.

N At each step t of the decreasing edge ranking we consider the

thresholded graph G(vij ,Et), i.e. the subgraph of V with links

of weight larger than Et.

Figure 1a provides a schematic illustration of the rank filtration.

This approach preserves the complete topological and weight

information, allowing us to focus on special mesoscopic structures:

weighted network holes, that relate the network’s weight-degree

structure to its homological backbone.

A weighted network hole of weight v is a loop composed by n

nodes i0,i1,i2,::::,in{1, where all cyclic edges (il ,ilz1) (with i0:in)
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have weights §v, while all the other possible edges crossing the

loop are strictly weaker than v. We focus on this special class of

subgraphs, because formally such weighted holes represent the

generators of the first homology group, H1, of the clique complex

of the graph thresholded by weight v (see Materials and Methods).

The aim of this paper is to characterize the evolution of these

generators along the network filtration. As we swipe the network

from the largest to the smallest weights, network holes appear and

potentially close.

By unearthing their properties, we obtain the main contribution

of this paper: the statistical features of weighted network holes

yield a classification of real-world networks in two classes,

depending on the compatibility or lack thereof with null models

generated by graph randomisations. Furthermore, this classifica-

tion is defined by mesoscopic homological structures that cannot

be reconduced to local properties alone.

The method used for the classification itself, which we call

weighted clique rank homology, is the second novel main contribution of

this paper. It allows to recover complete and accurate long-range

information from noisy redundant network data, by building on

persistent homology [16], a recent theory developed in compu-

tational topology [17], which we extend to the case of networks.

Each weighted hole g is characterized by three quantities: its

birth index bg, its persistence pg and its length lg. After ranking

links in a descending order according to their weights, the birth

index of a hole is the rank t of its weight v. As we proceed adding

links to the filtration in ranking order, it is possible that a link with

rank t0wt will appear and cross the hole. We call this closure of

the weighted hole, or death dg. The persistence pg is the interval

between the birth and death of g, pg~dg{bg~t0{t. Finally, the

length lg is the number of links composing g:

Figure 1. Weight rank clique filtration and homology of networks. (a) The weight rank filtration proceeds from the bottom up. Weighted
holes (colored) and cliques (gray) appear as links are added. Weighted holes can branch into smaller holes, which have then independent evolution,
persisting or dying along the filtration as links close them by 3-cliques. The cartoon shows two very long-persistence holes (violet and purple)
appearing quite early and living until the end, while the largest hole (red) branches into three smaller holes, of only one survives to the end of the
filtration (green). (b) A selection of weighted holes from the US air passenger network (year 2000). The node colors represent the best modularity
partition of the entire network. The cycles are all long-persistence one, chosen to represent different behaviors: for example, the Chicago-Los
Angeles-San Jose-Seattle cycle spans a large spatial distance, implying weaker connectivity across the cycle and within the region encompassed by
the cycle, while the cycle going east from New York connects the east coast to three large European network and its persistence is due to the
reduced connectivity due to the Atlantic Ocean. (c) A selection of the strongest cycles in the face-to-face contact network in a primary school (see SI
for details on dataset). Node colors represent different classes in the school. Cycles are often found across communities, since by definition they
probe the presence of holes among network regions. However, this is not the only information they convey. The cycle contained in a single
community (green) testify the presence of peculiar contact geometries even within dense community structures.
doi:10.1371/journal.pone.0066506.g001
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Similarly to stratigraphy, each step of the filtration is a

topological stratum of the network, where the edge weight rank

plays the role of depth. Intuitively, g can then be thought as an

underground cavity, hidden in the link-weight fabric of the

network, and bg, pg and lg as its maximal depth, vertical size and

girth respectively.

Results

Homological Network Classes
We applied this analysis to various social, infrastructural and

biological networks (see SI for a detailed list). In order to compare

datasets, indices are normalized by the corresponding filtration

length (maximal rank) T , so that all bg, dg, and thus pg, vary in the

unit interval. In addition, we compared each dataset with two

randomized versions, obtained by weight reshuffling and edge-

swapping respectively. While both randomisations preserve the

weight and degree sequences (and the relative distributions (p(k)
and p(v)), the first one redistributes only the edge weights and is

meant to destroy weight correlations, preserving the joint degree

distribution p(k,k0) and thus the degree assortativity. The second

instead randomizes the network through double-edge swaps,

preserving p(k) and p(v) but destroying both weight and degree

correlations [23]. We stress that, as the degree and weight

sequences are preserved in the randomisations, they cannot

account for the differences in the observed homology.

The statistical distributions obtained for the fbgg, fpgg and

flgg for H1 cycles highlight a natural division of the analysed

networks in two broad classes (Fig. 2):

Class I networks. cycle distributions are markedly different

from the randomized versions (cycles display shorter persistence

times, earlier and broader birth distributions and very short

lengths as compared to their randomized versions);

Class II networks. cycle distributions are very close to their

random versions (late appearance, short persistences, long cycles).

The short cycles of Class I networks nest hierarchically and

appear and die over all scales while those in the randomized

counterparts are born uniformly along the filtration but are more

persistent, producing largely hollow network instances. The

implications are twofold. Since cycles represent weaker connec-

tivity regions, this results in class I networks being more solid than

the randomized versions, while class II networks resemble more

closely the randomized instances. Second, since the cycle

abundance ratio between real and random instances is the same

in the two groups, the differences between class I and II does not

depend on cycle abundance, but rather on their properties.

This can be seen easily by compressing the whole information

within two scalar metrics which do not depend on the number of

generators in a given network filtration. We define the network

hollowness hi and the chain-length normalized hollowness ~hhi as:

hk~
1

Ngk

X
gk

pgk

T
ð1Þ

~hhk~
1

Ngk

X
gk

lgk

N

pgk

T
ð2Þ

where fgkg is the set of generators of the k-th homological group

Hk and Ngk
~ dim Hk their number. The first is a measure of the

average generator persistence, while the second weights generators

according to both their length and persistence. Table 1 reports the

values for h1 and ~hh1. Class I networks have lower hollowness

values as compared to their randomized versions, while class II

ones show comparable values.

Interestingly, the hollowness values for the H2 generators mostly

vanish for the randomized instances (Table 1), as opposed to the

case of real networks. It appears that, while persistent one-

dimensional cycles are more easily generated in the randomized

instances, higher forms of network coordination, e.g. H2

generators (akin to two-dimensional surfaces bounding three-

dimensional voids), do not only display different properties in

comparison to the real network, but are instead wiped away.

These findings hint therefore to the presence of higher order

coordination mechanisms in real world networks.

Naturally, the two network classes do not represent a binary

taxonomy and should be considered as two extremes of a range

over which networks are distributed. For example, we find

networks that interpolate between these classes, e.g. the online

messages network has short persistence intervals, but also late cycle

appearances and short length cycles. However, classes do not

appear to display uniform behavior for local and two-body

quantities: degree- and weight-distributions and correlations are

mixed within the same group and do not provide a direct answer

for the nature of the two classes. Similarly, a recently proposed

measure of structural organisation, integrativeness [24], which

measures the neighborhood overlap around strong links, does

not provide insights to explain class I, since within the latter one

finds both integrative and dispersive networks.

Finally, the classes do not show a consistent pattern in

assortativity: for example, class I includes the gene network

(assortative) and the airport networks (disassortative), while class

II includes the assortative co-authorship networks and the

disassortative Twitter data. Therefore, assortativity cannot be the

discriminating factor between classes.

Higher Order Organization
Because homology is essentially a non-local property, it was

expectable that the local measures mentioned would not be able to

explain the observed homological patterns. Network homology

can be seen in fact as the weighted complement to the perturbative

dK-series approach [8]: the latter proceeds by successive bottom-

up constraints on k-body correlations, rapidly becoming very

cumbersome, while our method returns the complete superposi-

tion of the network’s degree and weight correlation layers in a non-

perturbative (top-down) fashion.

A simple artificial network helps illustrating this point: Random

Geometric Graphs (RGG) have been recently shown to display

long-range many-body correlations [25,26]. We find also that they

have homological structures reminding of class I networks (Fig. 2a,

b and c) and the same relation to their randomized versions. Class

I networks are the result of high-order coordination in a similar

way. This is supported also by the presence in real networks and

RGGs of higher homology generators, which require elaborate

coordination patterns in order to appear. While these cycles almost

disappear in randomized versions of real-world networks, they are

present in the case of RGGs.

For the latter and the airports, this organisation can be thought

as the result of the non-local constraint imposed by the metric of

the underlying space [27]. Although spatial constraints are harder

to fathom for social and genetic systems, alternative explanations

are possible: for example, the homological structure of the

observed online communication and gene networks can be

thought as stemming from group interactions among people (e.g.

mailing lists, multi-user mails) and biological functions (e.g.

Topological Strata of Weighted Complex Networks
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pathways ) respectively, which provide an underlying non-local

mechanism for the emergence of homological patterns.

Further evidence of this behavior can be found by zooming on

specific cycles which convey information about underlying

constrains hidden in the network weight-link connectivity patterns.

For example, the cycle structure of the air passenger network

detects the expected reduced connectivity over oceans in the form

of strong persistent cycles– and the strong backbone of US airport

hubs, which is then filled by the local (intra-community) links

(Fig. 1b). Another example can be found in the school children’s

face-to-face contact network. As expected we find the most

significant cycles to link together different school classes (yellow

and pink cycles in Fig. 1c). However, we also find that a school

class (green nodes), despite being both a network community and

3-clique component [28], is characterized by a strong internal H1

generator, which might be reflecting peculiar social dynamics

coming from same-gender biases, different seating arrangements

or schedules for part of the class [29].

Spectral Correlates of Homology Classes
At the opposite extreme of local quantities lie the spectral

properties of networks. It is very important therefore to investigate

whether it is possible to highlight peculiar spectral signatures of the

two classes. Network eigenvalues, especially those of the Laplacian

matrix, figure prominently in a number of applications, ranging

from spectral clustering [30] to the propensity to synchronize of a

set of oscillators distributed on the nodes [31]. Given a graph G,

we denote its adjacency matrix A(G) and its Laplacian matrix as

L(G)~D{A(G), where dij~dij

X
k

aik. For a symmetric

network with N nodes, A(G) has a set of real eigenvalues

l1§l2§ . . . lN{1§lN . The spectral gap DlA~l1{l2, and its

normalized version, RA~
l1{l2

l2{lN

, effectively measure how far the

Figure 2. Statistical and spectral properties of H1 generators. Box plots of the distributions of persistences fpgg (panel a)), births fbgg (panel
b)) and lengths flgg (panel c)) for the 1d cycles (H1 generators) of real networks (black), reshuffled (white) and randomized (gray). The gray and green
shaded areas identify the two network classes described in the main text: class I is significantly different from the random expectations, with shorter,
less persistent cycles that appear across the entire filtration; class II networks are not significantly different from the random versions, with long cycles
and late birth times in the filtration. The characteristics of class I networks imply a stratification of cycles that betrays the presence of large, non-local
organisation in the network structure, which is not present in class II networks. For comparison, an example of RGG network (600 nodes in the unitary

disk, linking distance 0.01), known to have higher order degree correlations, had edge weights set according to vij!(kikj)
h , with h~1 (linearly

correlated weight RGG) and h~0 (random weight RGG). In both cases, the distributions of cycles’ properties resemble closely those of class I
networks. Panel d) finally reports the distribution of adjacency spectral gaps DlA and RA (left plot) and the Laplacian eigenratio RL (right plot). All
the quantities show significant (pv0:05) differences between the two classes, implying that the homological structure affect the dynamical
properties of networks, e.g. the synchronizability threshold.
doi:10.1371/journal.pone.0066506.g002
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leading eigenvalue lies in comparison to the bulk of the eigenvalue

distribution [32].

Interestingly, we find that class I networks have significantly

larger spectral gaps (pv0:05 comparing the distributions) than

class II networks (in Fig. 2d and Table 2 for information on

individual datasets). Despite being somewhat neglected in the

complex networks literature, DlA has been linked to the notion of

natural connectivity [33]: it encodes spectral information about

network redundancy in terms of the number of closed paths and is

defined as �ll~ log
1

N

XN

i~1
eli

� �
. Rewriting �ll~l1z log

1

N
(1z

XN

i~2
eli{l1 )

� �
, it is easy to see that for large gaps all

the terms in the sum are exponentially suppressed and therefore �ll
is essentially dominated by the leading adjacency eigenvalue

modulo a size effect, �ll*l1{ log N . This result is consistent with

the nested cycle structure that we highlighted in class I. More

importantly, we find a difference between the two classes in the

topological constraints to synchronization processes. For the

Laplacian L(G), label the set of eigenvalues

0~l1vlL
2 ƒlL

3 ƒ . . . ƒlL
N and define the Laplacian eigenratio

RL~
lL

N

lL
2

. Barahona and Pecora [34] showed that a set of

dynamical systems, placed on the network’s nodes and coupled

according to the graph adjacency with a global coupling s, has a

linearly stable synchronous state if

RLvb ð3Þ

where b is a purely dynamical parameter. This inequality implies

that networks displaying very large RL are hard (or impossible) to

synchronize. Panel IVb of Fig. 2 shows again a significant

difference between the two classes: class I networks have much

larger eigenratios, making them hardly synchronizable.

Our results show therefore a deep connection between the

homological network structure, the network spectral properties

and their implications on network dynamics. Indeed, the role of

mesoscopic structures in the stability and evolution of dynamical

systems on networks is gradually emerging, as shown for example

by recent work based on the concepts of basic symmetric

subgraphs and their legacy eigenvalues in the global network

spectrum [35], and is indeed being shaped by algebraic methods,

well suited to capture the geometric information hidden within the

network fabric.

Conclusions
Hitherto, the homological structure of weighted networks could

not be systematically studied. Our method, grounded in compu-

tational topology, allows to probe multiple layers of organized

structure. It highlighted two classes of network distinguished by

their homological features, which we interpreted as caused by

differences in the higher order networks organisations that are not

captured by (quasi)local approaches.

Among the many possible applications, two very relevant ones

for social and infrastructural networks are the study of the

weighted rich club’s geometry beyond the aggregate measure

[23,36], and the generalisation of network embedding models to

include homological information [37]. Furthermore, the two

classes displayed also a marked difference in their spectral gap

distributions and in particular in the values of the algebraic

connectivity, implying that the different homological structures are

correlated with different synchronizability thresholds.

This work therefore provides a stepping stone towards

understanding the coupling between network dynamical processes

and the network’s homology.

Finally, the filtration’s construction rule is flexible and can be

readily adapted to other problems. Similarly to changing goggles,

different edge metrics can be used (e.g. betweenness or salience

[38]), the thresholding method varied (e.g. local thresholding [14])

or the filtration promoted to a filtering on two quantities (e.g. edge

weight and time in a temporal network) using multi-persistent

homology [39].

Materials and Methods

Datasets
The dataset analysed in this paper cover a broad range of fields,

spanning social, infrastructural and biological networks. Figures

S1–S15 in the File S1 report the analysis for the individual datasets

as opposed to the class-aggregate of figure 2.

In detail, they are:

US air passenger networks. The networks refer to the years

2000, 2002, 2006 and 2011. The years were chosen to provide

snapshots of the air traffic situation at 4–5 years intervals, plus one

extra (year 2000) just before the events of 9/11 which significantly

affected the air transportation industry. The data used are publicly

available from the website of the Bureau of Transportation

Statistics (http://www.transtats.bts.gov/). Individual flights be-

tween airports were aggregated on routes as defined by origin and

destination cities. The weight reported is the yearly aggregated

passenger traffic.

C.Elegans. The network is available at http://cdg.columbia.

edu/cdg/datasets and reports a weighted, directed representation

of the C. Elegans’s neuronal network [40]. The network was

symmetrized by summing the weights present on edges between

the same nodes (given vij and vji, v
symm
ij ~v

symm
ji ~vijzvji).

Online messages and forums. The online messages

network consists of messages in a student online community at

University of California [41]. The online forum network refers to

the same online community, but focuses on the activity of users in

public forums, rather than on private messages [42]. Both

networks are publicly available online at Tore Opsahl’s website

(http://toreopsahl.com/datasets/).

Gene network. The gene interaction network used in the

paper is a sampling of the complete human genome dataset

available from the University of Florida Sparse Matrix Collection.

Each node is an individual gene, while the edges correlates the

expression level of a gene with that of the genes (using a NIR score

[43]). The node set of the analysed network was obtained by

randomly choosing an origin node, then adding its neighborhood

to the node set; the neighborhoods of the newly added nodes were

then added to the node set recursively until a given number of

nodes was obtained (in the case used the target number of nodes

was N~1300). Then all the edges present in the original network

between the nodes in the node set were added, effectively taking a

connected subgraph of the original network. To reduce the

computational complexity due to the large density of the graph,

the weighted clique filtration was stopped at an edge weight of

0:09 (similarly to the choice made in [24]).

Twitter. The dataset consists of a network of mentions and

retweet between Twitter users and is available online on the Gephi

dataset page (http://wiki.gephi.org/index.php/Datasets). Weights

are proportional to the number of interactions between a pair of

users.

School face-to-face contact network. The dataset contains

two days of recorded face-to-face interactions in a primary school.

Topological Strata of Weighted Complex Networks
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Each node represents a child, with the edge weight between two

nodes being proportional to the amount of time the two children

spent face to face. We analysed the two days separately, yielding

two networks. The dataset has been collected by the Sociopattern

project (http://www.sociopatterns.org/) and analysed in [29].

Co-authorship networks. The networks analysed are the

weighted co-authorship networks of the Condensed Matter E-print

Archive between 1995 and 1999 (cond-mat) and the High-Energy

Theory E-print Archive between 1995 and 1999 (hep-th) [44].

The graph edgelists used in the paper are available online as

part of the code package we developed [45].

Finally, for comparison we use Random Geometric Graphs

(RGG) [46,47], which are simple models of spatial networks: a

RGG is generated by sprinkling N of nodes randomly on a metric

space that acts as a substrate (usually a disk of unitary radius or a

square with identified edges), and then linking nodes that are

closer than a given linking distance d .

The networks analysed in this article are undirected and

weighted, because the weighted clique filtration finds a natural

application in such case. However, schemes for directed networks

can be easily devised and tailored to specific case studies, e.g. one

could adopt the definition used in the directed clique percolation

method [48] in order to associate network structures to simplices.

Persistent Homology
The method we use to uncover weighted holes is persistent

homology of the weight clique rank filtration. In this section we

will briefly explain persistent homology and its realization through

the weight rank clique filtration.

Persistent homology is a technique from computational

algebraic topology that can be viewed as parametrized version

of simplicial homology [49]. The two definitions needed for

simplicial homology are those of simplicial complex and homology. A

simplicial complex is a non empty family X of finite subsets, called

faces, of a vertex set with the two constraints:

– a subset of a face in X is a face in X ,

– the intersection of any two faces in X is either a face of both or

empty.

We assume that the vertex set is finite and totally ordered. A

face of nz1 vertices is called n{face and denoted by ½p0, . . . ,pn�.
The interpretation of low dimensional faces is intuitive: a 0{face

is a vertex, a 1{face is a segment, a 2{face is a full triangle, a

3{face is a full tetrahedron. The dimension of a simplicial

complex is the highest dimension of the faces in the complex.

Morphism between simplicial complexes are called simplicial

maps. A simplicial map is a map between simplicial complexes

with the property that the image of a vertex is a vertex and the

image of a n{face is face of dimension ƒn.

Simplicial Homology with coefficients in a field is a functor from

the category of simplicial complexes to the category of vector

spaces [49]. Homology of dimension n assigns to each simplicial

complex X , the vector space Hn(X ) of n-cycles modulo

boundaries and to every simplicial map X ?
f

Y the linear map

Hn(f ) : Hn(X )?Hn(Y ).

The construction that leads to the vector space Hn is the

following. Given a simplicial complex X of dimension d , consider

the vector spaces Cn on the set of n{faces in X for 0ƒnƒd.

Elements in Cn are called n{chains. The linear maps sending a

n{face to the alternate sum of its (n{1){faces

Ln : Cn?Cn{1

Table 1. Summary of hollowness values.

Dataset (class) h1
~
h1 hsh

1
~
h

sh

1 hrnd
1

~
hrnd

1 h2
~
h2

Genes(I) 0.515 0.003 0:020+0:001 0:0007+0:00001 0:0151+0:0004 0:00023+0:00005 0.35 0.006

Online forums(I) 0:175 0:001 0:355+0:005 0:007+0:001 0:325+0:005 0:007+0:001 0.02 0.0003

US Air 2000(I) 0.160 0.001 0:405+0:005 0:0065+0:0007 0:358+0:006 0:0060+0:0005 0.02 0.0003

US Air 2002(I) 0.186 0.0008 0:39+0:01 0:0037+0:0003 0:34+0:01 0:0034+0:0003 0.23 0.002

US Air 2006 (I) 0.167 0.0005 0:398+0:005 0:0036+0:0005 0:348+0:008 0:0032+0:0003 0.165 0.001

US Air 20011(I) 0.181 0.0006 0:41+0:01 0:0034+0:0002 0:35+0:01 0:0033+0:0003 0.076 0.0007

Online
messages(I)

0.21 0.0014 0:190+0:002 0:0017+0:0001 0:185+0:002 0:0015+0:0001 0.02 0.0003

School day 1 (II) 0.088 0.0034 0:113+0:002 0:007+0:001 0:093+0:002 0:006+0:001 0.015 0.0012

School day 2 (II) 0.090 0.0033 0:115+0:002 0:0065+0:0005 0:098+0:003 0:0089+0:0008 0.01412 0.00095

C. elegans (II) 0.0784 0.002 0:0745+0:0017 0:001+0:0001 0:0896+0:0023 0:0041+0:0005 0.058 0.002

Twitter (II) 0.03 0.0001 0:030+0:001 0:0002+0:0001 0:029+0:001 0:0002+0:0001 0.01 0.0001

Hep-th (II) 0.08 0.0002 0:075+0:001 0:0002+0:0001 0:0508+0:0003 0:0002+0:0001 – –

Cond-mat (II) 0.26 0.0004 0:20+0:003 0:0002+0:0001 0:180+0:002 0:0005+0:0001 – –

Lin. RGG 0.227 0.003 0:368+0:005 0:006+0:001 0:355+0:002 0:012+0:001 0.28 0.006

Ran. RGG 0.3 0.0041 0:299+0:005 0:0045+0:0002 0:649+0:40 0:015+0:001 0.115 0.003

Summary of hollowness values. For each dataset, we report the values of the hollowness h1 and cycle-length normalized hollowness ~hh1 for H1 cycles for real networks
and their randomisations (sh and rnd). Most networks (class I in particular) show lower values than for their randomized versions. We also report the values of the

hollowness h2 and cycle-length normalized hollowness ~hh2 for H2 cycles for real networks. The values for the randomized networks are not reported as –strikingly– the
randomisations do not inline any higher homology, while almost all real networks inline positive values of the H2 hollowness.
doi:10.1371/journal.pone.0066506.t001
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½p0, . . . ,pn�?
Xn

i~0

({1)i½p0, . . . ,pi{1,piz1, . . . ,pn�:

shares the property Ln{10Ln~0:
The subspace kerLn of Cn is called the vector space of n{cycles

and denoted by Zn. The subspace ImLnz1 of Cn, is called the

vector space of n{boundaries and denoted by Bn. Note that from

Ln{10Ln~0 it follows that Bn(Zn for all n.

The n{th simplicial homology group of X , with coefficients in

k, is the vector space Hn : ~Zn=Bn.

Persistent homology is the homology of a filtration, i.e. an increasing

sequence of simplicial complexes

X05X15 . . .5Xn~X ,

as opposed to that of a single simplicial complex.

It assigns to a filtration the homology groups of the simplicial

complexes Hn(Xv) and the linear maps iv,w : Hn(Xv)?Hn(Xw)
induced in homology by the inclusions Xv.Xw for all vƒw. Note

that the linear maps iv,vz1 are not always injective, meaning that

some homological features can disappear along the filtration.

These features are encoded by the persistent homology generators:

an element g[Hn(Xv) such that there is no h[Hn(Xw) for wvv

with the property that iw,v{wh~g: Two indices completely

determine a generator g[Hn(X ), namely its birth, bg and its

death dg. The index bg traces the first index such that g is in the

filtration and dg is the index of the simplicial complex in which the

cycle becomes a boundary (i.e. disappears homologically). The

persistence (lifetime) of a generator is measured by pg : ~dg{bg.

The length of a cycle, that is the number of faces composing it, is

denoted by lg.

For each homology group, the information about the filtration is

collected in a barcode: the set of intervals ½bg; dg� for all generators

g[Hn, which constitutes a handy complete invariant of Hn [16].

An alternative way to represent the persistent homology of a

filtration is through persistence diagrams [16,50], which we use

extensively in the SI. A persistence diagram is a set of points in the

plane counted with multiplicity. It can be recovered from the

barcode considering the points (bg,dg)[R2 with multiplicity given

by the number of generators with the same persistence interval. In

the SI, the reader can find H1 persistent diagrams of the real world

datasets examined for the classification, together with the explicit

comparison to the results for their relevant randomized versions.

Filtrations
In classical applications, the filtration is obtained from a point cloud

using the Rips-Vietoris complex and persistent homology used to

uncover robust topological features of the point cloud. We instead use

the clique weight rank filtration to uncover properties deriving from the

topology and weighted structure of weighted networks.

Recalling that an n{clique is a complete subgraph on nz1
vertices, the clique complex is a simplicial complex built from the

cliques of a graph. Namely there is a n{face in the simplicial

complex for every (nz1){clique in the graph. The compatibility

relations are satisfied because subsets of cliques and intersection of

cliques are cliques themselves.

The Weight Rank Clique filtration on a weighted network V
combines the clique complex construction with a thresholding on

weights following three main steps.

N Rank the weights of links from vmax to vmin: the discrete

parameter Et indexes the sequence.

N At each step t of the decreasing edge ranking we consider the

thresholded graph G(vij ,Et), i.e. the subgraph of V with links

of weight larger than Et.

N For each graph G(vij ,Et) we build the clique complex K(G,Et).

The clique complexes are nested along the growth of t and

determine the weight rank clique filtration. Note that this

construction is in fact the clique complex of each element in the

graph filtration.

In particular, persistent one dimensional cycles in the weight

rank clique filtration represent weighted loops with much weaker

internal links.

There is a conceptual difference in interpreting H1 persistent

homology of data with the Rips-Vietoris filtration and H1

persistent homology of weighted networks with the weight rank

clique filtration. While in the first case persistent generators are

relevant and considered features of the data, short cycles are more

interesting for networks. This is because random networks, or

randomisations of real networks, display one dimensional persis-

tent generators at all scales, while short lived generators testify the

presence of local organisation properties on different scales.

Computational Complexity
Computing the filtration of a large dataset can be extremely

demanding computationally. The identification of the maximal cliques

requires in general exponential time, although algorithms exists for

special cases that allow solutions to be obtained in polynomial time. In

addition, the javaPlex library [51] requires the explicit enumeration of

the simplicial facets appearing at each filtration step, which implies the

need for large memory resources in order to calculate the persistent

homology. However, there are a number of simplifications and

improvements to the brute force approach that provide a significant

reduction of the problem’s complexity. In the metrical case, this is

usually done by constructing a smaller complex, the witness complex [52],

Table 2. Summary of spectral quantities values.

Dataset (class) RA DlA RL

Genes(I) 1.14 14.6 873

Online forums(I) 0.5 4:105 3:4:105

US Air 2000(I) 0.868 6:9:106 6:7:106

US Air 2002(I) 0.872 6:3:106 2:8:107

US Air 2006 (I) 0.958 7:7:106 4:2:107

US Air 20011(I) 0.941 6:9:106 8:9:107

Online messages(I) 0.14 1:1:104 6:7:104

School day 1 (II) 0.11 2:5:103 56

School day 2 (II 0.08 2:3:103 110

C. elegans (II) 0.25 76 1:8:103

Twitter (II) 0.11 370 1:5:104

Hep-th (II) 0.11 7.4 9:6:103

Cond-mat (II) 0.005 0.24 5:2:103

Lin. RGG 0.0034 34 836

Ran. RGG 0.018 54 255

Summary of spectral quantities. For each dataset, we report the values of
RA , DlA and RL . The two classes inline different spectral properties, with
particular reference to RA which is related to the network expansion property.
doi:10.1371/journal.pone.0066506.t002
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which approximates with controlled precision [52] the homology of the

original data.

In the case of non-metrical discrete spaces, for example

networks, one cannot easily construct a witness complex through

a controlled sub-sampling of the network. Luckily, it is still possible

to reduce the computational complexity in different ways: first, one

can limit the analysis to the first s homology groups, which

amounts to restricting the clique detection and storage to cliques

up to size sz2, which reduces the problem to polynomial in time

and memory; second, it is possible to parallelize the computation

of persistent homology [53]; finally, the more elegant solution is to

calculate the homology of an homologically equivalent but much

smaller filtration (see the tidy set construction [54]). With respect

to the standard clique complex case, the tidy set in particular was

shown to reduce the number of simplices along the filtration of

various orders of magnitude number of simplices and of one order

of magnitude the total memory required. Therefore, a combina-

tion of the techniques mentioned above allows to scale up dataset

sizes to large-scale networks.
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