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Abstract
Representation learning models for graphs are a successful family of techniques that
project nodes into feature spaces that can be exploited by other machine learning
algorithms. Since many real-world networks are inherently dynamic, with interactions
among nodes changing over time, these techniques can be defined both for static
and for time-varying graphs. Here, we show how the skip-gram embedding approach
can be generalized to perform implicit tensor factorization on different tensor
representations of time-varying graphs. We show that higher-order skip-gram with
negative sampling (HOSGNS) is able to disentangle the role of nodes and time, with a
small fraction of the number of parameters needed by other approaches. We
empirically evaluate our approach using time-resolved face-to-face proximity data,
showing that the learned representations outperform state-of-the-art methods when
used to solve downstream tasks such as network reconstruction. Good performance
on predicting the outcome of dynamical processes such as disease spreading shows
the potential of this method to estimate contagion risk, providing early risk awareness
based on contact tracing data.

Keywords: Representation learning; Time-varying graphs; Spreading processes;
Temporal link prediction

1 Introduction
A great variety of natural and artificial systems can be represented as networks of ele-
mentary structural entities coupled by relations between them. The abstraction of such
systems as networks helps us understand, predict and optimize their behaviour [1, 2]. In
this sense, node and graph embeddings have been established as standard feature repre-
sentations in many learning tasks [3, 4]. Node embedding methods map nodes into low-
dimensional vectors that can be used to solve downstream tasks such as edge prediction,
network reconstruction and node classification.

Node embeddings have proven successful in achieving low-dimensional encoding of
static network structures, but many real-world networks are inherently dynamic [5, 6].
Time-resolved networks are also the support of important dynamical processes, such as
epidemic or rumor spreading, cascading failures, consensus formation, etc. [7]. Time-
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resolved node embeddings have been shown to yield improved performance for predicting
the outcome of dynamical processes over networks, such as information diffusion and dis-
ease spreading [8], providing estimation of infection and contagion risk when used with
contact tracing data.

Since we expect having more data on proximity networks being used for contact trac-
ing and as proxies for epidemic risk [9], learning meaningful representations of time-
resolved proximity networks can be of extreme importance when facing events such as
epidemic outbreaks [10, 11]. The manual and automatic collection of time-resolved prox-
imity graphs for contact tracing purposes presents an opportunity for quick identification
of possible infection clusters and infection chains. Even before the COVID-19 pandemic,
the use of wearable proximity sensors for collecting time-resolved proximity networks has
been largely discussed in the literature and many approaches have been used to describe
patterns of activity and community structure, and to study spreading patterns of infectious
diseases [12–14].

Here we propose a representation learning model that performs implicit tensor factor-
ization on different higher-order representations of time-varying graphs. The main con-
tributions are as follows:

• Given that the skip-gram embedding approach implicitly performs a factorization of
the shifted pointwise mutual information matrix (PMI) [15], we generalize it to
perform implicit factorization of a shifted PMI tensor. We then define the steps to
achieve this factorization using higher-order skip-gram with negative sampling
(HOSGNS) optimization.

• We show how to apply 3rd-order and 4th-order SGNS on different higher-order
representations of time-varying graphs.

• We show that time-varying graph representations learned via HOSGNS outperform
state-of-the-art methods when used to solve downstream tasks, even using a fraction
of the number of embedding parameters.

We report the results of learning embeddings on empirical time-resolved face-to-face
proximity data and using such representations as predictors for solving three different
tasks: predicting the outcomes of a SIR spreading process over the time-varying graph,
network reconstruction and link prediction. We compare these results with state-of-the
art methods for time-varying graph representation learning.

2 Preliminaries and related work
2.1 Skip-gram representation learning
The skip-gram model was designed to compute word embeddings in word2vec [16],
and afterwards extended to graph node embeddings [17–19]. Levy and Goldberg [15]
established the relation between skip-gram trained with negative sampling (SGNS) and
traditional matrix decomposition methods [20, 21], showing the equivalence of SGNS op-
timization to factorizing a shifted PMI matrix [22].

Starting from a textual corpus of words w1, w2, . . . , wm from a vocabulary V , it assigns
to each word ws a context corresponding to words surrounding ws in a window of size T ,
i.e. the multi-set cT (ws) = {ws–T , . . . , ws–1, ws+1, . . . , ws+T }. Training samples D = {(i, j) : i ∈
W , j ∈ C, j ∈ cT (i)} are built by collecting all the observed word-context pairs, where W
and C are the vocabularies of words and contexts respectively (usually W = C = V). Here
we denote as #(i, j) the number of times (i, j) appears in D. Similarly we use #i =

∑
j #(i, j)
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and #j =
∑

i #(i, j) as the number of times each word occurs in D, with relative frequencies
PD(i, j) = #(i,j)

|D| , PD(i) = #i
|D| and PD(j) = #j

|D| .
SGNS computes d-dimensional representations for words and contexts in two matrices

W ∈ R
|W|×d and C ∈ R

|C|×d , performing a binary classification task in which pairs (i, j) ∈
D are positive examples and pairs (i, jN ) with randomly sampled contexts are negative
examples. The probability of the positive class is parametrized as the sigmoid (σ (x) = (1 +
e–x)–1) of the inner product of embedding vectors:

P
[
(i, j) ∈D | wi, cj

]
= σ (wi · cj) (1)

and each word-context pair (i, j) contributes to the loss as follows:

�(i, j) = logσ (wi · cj) + κ · E
jN ∼PN

[
logσ (–wi · cjN )

]
, (2)

where the second expression uses the symmetry property σ (–x) = 1 – σ (x) inside the ex-
pected value and κ is the number of negative examples, sampled according to the empirical
distribution of contexts PN (j) = PD(j).

Following results found in [15], the sum of all �(i, j) weighted with the probability that
each pair (i, j) appears in D gives the SGNS objective function:

LSGNS = –
|W|∑

i=1

|C|∑

j=1

[
PD(i, j) logσ (wi · cj) + κ PN (i, j) logσ (–wi · cj)

]
, (3)

where PN (i, j) = PD(i) · PD(j) is the probability of (i, j) under assumption of statistical in-
dependence.

Levy and Goldberg [15] demonstrated that, when d is sufficiently high, optimal SGNS
embedding matrices satisfy these relations:

(
WCT)

ij ≈ log

(
PD(i, j)

κ PN (i, j)

)

= PMI(i, j) – log(κ) (4)

which tell us that SGNS optimization is equivalent to a rank-d matrix decomposition of
the word-context pointwise mutual information (PMI) matrix shifted by a constant, i.e. the
number of negative samples. Here in this work, we refer to the shifted PMI matrix also as
SPMIκ = PMI – logκ . This equivalence was later retrieved from diverse assumptions [23–
27], and exploited to compute closed form expressions approximated in different graph
embedding models [28].

2.2 Random walk based graph embeddings
Given an undirected, weighted and connected graph G = (V ,E) with nodes i, j ∈ V , edges
(i, j) ∈ E and adjacency matrix A, graph embedding methods are unsupervised mod-
els designed to map nodes into dense d-dimensional representations (d � |V|) [29].
A well known family of approaches based on the skip-gram model consists in sampling
random walks from the graph and processing node sequences as textual sentences. In
DeepWalk [17] and node2vec [19], the skip-gram model is used to obtain node embed-
dings from co-occurrences in random walk realizations. Although the original implemen-
tation of DeepWalk uses hierarchical softmax to compute embeddings, we will refer to
the SGNS formulation given by [28].
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Since SGNS can be interpreted as a factorization of the word-context PMI matrix [15],
the asymptotic form of the PMI matrix implicitly decomposed in DeepWalk can be de-
rived [28]. Given the 1-step transition matrix P = D–1A, where D = diag(d1, . . . , d|V|) and
di =

∑
j∈V Aij is the (weighted) node degree, the expected PMI for a node-context pair (i, j)

occurring in a T-sized window is:

PMIDW(i, j) = log

(
PD(i, j)
PN (i, j)

)

= log

(

(a)
︷ ︸︸ ︷

1
2T

∑T
r=1[ di

vol(G) (Pr)ij + dj
vol(G) (Pr)ji]

di
vol(G) · dj

vol(G)

)

, (5)

where vol(G) =
∑

i,j∈V Aij. We will return to this equation in Sect. 3.2, where we use the
expression in (a) to build probability tensors from higher-order graph representations.

2.3 Time-varying graphs and their algebraic representations
Time-varying graphs [5, 6] are defined as triples H = (V ,E ,T ), i.e. collections of events
(i, j, k) ∈ E , representing undirected pairwise relations among nodes at discrete times
(i, j ∈ V , k ∈ T ). H can be seen as a temporal sequence of static graphs {G(k)}k∈T , each
of those with adjacency matrix A(k) such that A(k)

ij = ω(i, j, k) ∈R is the weight of the event
(i, j, k) ∈ E . We can concatenate the list of time-stamped snapshots [A(1), . . . , A(|T |)] to ob-
tain a single 3rd-order tensor Astat(H) ∈ R

|V|×|V|×|T | which characterize the evolution
of the graph over time. This representation has been used to discover latent commu-
nity structures of temporal graphs [13] and to perform temporal link prediction [30]. In-
deed, beyond the above stacked graph representation, more exhaustive representations
are possible. In particular, the multi-layer approach [31] allows to map the topology of a
time-varying graph H into a static network GH = (VH,EH) (the supra-adjacency graph)
such that vertices in VH correspond to node-time pairs (i, k) ≡ i(k) ∈ V × T and edges
in EH represent connections (i(k), j(l)) among them. Since every link can be arranged
in a quadruple (i, j, k, l), the connectivity structure is associated to a 4th-order tensor
Adyn(H) ∈ R

|V|×|V|×|T |×|T | that is equivalent, up to an opportune reshaping, to the ad-
jacency matrix A(GH) ∈R

|V||T |×|V||T | of GH. Multi-layer representations for time-varying
networks have been used to study time-dependent centrality measures [32] and properties
of spreading processes [33].

In the same spirit that word2vec refers to the word pairs (i, j) as (word, context), here
we refer to the node pairs (i, j) as (node, context), and the time pairs (k, l) as (time, context-
time).

2.4 Time-varying graph representation learning
Given a time-varying graph H = (V ,E ,T ), we define as temporal network embedding a
model that learns from data, implicitly or explicitly, a mapping function:

f : (v, t) ∈ V × T �→ v(t) ∈R
d (6)

which project time-stamped nodes into a latent low-rank vector space that encodes struc-
tural and temporal properties of the original evolving graph [34, 35]. Many existing meth-
ods learn node representations from sequences of static snapshots through incremental
updates in a streaming scenario: deep autoencoders [36], SVD [37], skip-gram [38, 39]
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Figure 1 A time-varying graphH with three intervals (left) and its corresponding time-respecting
supra-adjacency graph GH (right)

and random walk sampling [40–42]. Another class of models learn dynamic node repre-
sentations by recurrent/attention mechanisms [43–46] or by imposing temporal stability
among adjacent time intervals [47, 48]. DyANE [8] and weg2vec [49] project the dynamic
graph structure into a static graph, in order to compute embeddings with word2vec.
Closely related to these ones are [50] and [51], which learn node vectors according to
time-respecting random walks or spreading trajectory paths. Moreover, [52] proposed an
embedding framework for user-item temporal interactions, and [53] suggested a tensor-
based convolutional architecture for dynamic graphs.

Methods that perform well for predicting outcomes of spreading processes make use
of time-respecting supra-adjacency representations such as the one proposed by [33]. In
these graph representations, a random walk corresponds to a temporal path in the original
time-varying graph, enconding relevant information about the spreading process into its
connectivity structure. The supra-adjacency representation GH that we refer in Sect. 3.2,
also used in DyANE, with adjacency matrix A(GH), is defined by two rules:

1. For each event (i, j, t0), if i is also active at time t1 > t0 and in no other time-stamp
between the two, we add a cross-coupling edge between supra-adjacency nodes j(t0)

and i(t1). In addition, if the next interaction of j with other nodes happens at t2 > t0,
we add an edge between i(t0) and j(t2). The weights of such edges are set to ω(i, j, t0).

2. For every case as described above, we also add self-coupling edges (i(t0), i(t1)) and
(j(t0), j(t2)), with weights set to 1.

Figure 1 shows the differences between a time-varying graph and its time-aware supra-
adjacency representation, according to the formulation described above. DyANE com-
putes, given a node i ∈ V , one vector representation for each time-stamped node i(t) ∈
V (T ) = {(i, t) ∈ V ×T : ∃(i, j, t) ∈ E} of this supra-adjacency representation. Similar models
that learn time-resolved node representations require a quantityO(|V| · |T |) of embedding
parameters to represent the time-varying graph in the latent space. As we will see, com-
pared with these methods, our approach requires a quantity O(|V| + |T |) of embedding
parameters for disentangled node and time representations.

3 Proposed method
Given a time-varying graph H = (V ,E ,T ), we propose a representation learning method
that learns disentangled representations for nodes and time slices. More formally, we learn
a function:

f ∗ : (v, t) ∈ V × T �→ v, t ∈ R
d (7)
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This embedding representation can then be reconciled with the definition in Eq. (6) by
combining v and t in a single v(t) representation using any combination function c : (v, t) ∈
R

d ×R
d �→ v(t) ∈R

d . It follows that computing and combining distinct vector embeddings
for nodes and time slices needs a quantity O(|V| + |T |) of learnable parameters, leading
to a more efficient method to obtain time-aware node representations without requiring
to learn a much bigger number O(|V| · |T |) of learnable parameters.

The parameters of the embedding representation in Eq. (7) are learned through a higher-
order generalization of skip-gram with negative sampling (HOSGNS), based on the exist-
ing skip-gram framework for node embeddings, as shown in Sect. 3.1. We show that this
generalization allows to implicitly factorize higher-order relations that characterize tensor
representations of time-varying graphs, in the same way that the classical SGNS decom-
poses dyadic relations associated to a static graph.

Similar approaches have been applied in NLP for dynamic word embeddings [54], and
higher-order extensions of the skip-gram model have been proposed to learn context-
dependent [55] and syntactic-aware [56] word representations. Also tensor factorization
techniques have been applied to include the temporal dimension in recommender sys-
tems [57, 58], knowledge graphs [59, 60] and face-to-face contact networks [12, 13]. But
this work is the first to merge SGNS with tensor factorization, and then apply it to learn
time-varying graph embeddings. HOSGNS differs from existing temporal network em-
beddings based on skip-gram [38, 39], which are minor adaptations of standard SGNS
to the dynamic setting. In fact, in Sect. 3.1 we show how the equations in the skip-gram
framework can be completely rewritten to be naturally applied to inherently higher-order
problems.

In the next sections, we first show the formal steps to the generalization of the skip-gram
approach to higher-order data structures, and then we show how to apply HOSGNS on
3rd-order and 4th-order representations of time-varying graphs.

3.1 SGNS for higher-order data structures
Here we address the problem of generalizing SGNS to learn embedding representa-
tions from higher-order co-occurrences. In Sect. 2.3 we described snapshot-based and
multilayer-based representations of time-varying graphs, that can be seen as 3rd and 4th-
order co-occurrence tensors; therefore in the remaining of this manuscript we focus on
3rd and 4th-order structures. In this section, we describe in detail the generalization of
SGNS to the 3rd-order case. In Additional file 1 we discuss more in detail the derivation
of the HOSGNS objective function to any nth-order representation.

We consider a set of training samples D = {(i, j, k) : i ∈ W , j ∈ C, k ∈ T } obtained by col-
lecting co-occurrences among elements from three sets W , C and T . While SGNS is lim-
ited to pairs of node-context (i, j), here D is constructed with three (or more) variables,
e.g. sampling random walks over a higher-order data structure. We denote as #(i, j, k)
the number of times the triple (i, j, k) appears in D. Similarly we use #i =

∑
j,k #(i, j, k),

#j =
∑

i,k #(i, j, k) and #k =
∑

i,j #(i, j, k) as the number of times each distinct element occurs
in D, with relative frequencies PD(i, j, k) = #(i,j,k)

|D| , PD(i) = #i
|D| , PD(j) = #j

|D| and PD(k) = #k
|D| .

Optimization is performed as a binary classification task, where the objective is to dis-
cern occurrences actually coming from D from random occurrences. We define the like-
lihood for a single observation (i, j, k) by applying a sigmoid (σ (x) = (1 + e–x)–1) to the
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higher-order inner product �·� of corresponding d-dimensional representations:

P
[
(i, j, k) ∈D | wi, cj, tk

]
= σ

(
�wi, cj, tk �

) ≡ σ
(∑d

r=1
WirCjrTkr

)
, (8)

where embedding vectors wi, cj, tk ∈ R
d are respectively rows of W ∈ R

|W|×d , C ∈ R
|C|×d

and T ∈ R
|T |×d . In the 4th-order case we will also have a fourth embedding matrix S ∈

R
|S|×d related to a fourth set S . For negative sampling we fix an observed (i, j, k) ∈ D and

independently sample jN and kN to generate κ negative examples (i, jN , kN ). In this way,
for a single occurrence (i, j, k) ∈D, the expected contribution to the loss is:

�(i, j, k) = logσ
(

�wi, cj, tk �
)

+ κ · E
jN ,kN ∼PN

[
logσ

(
–�wi, cjN , tkN �

)]
, (9)

where the noise distribution is the product of independent marginal probabilities
PN (j, k) = PD(j) · PD(k). Thus the global objective is the sum of all the quantities of Eq. (9)
weighted with the corresponding relative frequency PD(i, j, k). The full loss function can
be expressed as:

L = –
|W|∑

i=1

|C|∑

j=1

|T |∑

k=1

[
PD(i, j, k) logσ

(
�wi, cj, tk �

)
+ κ PN (i, j, k) logσ

(
–�wi, cj, tk �

)]
. (10)

In Additional file 1 we show the formal steps to obtain Eq. (10) for the nth-order case and
that it can be optimized with respect to the embedding parameters, satisfying the low-
rank tensor approximation of the multivariate shifted PMI tensor into factor matrices W,
C, T:

∑d

r=1
WirCjrTkr ≈ log

(
PD(i, j, k)
PN (i, j, k)

)

– logκ ≡ SPMIκ (i, j, k). (11)

Equation (11), like the analogous derived in Levy and Goldberg [15] in Eq. (4), assumes
full rank embedding matrices with d ≈ R = rank(SPMIκ ). For the case when d � R, a com-
prehensive theoretical analysis is missing, although recent works propose the feasibility of
exact low-dimensional factorizations of real-world static networks [61, 62]. Nevertheless,
in Additional file 1, we include an empirical analysis of the effectiveness of HOSGNS for
low-rank factorization of time-varying graph representations.

3.2 Time-varying graph embedding via HOSGNS
While a static graph G = (V ,E) is uniquely represented by an adjacency matrix A(G) ∈
R

|V|×|V|, a time-varying graph H = (V ,E ,T ) admits diverse possible higher-order ad-
jacency relations (Sect. 2.3). Starting from these higher-order relations, we can either
use them directly or use random walk realizations to build a dataset of higher-order
co-occurrences. In the same spirit that random walk realizations lead to dyadic co-
occurrences used to learn embeddings in SGNS, we use higher-order co-occurrences to
learn embeddings via HOSGNS.

As discussed in Sect. 3.1, the statistics of higher-order relations can be summarized in
multivariate PMI tensors, which derive from co-occurrence probabilities among elements.
Once such PMI tensors are constructed, we can again factorize them via HOSGNS. To
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show the versatility of this approach, we choose probability tensors derived from two dif-
ferent types of higher-order relations:

1. A 3rd-order tensor P (stat)(H) ∈R
|V|×|V|×|T | which gather relative frequencies of

nodes occurrences in temporal edges:

(
P (stat))

ijk =
ω(i, j, k)
vol(H)

, (12)

where vol(H) =
∑

i,j,k ω(i, j, k) is the total weight of interactions occurring in H.
These probabilities are associated to the snapshot sequence representation
Astat(H) = [A(1), . . . , A(|T |)] and contain information about the topological structure
of H.

2. A 4th-order tensor P (dyn)(H) ∈ R
|V|×|V|×|T |×|T |, which gather occurrence

probabilities of time-stamped nodes over random walks of the supra-adjacency
graph GH (as used in DyANE). Using the numerator of Eq. (5), with
supra-adjacency indices i(k) and j(l) instead of usual indices i and j, tensor entries are
given by:

(
P (dyn))

ijkl =
1

2T

T∑

r=1

[
di(k)

vol(GH)
(
Pr)

i(k),j(l) +
dj(l)

vol(GH)
(
Pr)

j(l),i(k)

]

. (13)

These probabilities encode causal dependencies among temporal nodes and are
correlated with dynamical properties of spreading processes. Notice that the
computation of P (dyn)(H) requires an undirected supra-adjacency graph, while in
DyANE is directed.

We also combined the two representations in a single tensor that is the average of P (stat)

and P (dyn)

(
P (stat|dyn))

ijkl =
1
2
[(
P (stat))

ijkδkl +
(
P (dyn))

ijkl

]
, (14)

where δkl = 1[k = l] is the Kronecker delta.
Figure 2 summarizes the differences between graph embedding via classical SGNS and

time-varying graph embedding via HOSGNS. Here, indices (i, j, k, l) correspond to (node,
context, time, context-time) in a 4th-order tensor representation of H.

The above tensors gather empirical probabilities PD(i, j, k . . . ) corresponding to posi-
tive examples of observable higher-order relations. The probabilities of negative exam-
ples PN (i, j, k . . . ) can be obtained as the product of marginal distributions PD(i), PD(j),
PD(k) . . . Objective functions like Eq. (10) can be computed with a sampling strategy: pick-
ing positive tuples according to the data distribution PD and negative ones according to
independent sampling PN , HOSGNS objective can be optimized through the following
weighted cross entropy loss:

L(bce) = –
1
B

[ B∑

(ijk... )∼PD

logσ
(

�wi, cj, tk , . . .�
)

+ κ ·
B∑

(ijk... )∼PN

logσ
(
–�wi, cj, tk , . . .�

)
]

, (15)

where B is the number of the samples drawn in a training step and κ is the negative sam-
pling constant. We additionally apply the warm-up steps explained in Additional file 1 to
speed-up the main training stage.
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Figure 2 Representation of SGNS and HOSGNS with embedding matrices and operations on embedding
vectors. Starting from a random walk realization on a static graph G = (V ,E ), SGNS takes as input nodes i and j
within a context window of size T , and maximizes σ (wi · cj). HOSGNS starts from a random walk realization on
a higher-order representation of time-varying graphH = (V ,E ,T ), takes as input nodes i(k) (node i at time k)
and j(l) (node j at time l) within a context window of size T and maximizes σ (�wi , cj , tk , sl�). In both cases, for
each input sample, we fix i and draw κ combinations of j or j, k, l from a noise distribution, and we maximize
σ (–wi · cj) (SGNS) or σ (–�wi , cj , tk , sl�) (HOSGNS) with their corresponding embedding vectors (negative
sampling)

4 Experiments
For the experiments we use time-varying graphs collected by the SocioPatterns collab-
oration (http://www.sociopatterns.org) using wearable proximity sensors that sense the
face-to-face proximity relations of individuals wearing them. After training the proposed
models (HOSGNS applied to P (stat), P (dyn) or P (stat|dyn)) on each dataset, embedding ma-
trices W, C, T (and S except for P (stat)) are mapped to embedding vectors wi, cj, tk (and
sl) where i, j ∈ V and k, l ∈ T . In Sect. 4.2, we use the learned representations to solve
different downstream tasks: node classification, temporal event reconstruction and miss-
ing event prediction. Finally, in Sect. 4.4 we show the visualization of the two-dimensional
projections of the embeddings for one of the chosen empirical datasets.

4.1 Experimental setup
4.1.1 Datasets
We performed experiments with both empirical and synthetic datasets describing face-to-
face proximity of individuals. We used publicly available empirical contact data collected
by the SocioPatterns collaboration [63], with a temporal resolution of 20 seconds, in a vari-
ety of contexts: in a school (“LyonSchool”), a conference (“SFHH”), a hospital (“LH10”),
a highschool (“Thiers13”), and in offices (“InVS15”) [64]. This is currently the largest col-
lection of open datasets sensing proximity in the same range and temporal resolution used
by modern contact tracing systems. In addition, we used social interactions data generated
by the agent-based-model OpenABM-Covid19 [65] to simulate an outbreak of COVID-19
in a urban setting.

We built a time-varying graph from each dataset, and for the empirical data we per-
formed aggregation on 600 seconds time windows, neglecting those snapshots without
registered interactions at that time scale. The weight of the link (i, j, k) is the number of
events recorded between nodes (i, j) in a certain aggregated window k. For synthetic data
we maintained the original temporal resolution and we set links weights to 1. Table 1 shows
statistics for each dataset.

http://www.sociopatterns.org
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Table 1 Summary statistics about empirical and synthetic time-varying graph data. In order: number
of single nodes |V|, number of steps |T |, number of events |E |, number of active nodes |V (T )|,
average weight of events 1

|E |
∑

e∈E ω(e), nodes density |V (T )|
|V||T | and links density 2|E |

|V|(|V|–1)|T |

Dataset |V| |T | |E | |V (T )| Average weight Nodes density Links density

LYONSCHOOL 242 104 44,820 17,174 2.806 0.6824 0.0148
SFHH 403 127 17,223 10,815 4.079 0.2113 0.0017
LH10 76 321 7435 4880 4.448 0.2000 0.0081
THIERS13 327 246 35,862 32,546 5.256 0.4046 0.0027
INVS15 217 691 18,791 22,451 4.164 0.1497 0.0012

OPENABM-2k-100 2000 100 1,243,551 198,537 1.0 0.9927 0.0062
OPENABM-5k-20 5000 20 632,523 99,966 1.0 0.9997 0.0025

4.1.2 Baselines
We compare our approach with several baseline methods from the literature of time-
varying graph embeddings, which learn time-stamped node representations: (1) DyANE
[8], which learns temporal node embeddings with DeepWalk, mapping a time-varying
graph into a supra-adjacency representation; (2) DynGEM [36], a deep autoencoder ar-
chitecture which dynamically reconstructs each graph snapshot initializing model weights
with parameters learned in previous time frames; (3) DynamicTriad [47], which cap-
tures structural information and temporal patterns of nodes, modeling the triadic closure
process; (4) DySAT [45], a deep neural model that computes node embeddings by a joint
self-attention mechanism applied on structural neighborhood and temporal dynamics; (5)
ISGNS [39], an incremental skip-gram embedding model based on DeepWalk. Details
about hyper-parameters used in each method can be found in Additional file 1.

4.2 Downstream tasks
4.2.1 Node classification
The aim of this task is to classify nodes in epidemic states according to a SIR epidemic
process with infection rate β and recovery rate μ. We simulated 30 realizations of the SIR
process on top of each empirical graph with different combinations of parameters (β ,μ).
We used similar combinations of epidemic parameters and the same dynamical process
to produce SIR states as described in [8]. Then we set a logistic regression to classify epi-
demic states S-I-R assigned to each active node i(k) during the unfolding of the spreading
process. We combine the embedding vectors of HOSGNS using the Hadamard (element-
wise) product wi ◦ tk . We compared with dynamic node embeddings learned from base-
lines. For fair comparison, all models produce time-stamped node representations with
dimension d = 128 as input to the logistic regression.

4.2.2 Temporal event reconstruction
In this task, we aim to determine if a generic event (i, j, k) (occurred or not) is in
H = (V ,E ,T ), i.e., if there is an edge between nodes i and j at time k. We create a ran-
dom time-varying graph H∗ = (V ,E∗,T ) with same active nodes V (T ) and a number of |E |
events that are not part of E (i.e. E ∩ E∗ = Ø). In other words E∗ contains random events
that may occur only between the nodes that are active in each snapshot, disregarding other
possible edges that involve inactive nodes. Embedding representations learned fromH are
used as features to train a logistic regression to predict if a given event (i, j, k) is in E or
in E∗. We combine the embedding vectors of HOSGNS as follows: for HOSGNS(stat), we
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use the Hadamard product wi ◦ cj ◦ tk ; for HOSGNS(dyn) and HOSGNS(stat|dyn), we use
wi ◦ cj ◦ tk ◦ sk . For baseline methods, we aggregate vector embeddings to obtain link-level
representations with binary operators (Average, Hadamard, Weighted-L1, Weighted-L2
and Concat) as already used in previous works [19, 66]. For fair comparison, all models
are required produce event representations with dimension d = 192.

4.2.3 Missing event prediction
In this task, we aim to predict the occurrence of an event (i, j, k) previously removed from
H = (V ,E ,T ). We create a pruned time-varying graph H† = (V ,E†,T ) with the same ac-
tive nodes V (T ) and a number of events |E†| = 70% |E | sampled from H. Embedding rep-
resentations learned from H† are used as features to train a logistic regression to predict
missing occurred events (i, j, k) ∈ E \ E† against the events E∗ of a random time-varying
graph H∗ = (V ,E∗,T ) (see above). We combine the embedding vectors of HOSGNS for
the classification task as explained in the event reconstruction task.

4.3 Results
In this section we first show downstream task performance results for the empirical and
synthetic datasets, then we compare the different approaches in terms of training com-
plexity, by measuring the number of trainable parameters and the training time with fixed
number of training steps.

Tasks were evaluated using train-test split. To avoid information leakage from training to
test, we randomly splitV and T in train and test sets (Vtr ,Vts) and (Ttr ,Tts), with proportion
70%–30%. For node classification, only nodes in Vtr at times in Ttr were included in the
train set, and only nodes in Vts at times in Tts were included in the test set. For event
reconstruction and prediction, only events with i, j ∈ Vtr and k ∈ Ttr were included in the
train set, and only events with i, j ∈ Vts and k ∈ Tts were included in the test set.

All approaches were evaluated for downstream tasks in terms of Macro-F1 scores in all
datasets. 5 different runs of the embedding model are evaluated on 30 different train-test
splits in every downstream tasks. We report the average score with standard error over all
splits. In node classification, every SIR realization is assigned to a single embedding run
to compute prediction scores. In event reconstruction and prediction tasks, a different
random time-varying graph realization H∗ to produce samples of non-occurring events
is assigned to each train-test subset.

4.3.1 Empirical datasets
Results for the classification of nodes in epidemic states are shown in Table 2. We re-
port here a subset of (β ,μ) but other combinations are available on Additional file 1.
DynGEM and DynamicTriad have low scores, since they are not devised to learn from
graph dynamics. Also DySAT has a bad performance in this task, since this method uses a
context prediction objective that preserves the local structure without properly encoding
dynamical patterns. HOSGNS(stat) is not able to capture the graph dynamics due to the
static nature of P (stat). ISGNS, due to the incremental training, performs only marginally
better than HOSGNS(stat). DyANE, HOSGNS(stat|dyn) and HOSGNS(dyn) show good per-
formance, with these two HOSGNS variants outperforming DyANE in most of the com-
binations of datasets and SIR parameters.

Results for the temporal event reconstruction task are reported in Table 3. Tempo-
ral event reconstruction is not performed well by DynGEM. DynamicTriad has better
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Table 2 Macro-F1 scores for classification of nodes in epidemic states according to different SIR
epidemic processes over empirical datasets. For each (β ,μ) we highlight the two highest scores and
underline the best one

(β ,μ) Model Dataset

LYONSCHOOL SFHH LH10 THIERS13 INVS15

(0.25, 0.002) DYANE 78.1 ± 0.5 67.0± 1.2 52.5± 1.7 71.9 ± 0.6 64.3 ± 0.8
DYNGEM 58.7± 2.8 35.9± 1.1 34.5± 0.7 35.5± 1.2 58.8± 1.1
DYNAMICTRIAD 31.0± 0.4 28.8± 0.4 29.9± 0.3 30.3± 0.2 30.4± 0.2
DYSAT 27.3± 0.2 27.4± 0.3 29.7± 0.2 30.2± 0.2 30.5± 0.2
ISGNS 63.5± 0.6 60.7± 0.8 54.1± 1.1 56.4± 0.6 52.3± 0.6

HOSGNS(stat) 55.5± 0.8 57.3± 1.1 45.9± 0.9 46.9± 0.7 44.5± 0.7
HOSGNS(dyn) 79.2 ± 0.5 69.1 ± 1.1 59.6 ± 1.5 71.8± 1.2 64.6 ± 0.7
HOSGNS(stat|dyn) 77.4± 0.6 67.4 ± 1.2 59.7 ± 1.2 72.5 ± 0.7 64.2± 1.0

(0.0625, 0.002) DYANE 72.2± 0.6 64.9± 1.7 59.0 ± 1.2 68.0± 0.5 60.2 ± 0.5
DYNGEM 56.4± 2.7 35.9± 4.1 35.8± 1.2 32.9± 1.2 55.0± 0.6
DYNAMICTRIAD 29.5± 0.5 33.1± 2.5 29.6± 0.4 27.4± 0.3 28.4± 0.2
DYSAT 26.4± 0.2 29.5± 1.3 29.5± 0.3 26.5± 0.2 28.5± 0.2
ISGNS 59.2± 0.3 57.1± 1.6 55.9± 1.0 49.0± 0.3 47.2± 0.3

HOSGNS(stat) 55.5± 0.7 57.6± 2.2 49.4± 0.8 45.5± 0.4 43.6± 0.5
HOSGNS(dyn) 73.5 ± 0.5 65.7 ± 1.6 61.1 ± 1.2 69.5 ± 0.3 59.6 ± 0.5
HOSGNS(stat|dyn) 72.9 ± 0.6 66.3 ± 1.9 58.2± 1.1 68.5 ± 0.4 59.0± 0.7

(0.1875, 0.001) DYANE 74.7 ± 0.7 67.7± 1.2 63.4 ± 1.8 72.7± 0.4 68.6 ± 0.4
DYNGEM 57.4± 2.8 36.2± 2.6 41.4± 1.3 34.8± 1.3 61.2± 0.9
DYNAMICTRIAD 32.3± 0.5 31.5± 0.8 30.5± 0.4 27.9± 0.3 30.0± 0.2
DYSAT 26.4± 0.2 29.4± 0.8 30.0± 0.3 27.7± 0.3 29.9± 0.2
ISGNS 65.1± 0.5 63.0± 1.4 60.2± 1.7 56.0± 0.5 52.5± 0.5

HOSGNS(stat) 56.9± 0.8 59.4± 1.7 48.5± 1.1 49.0± 0.6 46.2± 0.8
HOSGNS(dyn) 76.5 ± 0.4 68.6 ± 1.1 62.4± 1.7 74.8 ± 0.5 67.9 ± 0.7
HOSGNS(stat|dyn) 74.5± 0.4 69.4 ± 1.4 62.5 ± 2.0 73.6 ± 0.6 67.3± 0.5

performance with Weighted-L1 and Weighted-L2 operators, while DyANE, DySAT and
ISGNS have better performance using Hadamard and Weighted-L2. ISGNS has the sec-
ond best perfomances in most of the datasets. Since Hadamard product is explicitly used
in Eq. (8) to optimize HOSGNS, all HOSGNS variants show best scores with this opera-
tor. HOSGNS(stat) outperforms all approaches, setting new state-of-the-art results in this
task. The P (dyn) representation used as input to HOSGNS(dyn) does not focus on events
but on dynamics, so the performance for event reconstruction is slightly below DyANE,
while HOSGNS(stat|dyn) is comparable to DyANE.

Table 4 outlines the results for the missing event prediction task. In this case
HOSGNS(stat) has lower performance, but comparable with DynGEM and Dynamic-
Triad. DySAT and ISGNS work slightly better with Hadamard or Weighted-L1/L2 op-
erator, but they are outperformed by DyANE that has an excellent performance with
Hadamard or Weighted-L2. However HOSGNS(dyn) and HOSGNS(stat|dyn) have the best
scores, which emphasize the importance of leveraging dynamics to learn and predict miss-
ing information.

Results for HOSGNS models using other operators are available in Additional file 1. We
observe an overall good performance of HOSGNS(stat|dyn) in all downstream tasks, being
in almost all cases among the two highest scores, compared to the other two HOSGNS
variants which excel in certain tasks but have lower performance in the others.
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Table 3 Macro-F1 scores for temporal event reconstruction in empirical datasets. We highlight in
bold the two best scores for each dataset. For baseline models we underline their highest score

Model Operator Dataset

LYONSCHOOL SFHH LH10 THIERS13 INVS15

DYANE Average 56.4± 0.4 52.9± 0.5 52.3± 0.6 51.0± 0.4 52.7± 0.4
Hadamard 89.7± 0.3 86.5± 0.3 74.6± 0.6 94.7± 0.1 94.1± 0.1
Weighted-L1 90.2± 0.2 83.3± 0.5 73.3± 0.7 94.7± 0.1 94.4± 0.2
Weighted-L2 90.6± 0.2 84.5± 0.5 72.0± 0.5 95.0± 0.1 94.8± 0.2
Concat 65.7± 0.4 53.8± 0.4 56.2± 0.6 57.0± 0.4 50.9± 0.4

DYNGEM Average 57.7± 0.5 56.8± 0.7 54.8± 1.5 40.4± 1.5 42.8± 0.9
Hadamard 62.2± 0.4 55.1± 1.0 52.5± 1.6 40.8± 1.5 43.7± 1.0
Weighted-L1 58.4± 0.6 52.3± 0.7 50.9± 1.2 41.3± 1.6 44.8± 0.9
Weighted-L2 53.7± 0.6 47.0± 0.8 47.0± 1.3 39.2± 1.2 43.6± 0.6
Concat 60.4± 0.4 57.8± 0.3 48.9± 1.7 36.9± 1.3 45.7± 1.0

DYNAMICTRIAD Average 51.7± 0.2 56.9± 0.4 60.2± 0.6 58.1± 0.2 56.1± 0.3
Hadamard 60.3± 0.3 58.9± 0.4 59.5± 0.5 62.2± 0.3 64.7± 0.3
Weighted-L1 79.1± 0.4 72.3± 0.4 75.5± 0.6 70.8± 0.3 78.1± 0.2
Weighted-L2 77.4± 0.4 73.4± 0.4 77.4± 0.5 72.4± 0.2 78.9± 0.3
Concat 52.2± 0.2 53.4± 0.3 55.9± 0.7 55.1± 0.2 53.2± 0.3

DYSAT Average 51.1± 0.3 49.6± 0.4 51.6± 0.5 50.4± 0.2 50.1± 0.3
Hadamard 75.1± 0.5 52.9± 0.3 54.8± 0.6 71.1± 0.4 66.8± 0.5
Weighted-L1 72.4± 0.5 51.5± 0.3 56.1± 0.6 66.4± 0.4 64.8± 0.3
Weighted-L2 72.4± 0.5 51.7± 0.3 56.8± 0.7 66.5± 0.4 63.7± 0.4
Concat 50.0± 0.3 50.1± 0.4 52.3± 0.5 49.8± 0.2 50.9± 0.3

ISGNS Average 53.4± 0.4 50.3± 0.5 48.1± 0.6 49.4± 0.4 45.9± 0.5
Hadamard 90.1± 0.3 87.2± 0.4 80.8± 0.7 96.7± 0.2 96.7± 0.2
Weighted-L1 89.9± 0.3 87.7± 0.4 81.6± 0.4 96.8± 0.2 96.4± 0.2
Weighted-L2 89.7± 0.3 88.2 ± 0.4 81.7 ± 0.5 96.9 ± 0.1 96.8 ± 0.2
Concat 57.1± 0.5 50.2± 0.4 48.8± 0.7 52.7± 0.4 43.8± 0.4

HOSGNS(stat) Hadamard 98.5 ± 0.1 98.8 ± 0.1 99.8 ± 0.1 99.6 ± 0.1 99.1 ± 0.1
HOSGNS(dyn) Hadamard 90.3± 0.2 80.9± 0.4 68.1± 0.7 93.5± 0.2 87.2± 0.2
HOSGNS(stat|dyn) Hadamard 91.8 ± 0.2 86.7± 0.4 73.6± 0.6 94.3± 0.1 89.0± 0.2

4.3.2 Synthetic datasets
Here we report the performance of downstream tasks with the two synthetic datasets only
for HOSGNS(stat) and HOSGNS(dyn), given the similar performance of HOSGNS(dyn) and
HOSGNS(stat|dyn) in previous experiments. We also chose DyANE as the only baseline,
given its better performance compared to other baselines in empirical datasets.

Results for the node classification task for a set of (β ,μ) combinations are reported in
Table 5, with other combinations available in Additional file 1. These results reflect previ-
ous results on empirical datasets, with HOSGNS(dyn) performance comparable or superior
to DyANE.

Results for the event reconstruction and prediction tasks are reported in Table 6.
DyANE performs well with Hadamard operation, but nevertheless the scores are below
HOSGNS(dyn) and HOSGNS(stat) scores. Especially with HOSGNS(stat), the performance
of event reconstruction is not much larger than even prediction, contrary to empirical
datasets. This difference might be due to the different topological features of synthetic
networks respect to empirical ones.

4.3.3 Training complexity
We report in Table 7 the number of trainable parameters and training time duration for
each considered algorithm, when applied to an empirical graph (LyonSchool) and to the
synthetic ones. The proposed HOSGNS model requires a number of trainable parameters
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Table 4 Macro-F1 scores for missing event prediction in empirical datasets. We highlight in bold the
two best scores for each dataset. For baseline models we underline their highest score

Model Operator Dataset

LYONSCHOOL SFHH LH10 THIERS13 INVS15

DYANE Average 56.8± 0.6 50.6± 0.8 51.3± 1.0 49.1± 0.6 49.3± 0.8
Hadamard 87.3± 0.3 73.5± 0.6 67.0± 1.0 87.2± 0.3 80.1± 0.8
Weighted-L1 87.8± 0.3 73.3± 0.6 65.9± 1.0 84.0± 0.4 78.4± 0.6
Weighted-L2 88.5± 0.2 73.7± 0.5 66.1± 1.0 84.4± 0.4 78.9± 0.6
Concat 64.4± 0.5 52.4± 0.8 51.9± 1.0 57.0± 0.6 51.4± 0.7

DYNGEM Average 56.2± 0.5 51.8± 0.8 52.0± 1.1 49.7± 0.5 50.9± 0.7
Hadamard 54.8± 0.6 51.3± 0.7 51.7± 1.2 44.7± 0.7 50.9± 0.6
Weighted-L1 55.5± 0.4 48.5± 0.8 50.2± 1.0 52.2± 0.4 49.8± 0.7
Weighted-L2 53.2± 0.7 47.8± 0.9 48.0± 1.1 48.9± 0.6 45.3± 0.6
Concat 58.2± 0.5 50.4± 0.8 46.4± 1.4 48.8± 0.5 49.9± 0.6

DYNAMICTRIAD Average 51.4± 0.4 52.6± 0.6 53.0± 0.8 52.0± 0.4 49.9± 0.7
Hadamard 53.1± 0.4 49.5± 0.6 52.0± 0.8 51.7± 0.5 49.8± 0.6
Weighted-L1 64.3± 0.4 56.6± 0.7 54.2± 0.9 53.6± 0.4 47.2± 0.6
Weighted-L2 64.5± 0.4 57.3± 0.7 54.9± 0.9 54.5± 0.5 47.0± 0.6
Concat 52.6± 0.3 51.8± 0.5 52.7± 0.9 51.5± 0.3 49.9± 0.6

DYSAT Average 51.3± 0.4 51.6± 0.6 52.5± 0.8 50.0± 0.4 50.3± 0.6
Hadamard 73.8± 0.6 52.5± 0.7 56.6± 0.7 68.5± 0.5 61.5± 0.8
Weighted-L1 71.3± 0.5 52.0± 0.6 57.6± 0.8 63.2± 0.6 64.4± 0.5
Weighted-L2 70.7± 0.5 51.5± 0.7 56.5± 0.8 63.1± 0.5 63.4± 0.5
Concat 49.2± 0.4 48.8± 0.8 52.4± 0.9 49.8± 0.5 50.4± 0.6

ISGNS Average 52.4± 0.6 49.5± 0.8 44.9± 0.9 48.0± 0.4 42.7± 0.8
Hadamard 79.8± 0.4 59.3± 0.7 61.1± 1.2 59.3± 0.6 51.7± 0.7
Weighted-L1 80.8± 0.3 59.8± 0.7 61.7± 1.0 59.0± 0.6 49.8± 0.7
Weighted-L2 81.5± 0.3 60.2± 0.7 62.5± 0.9 59.9± 0.6 51.5± 0.7
Concat 55.8± 0.7 50.8± 0.6 46.8± 0.8 52.2± 0.5 48.5± 0.6

HOSGNS(stat) Hadamard 52.1± 0.4 43.8± 0.6 34.2± 0.2 55.9± 0.6 43.0± 0.5
HOSGNS(dyn) Hadamard 89.2 ± 0.2 74.9 ± 0.6 67.1 ± 0.8 90.7 ± 0.3 81.4 ± 0.5
HOSGNS(stat|dyn) Hadamard 89.2 ± 0.3 76.3 ± 0.7 68.5 ± 1.0 89.9 ± 0.3 80.8 ± 0.6

Table 5 Macro-F1 scores for classification of nodes in epidemic states according to different SIR
epidemic processes for synthetic datasets. For each (β ,μ) we highlight the best score

(β ,μ) Model Dataset

OPENABM-2k-100 OPENABM-5k-20

(0.25, 0.002) DYANE 57.9 ± 1.8 59.6± 1.7

HOSGNS(stat) 31.2± 0.1 27.8± 0.6
HOSGNS(dyn) 57.5± 1.8 61.0 ± 1.1

(0.0625, 0.002) DYANE 61.8 ± 0.4 53.8± 1.3

HOSGNS(stat) 29.8± 0.2 29.4± 1.4
HOSGNS(dyn) 59.5± 0.9 54.5 ± 1.4

(0.1875, 0.001) DYANE 60.3± 1.4 59.6± 1.5

HOSGNS(stat) 31.9± 0.2 27.4± 0.7
HOSGNS(dyn) 60.5 ± 1.1 60.9 ± 1.0

that is orders of magnitude smaller than other approaches, with a training time consider-
ably shorter as the number of nodes increases, given a fixed number of training iterations.
ISGNS has a comparable number of parameters because it incrementally updates O(|V|)
parameters moving across the |T | snapshots. DySAT training time is considerably higher
due to the computational overhead of the self-attention mechanism.
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Table 6 Macro-F1 scores in temporal event reconstruction and missing event prediction for
synthetic datasets. We highlight in bold the best two scores for each dataset. For baseline model we
underline their highest score

Model Operator Dataset

OPENABM-2k-100 OPENABM-5k-20

Reconstruction Prediction Reconstruction Prediction

DYANE Average 52.2± 0.1 51.7± 0.1 51.9± 0.1 51.9± 0.1
Hadamard 76.4± 0.1 72.4± 0.2 90.5 ± 0.3 77.8± 0.2
Weighted-L1 70.3± 0.1 67.4± 0.2 78.2± 0.7 70.5± 0.3
Weighted-L2 70.3± 0.1 67.7± 0.1 78.8± 0.5 70.9± 0.3
Concat 53.8± 0.1 54.6± 0.1 52.5± 0.1 52.5± 0.2

HOSGNS(stat) Hadamard 91.1 ± 0.1 87.0 ± 0.1 98.7 ± 0.1 86.0 ± 0.1
HOSGNS(dyn) Hadamard 78.7 ± 0.1 79.8 ± 0.2 82.8± 0.3 82.4 ± 0.2

Table 7 Number of trainable parameters and training time of each time-varying graph
representation learning model for LYONSCHOOL and the two synthetic datasets. The embedding
dimension is fixed to 128, technical specifications of the computing system and hyper-parameters
configuration are reported in Additional file 1

Model Dataset

LYONSCHOOL OPENABM-2k-100 OPENABM-5k-20

|V| = 242, |T | = 104 |V| = 2000, |T | = 100 |V| = 5000, |T | = 20

Tr. parameters Tr. time Tr. parameters Tr. time Tr. parameters Tr. time

DYANE 4,396,544 62 s 50,825,472 1014 s 25,591,296 448 s
DYNGEM 459,270 516 s 1,867,428 10,765 s 4,270,428 23,307 s
DYNAMICTRIAD 3,221,632 1131 s 25,600,128 17,191 s 12,800,128 12,625 s
DYSAT 98,336 18,323 s 323,232 152,976 s 707,232 8958 s
ISGNS 61,952 381 s 512,000 5895 s 1,280,000 3062 s

HOSGNS(stat) 75,264 316 s 524,800 548 s 1,282,560 724 s
HOSGNS(dyn) 88,576 303 s 537,600 565 s 1,285,120 734 s

4.4 Embedding space visualization
One of the main advantages of HOSGNS is that it is able to disentangle the role of nodes
and time by learning representations of nodes and time intervals separately. In this sec-
tion, we include plots with two-dimensional projections of these embeddings, made with
UMAP [67] for manifold learning and non-linear dimensionality reduction. With these
plots, we show that the embedding matrices learned by HOSGNS(stat) and HOSGNS(dyn)

successfully capture both the structure and the dynamics of the time-varying graph.
Dynamical information can be represented by associating each embedding vector to

its corresponding time interval k ∈ T , and graph structure can be represented by asso-
ciating each embedding vector to a community membership. While community mem-
bership can be estimated by different community detection methods, we choose to use a
dataset with ground truth data containing node membership information. We consider the
LyonSchool dataset as a case study, widely investigated in literature respect to structural
and spreading properties [68–73]. This dataset spans two days and includes metadata (Ta-
ble 8) concerning the class of each participant of the school (10 different labels for children
and 1 label for teachers), and we identify the community membership of each individual
according to these labels (class labels). Moreover we also assign time labels according to
activation of individual nodes in temporal snapshots.
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Table 8 Number of class components for each labelled class in LYONSCHOOL dataset

Class name Class label Number of children
or teachers

CP-A 0 23
CP-B 1 25
CE1-A 2 23
CE1-B 3 26
CE2-A 4 23
CE2-B 5 22
CM1-A 6 21
CM1-B 7 23
CM2-A 8 22
CM2-B 9 24
Teachers 10 10

Figure 3 Two-dimensional projections of the 128-dim embedding manifold spanned by embedding
matrices W (left of each panel) and T (right of each panel), trained on LYONSCHOOL data, of HOSGNS model
trained on: (a)P (stat) and (b)P (dyn) . These plots show how the community structure and the evolution of
time is captured by individual node embeddings {wi}i∈V and time embeddings {tk}k∈T

To show how disentangled representations capture different aspects of the evolving
graph, in Fig. 3 we plot individual representations of nodes i ∈ V and time slices k ∈ T
labeled according to the class membership and the time snapshot respectively. Both
HOSGNS(stat) and HOSGNS(dyn) capture the community structure (left of each panel)
with node embeddings clustered into the ground-truth classes, but dynamical informa-
tion expressed by time embeddings (right of each panel) is different for the two methods.
Due to the time-respecting topology of the supra-adjacency graph, HOSGNS(dyn) cap-
tures the causality of node co-occurrences encoding temporal slices into a time-ordered
one-dimensional manifold. HOSGNS(stat) is built on the snapshot representation, invari-
ant over time permutation, and thus the temporal encoding is constrained to the local
connectivity structure of graph slices.

In Fig. 4 we visualize representations of temporal nodes i(k) ∈ V (T ), computed as
Hadamard products of nodes and time embeddings. HOSGNS(stat) projections show clus-
ters of nodes active at multiple times representing different social situations: interactions
during lectures present uniform class labels and heterogeneous time labels, whereas in-
teractions occurred in social spaces with mixed classes present uniform time labels and
heterogeneous class labels. This is in line with previous studies [13], where different pat-
terns of interactions are found during school activities, and gatherings in social spaces
(such as canteen and playground) are more concentrated during lunch time. HOSGNS(dyn)

projected embeddings, due to the causality information encoded in time representations,
display trajectories of social interactions that span over time in the embedding space, with
communities interacting and mixing at different points of the day.
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Figure 4 Two-dimensional projections of the 128-dim embedding manifold spanned by dynamic node
embeddings, trained on LYONSCHOOL data and obtained with Hadamard products {wi ◦ tk}(i,k)∈V (T ) between

rows of W (node embeddings) and T (time embeddings), from HOSGNS model trained on: (a)P (stat) and
(b)P (dyn) . We highlight the temporal participation to communities (left of each panel) and the time interval
of activation (right of each panel)

Figure 5 Two-dimensional projections of the 128-dim embedding manifold spanned by dynamic node
embeddings for LYONSCHOOL data learned with baseline methods. As in Fig. 4 we highlight the temporal
participation to communities (top of each panel) and the time interval of activation (bottom of each panel)

In Fig. 5 we see dynamic node embeddings computed with baseline methods with-
out dissociating structure and time. The embedding space in DyANE encodes properly
the time-aware topology, since the model is based on the supra-adjacency graph like
HOSGNS(dyn). Also DynamicTriad captures significant temporal structures, but it is less
effective to express the overall dynamics since it is limited in modeling the triadic closure
process. Other relevant interaction patterns are instead accounted with supra-adjacency
random walks. DynGEM, DySAT and ISGNS embedding spaces do not encode any struc-
tural or temporal information.

5 Conclusions
In this paper, we introduce Higher-Order Skip-Gram with Negative Sampling (HOSGNS)
for time-varying graph representation learning. We generalize the skip-gram embedding
approach that implicitly performs a factorization of the shifted PMI matrix to perform
implicit factorization of a shifted PMI tensor. We show how to optimize HOSGNS for
the generic nth-order case, and how to apply 3rd-order and 4th-order SGNS on different
higher-order representations of time-varying graphs.

The embedding representations learned by HOSGNS outperform other methods in the
literature and set new state-of-the-art results for solving downstream tasks. By learning
embeddings on empirical time-resolved face-to-face proximity data, such representations
can be effectively used to predict the outcomes of a SIR spreading process over the time-
varying graph. They also can be effectively used for network reconstruction and link pre-
diction.
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HOSGNS is able to learn more compact representations of time-varying graphs due to
the reduced number of parameters, with computational complexity that is comparable or
lower than other state-of-the-art methods. By learning disentangled representations of
nodes and time intervals, HOSGNS uses a number of parameters in the order of O(|V| +
|T |), while models that learn node-time representations need a number of parameters that
is at least O(|V| · |T |).

While other methods such as DyANE assume that the whole temporal network has to be
known, here we relax this assumption and we show that the learned representations can be
used also for predicting events that are not seen during the representation learning phase.
Yet, one limitation still holds: the transductivity of the model makes it unable to generalize
the embedding representations outside the set of observed temporal slices. A future work
to tackle this limitation is the extension of the methodology to include prior constraints,
such as temporal smoothness and stability of embeddings over consecutive time slices, or
to equip the model with an inductive framework.

We show that HOSGNS can be intuitively applied to time-varying graphs, but this
methodology can be easily adapted to solve other representation learning problems that
involve multi-modal data and multi-layered graph representations, where the purpose is
to factorize higher-order dependencies between elementary units of the system. Beyond
these applications, extensions of the model can find usage in feature learning on higher-
order systems, i.e. hypergraphs and simplicial complexes, where interactions among ver-
tices are intrinsically polyadic.
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