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The universal visitation law of human 
mobility

Markus Schläpfer1,2,3,9, Lei Dong1,4,9 ✉, Kevin O’Keeffe1,9, Paolo Santi1,5, Michael Szell1,6,7, 
Hadrien Salat3,8, Samuel Anklesaria1, Mohammad Vazifeh1, Carlo Ratti1,10 & 
Geoffrey B. West2,10

Human mobility impacts many aspects of a city, from its spatial structure1–3 to its 
response to an epidemic4–7. It is also ultimately key to social interactions8, 
innovation9,10 and productivity11. However, our quantitative understanding of the 
aggregate movements of individuals remains incomplete. Existing models—such as 
the gravity law12,13 or the radiation model14—concentrate on the purely spatial 
dependence of mobility flows and do not capture the varying frequencies of recurrent 
visits to the same locations. Here we reveal a simple and robust scaling law that 
captures the temporal and spatial spectrum of population movement on the basis of 
large-scale mobility data from diverse cities around the globe. According to this law, 
the number of visitors to any location decreases as the inverse square of the product 
of their visiting frequency and travel distance. We further show that the 
spatio-temporal flows to different locations give rise to prominent spatial clusters 
with an area distribution that follows Zipf’s law15. Finally, we build an individual 
mobility model based on exploration and preferential return to provide a mechanistic 
explanation for the discovered scaling law and the emerging spatial structure. Our 
findings corroborate long-standing conjectures in human geography (such as central 
place theory16 and Weber’s theory of emergent optimality10) and allow for predictions 
of recurrent flows, providing a basis for applications in urban planning, traffic 
engineering and the mitigation of epidemic diseases.

The movement of people is fundamental to our societies: it enables 
social, economic and cultural exchanges8,17–19, shapes the form of  
cities1,20,21, gives rise to traffic congestion and pollution22, and fuels the 
spread of contagious diseases7,23. For all these aspects, it is crucial to 
understand not only how many individuals move from place to place 
but also how often they do so. Indeed, as places attract individuals for 
reasons as diverse as work, shopping or recreation, mobility fluxes 
span a wide range of both temporal and spatial scales, from daily vis-
its within the same neighbourhood to once-in-a-lifetime visits that 
require travel across continents24,25. It is this heterogeneity of trips that 
dictates the rate at which individuals from different neighbourhoods, 
regions or parts of the world share the same space and may interact 
with each other.

However, despite this importance, our understanding of the flows of 
individuals to locations has remained surprisingly incomplete. Exist-
ing large-scale mobility studies25 and state-of-the-art models—such as 
the gravity law12,13, the radiation model14 and related approaches26–29— 
concentrate on the spatial dependence of population flows (for 
example, the aggregate number of individuals travelling between 
two locations) and do not consider recurrent movements associated 
with varying frequency of visitation; that is, the question of how the 

number of visitors to a location depends on their visitation frequency 
has remained largely unanswered. At the same time, fine-grained mod-
els for the mobility behaviour of individuals30,31—such as the exploration 
and preferential return (EPR) model32 or the recently proposed con-
tainer model33—reproduce the frequency with which a single individual 
visits different locations. However, the link between this microscopic 
behaviour and the temporal spectrum of recurrent mobility fluxes aris-
ing from an entire population is missing. This ignorance of the temporal 
spectrum of flows may lead to misconceptions of the spatial mixing of 
individuals, and thus may have far-reaching practical consequences for 
the mitigation of epidemic spreading, urban planning, infrastructure 
design and many other applications.

Here we address this gap and decompose the flows of individuals 
into the underlying distribution of both travel distance and visitation 
frequency, allowing us to simultaneously consider the spatial and tem-
poral spectrum of mobility fluxes. We find a powerful scaling law that 
governs the number of visitors to any location based on how far they are 
travelling and how often they are visiting. A microscopic model shows 
that the discovered scaling law accords well with the EPR mechanism of 
individual mobility, establishing a link between periodic movements 
at the individual level and the resulting flows at the population level. 
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The visitation law opens up unprecedented possibilities to accurately 
predict flows between locations, and it provides large-scale empiri-
cal support for well established yet largely untested conjectures in 
human geography (that is, central place theory (CPT) and Weber’s 
theory of emergent optimality). Our findings are derived on the basis 

of the analysis of mobility data from millions of anonymized mobile 
phone users in highly diverse urban regions across the world (see ‘Data 
description’ in Methods): Greater Boston in the United States (North 
America), Lisbon, Porto and Braga in Portugal (Europe), Singapore 
(Asia), Dakar in Senegal (Africa) and Abidjan in Ivory Coast (Africa).
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Fig. 1 | The universal distance–frequency distribution of population flows. 
a, For each location, we count the number of visitors who are living at a distance 
[r, r + δr) away and are visiting with frequency f. The map colours indicate the 
population density derived from the mobile phone data (users per grid cell).  
b, For a fixed frequency f, the visitor flow to a specific location, ρi(r, f ), 
decreases with increasing distance r. c, When keeping the distance r fixed, the 
flow decreases similarly with increasing frequency f. d, Rescaled values 
collapse onto a single curve, making the flows dependent only on the single 

variable rf. The entire distance–frequency distribution is very well described 
by a power law of the form ρi(r, f ) = μi/(rf )η, with exponent η ≈ 2 (η is the slope of 
the best-fit line by the least squares method; standard error in parentheses).  
e, Rescaled flows across all studied regions, demonstrating that the same 
scaling relation holds for radically different urban regions worldwide. Symbols 
are average values across all locations in each region. To visually compare the 
different world regions, the shown curves were superimposed by normalizing 
the distance–frequency distribution of each individual location.
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Fig. 2 | Constant effective travel distance per visitor. a–f, The average 
effective distance, d⟨ ⟩i, covered by an individual over time to visit a given 
location i is largely invariant across space and independent of the 
attractiveness of the location (in terms of number of visitors) in Greater Boston 
(a), Singapore (b), Dakar (c), Abidjan (d) and Lisbon (e). The R2 values of the 
linear regression between the number of visitors and average distance per 
visitor, as shown in the scatter plots (f), are very small (Greater Boston, 

R2 = 0.0115; Singapore, R2 = 0.0298; Dakar, R2 < 0.001; Abidjan, R2 < 0.001; 
Lisbon, R2 = 0.001). Notice that there are some ‘anomalous’ locations that are 
associated with larger effective travel distances. In the majority of cases, these 
locations correspond to ports (for example, Singapore and Dakar) or tourism 
attractions (Lisbon) and thus have an intrinsic reason to attract visitors from 
particularly far away.
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Distance–frequency scaling of spectral population 
flows
To explore both spatial and temporal components of recurrent popu-
lation flows, we partitioned each geographical region into a 
high-resolution square grid (depending on the granularity of the data-
set, we used 500 m × 500 m cells for Greater Boston and Singapore and 
1 km × 1 km cells for all other regions; see Methods) and estimated the 
home location of each mobile phone user, being defined as the grid 
cell in which the user spent most of the time at night (Methods). We 
then determined for each location i the set of unique users who visited 
the corresponding cell and grouped them according to the distance r 
of their home location (using distance bins of equal length δr = 1 km, 
Fig. 1a) and according to their visitation frequency f (number of days 
over a period T during which they visited for a minimum duration  
τ, see Methods). Finally, to factor out the effects of area size, we  
normalized the resulting visitor counts, Ni(r, f), by the area of their 
origin, giving ρ r f N r f r( , ) = ( , )/ ( )i i A , with r r r( ) ≈ 2π δA . We will refer to 
the quantity ρi(r, f) as the ‘spectral’ flow as we essentially decompose 
an aggregate population flow from a given distance into its underlying 
frequency spectrum. We now show that ρi(r, f) does not depend on r 
and f separately but on the single rescaled variable rf.

We start by illustrating the behaviour of ρi(r, f) with the example of 
Back Bay West, a central location in Boston (Fig. 1a). The distribution 
of the spectral flows spans a wide range of distance and frequency 
values. For a fixed frequency f, the values of ρi(r, f) systematically 
decrease with travel distance r (Fig. 1b), which is a well known feature 

of aggregate flows12,13,25 that do not explicitly distinguish between dif-
ferent frequencies of travel. Similarly, for a fixed distance r, the flows 
ρi(r, f) decrease systematically with increasing visitation frequency f 
(Fig. 1c)—frequent visitors to a location tend to be outnumbered by 
infrequent visitors. Strikingly, a close comparison of Fig. 1b and Fig. 1c 
reveals that, apart from noise in the data, ρi(r, f) scales identically with r 
and f; that is, ρi(λr, f) ≈ ρi(r, λf) for any r, f and dimensionless factor λ > 0. 
As a consequence of this symmetry, the data collapse onto a single 
curve when plotted against the rescaled variable rf (Fig. 1d), which 
shows that the spectral flows are actually a function of the single vari-
able rf. Extending this analysis to tens of thousands of locations in our 
datasets demonstrates that the same distance–frequency scaling is 
valid in very different urban systems across the world (Fig. 1e, Extended 
Data Figs. 1–6, Supplementary Figs. 4–18) and is well reproduced by a 
power law of the form

ρ r f
μ

rf
( , ) =

( )
, (1)i

i
η

with scaling exponent η ≈ 2. The proportionality constant μi deter-
mines the magnitude of the flows and thus reflects the location-specific 
‘attractiveness’. The discovered scaling relation is truly remarkable as 
the regularity is mostly unaffected by location-specific conditions, 
including strong variations in surrounding population densities or in 
the level of economic or infrastructural development.

The universality of equation (1) calls for a simple theoretical argu-
ment for the attraction of individuals to locations: the willingness to 
visit a particular destination is primarily due to the commonly shared 
interest for its characteristics, and is thus approximately constant 
across all origins. Indeed, for a fixed destination, the inverse square 
law revealed here (equation (1) with η = 2) is equivalent to (1/2)ρv2 ≡  
constant, where the combined variable v := rf corresponds to the indi-
viduals’ average velocity towards the destination (the effective dis-
tance they cover per unit of time to get there). This relation can then 
be interpreted as the physical manifestation of the constant collective 
effort (quantified by the energy term (1/2)ρv2) that people are willing 
to make to visit the location (this argument is derived in detail from the 
standard equation of motion in Supplementary Section III).

As a direct consequence of the discovered visitation law, we expect 
that the effective distance covered per visitor over time, d⟨ ⟩i, to get to 
a given destination i, does not depend on the attractiveness μi of the 
location. More precisely, d d N⟨ ⟩ = /i i i

tot tot, where di
tot is the effective dis-

tance travelled towards location i, summed over all its visitors, Ni
tot, 

and accumulated over an observation period T (Methods). Figure 2 
confirms that the values of d⟨ ⟩i are indeed statistically invariant across 
space, so that the effective distance travelled per visitor and time unit 
constitutes a conserved quantity. This invariance might be surprising 
because it means that more attractive places differ only in the larger 
number of visitors they receive. They do not increase, however, the 
effective distance travelled per visitor, as one might expect.

Spatial distribution of the attractiveness
The spatial distribution of the location-dependent attractiveness μi, 
obtained from the data through linear regression of the log-transformed 
values of equation (1), is depicted in Fig. 3a for Greater Boston. We 
observe prominent spatial clusters, where larger clusters with higher 
values of μi (for example, the city of Boston) tend to be surrounded by 
smaller clusters with lower values of μi. This formation of centres and 
subcentres is consistent with the literature on urban structure20,21,34 
as well as with previous empirical studies of urban mobility35,36, being 
largely explained by the agglomeration effect of cities (that is, the 
tendency of businesses and facilities to cluster). To characterize the 
size distribution of these clusters in terms of their area, we applied 
the city clustering algorithm (CCA)37,38. First, all attractiveness values 
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Fig. 3 | Spatial structure of the location-specific attractiveness.  
a, Geographic distribution of the attractiveness values μi across the Greater 
Boston area. b, Area ratio of the largest spatial cluster to all spatial clusters 
versus the minimum attractiveness threshold μ* as derived through the 
CCA37,38. For very small values of μ*, the entire geographic area is merged into 
one single cluster (resulting in an area ratio of about 1). Conversely, for very 
large values of μ*, only one cluster (Boston downtown) would exist (again 
resulting in a ratio of about 1). c, Detected clusters at the critical value of 
μ* ≈ 100.5, where the area ratio of the largest cluster is minimized (vertical 
dashed line in b). Distinct clusters are represented by different colours.  
d, Rank–size distribution at the critical value of μ*. Consistent with Zipf’s law, 
the data are well approximated by a power law with exponent ζ = −1.17.
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less than a minimum value μ* are set to zero. Second, locations with 
non-zero values that are contiguous in space are merged recursively 
until all locations with non-zero values belong to one specific cluster. 
We determined the threshold μ* by plotting the ratio of the area of the 
largest cluster to the sum of the areas of all clusters formed for different 
μ* (Fig. 3b), providing a critical value of μ* where the ratio is minimized. 
This value marks the onset of the emergence of a single giant cluster 
and thus serves as a natural choice of μ*. We then ranked the clusters 
by their area, so that Rank = 3 represents the third-largest cluster, and 
find that the area distribution is well approximated by Size ∝ Rankζ 
with the rank–size exponent ζ = −1.17 (Fig. 3d). This shows that the area 
distribution of the clusters follows Zipf’s law (exponent of about −1), 
a fundamental regularity in city science that generally applies to the 
population and area distribution of cities39,40.

Microscopic model of spectral population flows
Our empirical analysis reveals that (1) spatio-temporal population flows 
to locations follow a highly reproducible scaling law and (2) although 
the magnitudes of these flows vary substantially across locations, they 
show a systematic spatial clustering. We now present a model that 
predicts these two key observations from the mobility behaviour of 
individuals. To capture the main mechanisms of individual mobility, we 
use the well known EPR model32 as a starting point. At each time step, an 
individual (agent) chooses, with a certain probability, to either explore a 
new, previously unvisited location or, with complementary probability, 
to return to one of the previously visited locations (with a preference for 
those locations that the agent visited more often). If the agent decides 
to explore a new location, the radial distance Δr of such displacement 
is drawn from a heavy-tailed jump-size distribution P(Δr) ~ |Δr|−1−α with 
displacement exponent α ≈ 0.55, while the direction (angle) θ is drawn 
from a uniform distribution P(θ) ~ (2π)−1 (Methods), where ~ indicates 
‘is distributed as’. Numerical simulation of a population of agents on a 
regular square grid demonstrates that the EPR model indeed generates 

the distance–frequency scaling of the flows to individual locations (key 
observation 1) with a scaling exponent of η ≈ 2, which is in excellent 
agreement with the empirical observations (Extended Data Fig. 7). 
However, as the agents choose their locations independently of each 
other, the EPR model is unable to reproduce the heterogeneity in the 
attractiveness of locations and their systematic spatial clustering (key 
observation 2). In reality, the trajectories of individuals are not inde-
pendent but spatially coupled through common attraction points41: 
people tend to go to popular places (for example, a shopping area) 
that are frequented by others. Thus, by ignoring this coupling of the 
agents’ motion, the EPR model generates attractiveness values μi that 
are rather homogeneous and uniform across space (Extended Data 
Fig. 7), in systematic conflict with the empirical observations (Fig. 3a).

To resolve this discrepancy, we couple the agents’ motion in the 
model so that, when exploring new locations, they are preferentially 
attracted towards highly frequented areas. To that end, the radial jump 
distance Δr is still sampled from the same distribution as in the original 
EPR model, but the direction θ is no longer drawn uniformly at random. 
Instead, directions towards regions of high visitation are preferentially 
selected as follows. Let, for a given cell i, d θ R˜( ; )i  be the effective dis-
tance travelled by all agents to all cells within distance R and between 
angles θ and θ + dθ (the quantity d̃i thus measures the visitation level 
of the cells in each direction in terms of the travel efforts by the agents).  
Then agents starting from cell i sample θ from the distribution 
P θ R ν d θ R( ; , ) ~ ~ ( ; )i

ν with parameter ν ≥ 0 (Fig. 4a). We will refer to this 
modification of the EPR model as the preferential exploration and 
preferential return (PEPR) model (an alternative mechanism of pref-
erential exploration has been proposed by Pappalardo et al.41; however, 
it imposes the gravity law12, and thus a presumed aggregate behaviour, 
on the motion of the agents). Simulations (Fig. 4b–f) show that the 
PEPR model not only generates the distance–frequency scaling of  
the spectral flows with the correct scaling exponent but also leads to 
the formation of clear spatial clusters that follow an area distribution 
that is quantitatively consistent with the data. Note that the exact 
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Fig. 4 | Microscopic model of spectral population flows. a, Schematic of the 
PEPR model. At each time step, an individual (agent) decides to explore a 
previously unvisited location with probability Pnew. The radial distance Δr and 
direction θ of this displacement are drawn from random distributions that 
capture the characteristic jump-size distribution of human trajectories and the 
propensity to explore popular areas. With probability 1 − Pnew the agent returns 
to a previously visited location. b–f, Results for na = 105 agents on a regular 
square grid (with parameters α = 0.55, σ = 0.6 and γ = 0.21 according to existing 
measurements32 and R = 10 and ν = 4 determined experimentally, see Methods). 
Panels b, c show the spectral flows, obtained via numerical simulation of the 

model and averaged over all analysed grid cells, exhibiting the scaling 
properties of the empirically observed population flows; that is, they obey 
equation (1) and scale as the inverse square of travel distance and visitation 
frequency. Consistent with the empirical results, the model gives rise to a 
spatial clustering of those cells that attract a high number of individuals (d), 
whereas the effective travel distance per agent and time unit remains spatially 
invariant (e). The area distribution of the spatial clusters follows Zipf’s law 
(derived through the application of the CCA with threshold μ* = 10 to a total of 
50 model realizations, leading to a power-law scaling with exponent 
ζ = −1.14 ± 0.13 (s.d.)), which is again in agreement with the data (f).
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spatial layout of the model clusters is different to the empirical data, 
as the current model setup ignores many complexities that probably 
influence the development of human settlements, such as natural 
resources, rivers and topography. However, such factors can be inte-
grated in future model extensions.

Prediction of origin–destination flows
Equation (1) implies that the magnitude of the entire distance– 
frequency spectrum of flows to any location can, in principle, be obtained  
by just knowing one single point on the universal scaling curve. This 
simplification opens up a wide range of possibilities for the prediction 
of various flow quantities between each pair of locations. As an exam-
ple, for a given destination j, the magnitude μj can be estimated from 
the population density, assuming that individuals return back home 
on a daily basis25, which generates a local flow with minimum frequency 
fhome ≈ 1 d−1. This leads to the approximation μ ρ j r f≈ ( )j jpop

2
home, where 

ρpop( j) is the population density at location j and rj is the distance to the 
boundary of the location (see derivation in Methods). Once the value 
of μj is established, it is straightforward to calculate the number of trips 
or the number of unique visitors from any origin location. These pre-
dictions are in remarkable agreement with the data (Fig. 5). Besides 
population density, other input quantities such as simple traffic counts 

are equally well suited (especially for those locations where population 
density is not a good predictor, see Supplementary Information).

To put the accuracy of these predictions in relation to existing 
approaches, we compared them with those of the gravity model12,13 
and the radiation model14, which at present are the most widely used 
mobility models for aggregate population flows25 (Methods). These 
established approaches do not take into account the frequency compo-
nent of the flows. Thus, the gravity model requires separate parameter 
calibrations for each specific flow quantity, so that knowing the num-
ber of trips does not allow inference of how many unique individuals 
are actually visiting a location over time and vice versa. Similarly, as 
each individual may give rise to several trips to multiple locations, 
the radiation model can predict the number of trips but not the num-
ber of unique individuals who are visiting a location over time. This 
ignorance of the frequency spectrum may lead to biased conclusions 
regarding the spatial mixing of people with potentially far-reaching 
consequences, for example, for understanding the spreading of infec-
tious diseases. Our framework addresses this limitation. It is applicable 
in particular to fine-grained spatial scales (Fig. 5a, again using Back Bay 
West in Boston as an illustrative example) and it allows for the simul-
taneous prediction of both the number of trips and the number of 
individuals across the entire frequency spectrum without the need for 
model calibrations (Fig. 5b, c). Predictions of origin–destination flows 
in all world regions considered here empirically confirm the enhanced 
performance of our framework (Fig. 5d).

Discussion
Given the extensive literature on and detailed analyses of movement 
and transport in cities, it is surprising that the simple but powerful 
visitation law derived here had not yet been discovered. It states that 
the number of visitors to any location scales as the inverse square of 
both travel distance and visitation frequency and thus advances our 
understanding of human mobility by the frequency spectrum of flows. 
We have shown that the scaling relation is remarkably robust across 
different geographies, cultures and levels of development, and that it 
is consistent with our state-of-the-art understanding of the mobility 
patterns of individuals.

This new perspective on human mobility makes it possible to scru-
tinize long-standing conjectures in human geography and spatial 
economics. Indeed, the distance–frequency distribution of visits 
corroborates several key ideas behind the well known CPT16,36 that, 
so far, have been difficult to test. For instance, our results support the 
existence of a nested hierarchy of locations (Fig. 1, Fig. 3), in which 
higher-order centres with specialized functions (for example, shopping 
centres and museums)—reflected in lower visitation frequencies—also 
embrace non-specialized functions of lower-order centres (for exam-
ple, groceries and restaurants), reflected in higher visitation frequen-
cies. Thereby, more specialized functions are associated not only with 
a lower visitation frequency but also with a larger service radius (that 
is, people travel farther). This is again supported by our data, showing 
that the average travel distance per visit is inversely proportional to 
the visitation frequency (Extended Data Fig. 9, see Supplementary 
Information for a more detailed discussion).

An interesting question here is how close the revealed visitation pat-
terns are to the most efficient spatial configuration of the attracting 
locations, as postulated by CPT and other theories in human geogra-
phy1,15. To that end, we computed the Fermat–Torricelli–Weber42 metric 
used in spatial economy. The metric determines for each attracting 
location the potential reduction in the effective distance travelled by 
all its visitors when moving the location to another geographic posi-
tion. Interestingly, we find that for most locations, it is not possible 
to appreciably reduce the visitors’ effective travel distance, showing 
that the current spatial configuration of the locations is close to the 
optimum in terms of transportation efficiency (Extended Data Fig. 10). 
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Fig. 5 | Predicting the flows between individual locations. a, Predictions for 
the observed trips to Back Bay West, Boston, derived from the gravity law and 
the radiation model compared with predictions based on the rf-scaling 
framework. Symbols are mean values for each bin and lines are the 0.1–0.9 
quantiles. The dashed line corresponds to a perfect agreement between the 
observed values and the predictions, clearly showing that the rf-scaling 
framework systematically outperforms the existing models. The performance 
of each model is further quantified based on the SSI, with SSI = 1 if there is a 
perfect match and SSI = 0 if there is no match at all (Methods). b, Number of 
unique visitors. The fitting parameters of the gravity law from the number of 
trips (a) do not allow the prediction of the number of individuals. The radiation 
model does not provide a prediction of the number of visitors either, because it 
assigns only one destination location to each individual. It is therefore unable 
to explicitly consider the fact that an individual may visit several different 
locations. c, Number of high-frequency visitors. d, Systematic comparison 
over all considered locations in the studied world regions for number of trips 
(t), number of visitors (v), number of high-frequency visitors (h) and number of 
low-frequency visitors (l). The gravity model (calibrated for t) and the radiation 
model are unable to predict v, h or l. The rf scaling overcomes this limitation.
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Although game theory shows that collective human behaviour is often 
non-rational and far from the socially desired outcome43,44, this result 
suggests that, when it comes to travel effort, humans are able to achieve 
optimal group-level behaviour (see Supplementary Information for 
details).

From a practical view, we have shown that the discovered visitation 
law opens up new possibilities to accurately predict recurrent popula-
tion flows of varying frequencies, offering immediate applications for 
traffic engineering, urban planning and the containment of epidemic 
diseases. In future work, these predictions can be further refined by 
establishing the detailed connection between the characteristics of a 
location and the frequencies of recurrent visits.
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Methods

Data description
For the empirical analysis, we make use of five mobile phone datasets 
that differ strongly in terms of the geographic region, the socioeco-
nomic and infrastructural setting, and the underlying data collection 
method, thus providing several safeguards that variations of these 
factors do not influence the results. These datasets are from Greater 
Boston, Portugal, Senegal, Ivory Coast and Singapore. Together, 
our datasets contain more than three billion time-stamped location 
records of more than eight million anonymized users. In general, 
mobile phone location records are considered as the most compre-
hensive type of data for the study of population-wide movement  
patterns25,45.

The dataset for the Greater Boston area contains around one billion 
location records from around two million anonymized mobile phone 
users during four months in 2009 ( July to October)46. Each record 
consists of an anonymized ID of the corresponding user, latitude, 
longitude and a time stamp. These records were generated each time 
a user connected to the mobile phone network (through calls, text 
messages (SMS) and Internet connections). The latitude and longi-
tude of each record were approximated by the data provider through 
cell-tower triangulation46. As a result, the records have a precision 
of about 220 m and thus have a much higher spatial resolution than 
tower-based records (see Supplementary Information for the sam-
pling statistics).

The dataset covering Portugal consists of about 440 million call 
detail records (CDRs) from about two million anonymized users18. The 
CDRs are restricted to voice calls and were collected by a single telecom 
provider over a period of eight months in 2006 and 2007. Each CDR 
consists of the anonymized IDs of the two connected individuals, the 
call duration, the date and time of the call initiation, as well as the IDs 
of the two mobile phone towers routeing the call at its initiation. In 
total, the dataset contains 6,511 mobile phone towers together with 
their geographic location (latitude and longitude). Owing to the spar-
sity of the mobile phone towers in rural areas, the statistical analysis 
of the influx is limited to those grid cells that are located within the 
metropolitan areas (larger urban zones) of Lisbon, Porto and Braga 
(Supplementary Section I).

The dataset of Senegal is based on anonymized CDRs provided by 
the telecom provider Sonatel and the Orange Group within the context 
of the Data for Development (D4D) Senegal Challenge47. It covers the 
year 2013 and is divided into 25 individual two-week periods. Each 
period contains about 44 million tower-based location records of about 
300,000 randomly sampled and anonymized users. The temporal 
resolution is 10 min and the spatial resolution is given by the provider’s 
1,666 mobile phone towers distributed over the country. The statistical 
analysis of the influx is limited to the region of Dakar (Supplementary 
Section I).

The dataset of Ivory Coast is based on anonymized CDRs provided by 
the D4D Ivory Coast Challenge48. It covers the time between 1 December 
2011 and 28 April 2012 and is split into two-week periods. Each period 
contains individual trajectories for 50,000 randomly sampled users. 
The spatial resolution is given by the provider’s 1,231 mobile phone 
towers. The statistical analysis of the influx is limited to the region of 
Abidjan (Supplementary Section I).

The dataset of Singapore consists of around four million anonymized 
users of Singapore’s largest telecom company. The data were collected 
during a two-month period from mid-March to mid-May 2011 for bill-
ing purposes. A time-stamped record was produced when a call was 
initiated or received (both at the beginning and the end of the call), 
an SMS was sent or received, or when the mobile phone connected to 
the Internet. Each record contains the ID of the mobile phone tower 
routeing the activity. In total, there are 5,587 mobile phone towers for 
which the geographic location was provided.

Data pre-processing
In a first step, each study area was partitioned into a regular grid with 
equally sized square cells of size s0 × s0. We used s0 = 500 m for Greater 
Boston and Singapore and s0 = 1 km for Portugal, Senegal and Ivory 
Coast (Supplementary Fig. 2). We additionally tested the robustness of 
our results against variations in the cell size (Supplementary Section II). 
Subsequently, for each grid cell, we identified those users who visited 
the location with a given frequency. To do so, we imposed a minimum 
stay time, τ, during which a user had to stay inside a given cell to be 
counted. This removed those users who only travelled through a given 
grid cell without engaging in some form of activity49. If not stated other-
wise, a minimum stay time of τ = 1 h was used, but our findings are robust 
against variations in the specific value (Supplementary Section II).

Using a temporal resolution of one day, the visitation frequency f 
corresponds to the number of distinct days during which a user vis-
ited a given grid cell per observation period T, with T = 4 months for 
Greater Boston, T = 8 months for Portugal, T = 2 weeks for Senegal and 
Ivory Coast and T = 2 months for Singapore. The statistical analysis of 
the distance–frequency distribution is then based on those grid cells 
that during T attract at least ten visitors from neighbouring grid cells 
(whereas we considered the flows originating from all cells, including 
those that have less than ten visitors).

The home location of each mobile phone user was determined using 
a standard procedure46. Specifically, for each user the home location 
was assumed to be the cell with the largest number of nights (8 pm to 
7 am) during which she/he visited that cell (Supplementary Fig. 2). In 
line with previous work50, we only considered regularly active users 
that visited their home location, on average, at least during one night 
per week ( fhome,data = 1 per week) for the case of Greater Boston, Senegal, 
Ivory Coast and Singapore and at least during one night per two-week 
period ( fhome,data = 0.5 per week) for the case of Portugal (due to the 
lower number of location records).

Effective travel distance per visitor
For a given location i, the effective travel distance per visitor during 
the observation period is d d N⟨ ⟩ = /i i i

tot tot, where di
tot is the effective dis-

tance travelled by all visitors (Ni
tot) during the time period T. Thus, 
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influx), which does not depend on μi.

PEPR model and simulation procedure
The probability that an agent chooses to explore a previously unvisited 
location is Pnew = σS−γ, where S is the number of locations the agent vis-
ited so far. The parameter values σ = 0.6 and γ = 0.21 were taken from 
Song et al.32, so that Pnew decreases as the agent visits more and more 
locations. With complementary probability 1 − Pnew, the agent returns 
to one of the previously visited locations. The agent selects this loca-
tion with a probability that is proportional to the number of the agent’s 
previous visits to that location.

Numerical simulations were performed for a population of na = 105 
agents moving on a regular square grid of 300 × 300 cells that represent 
possible locations. The home locations of these agents correspond to 
their initial position (at time t = 0) assigned uniformly at random across 
an inner grid of 100 × 100 cells. Analysis was confined to the inner grid 
only; the purpose of the outer 300 × 300 grid was to eliminate boundary 
effects. If an agent jumped outside the 300 × 300 grid, his/her trajectory 
was stopped. Simulations followed a discrete-time scheme, updating 
the position of a given agent after every time step Δt = 1 (for simplicity, 
the duration of the visits does not follow a waiting-time distribution as 
in the original EPR model32). Agents were simulated ‘one at a time’: the 
first agent executes his/her trajectory from t = 0, …, 103, then the second 
agent begins his/her trajectory and so on. After T = 103, an approximate 
steady state was achieved in which the motion of each agent becomes 



dominated by his/her most visited locations and the mean displace-
ment from his/her initial position saturates (or the agent has jumped 
outside the grid). Simulation with different grid sizes and simulation 
times did not appreciably alter the results. Finally, the parameter values 
for the preferential exploration mechanism (R, ν) were found by strob-
ing over a grid in parameter space and selecting those values that led to 
a cluster size distribution following Zipf’s law (the distance–frequency 
scaling is not sensitive against changes in R and ν).

Estimating origin–destination flows from population density
The use of population density for estimating the flows to a location j 
is based on three assumptions. (1) Owing to the daily rhythms of human 
activity25, individuals return to their home location with a minimum 
frequency of fhome ≈ 1 d−1. (2) The population density ρpop( j) within the 
location’s area of radius rj is equal to the population density at its bound-
ary. (3) Although any distance that is sufficiently large to be of practi-
cal relevance (more than a few tens of metres) implies a substantial 
reduction in the number of visitors, individuals who are theoretically 
living on the boundary visit j with approximately the same minimum 
frequency as those living inside the area of j (Extended Data Fig. 8). 
Therefore, a frequency f ≥ fmin ≈ fhome can be associated with them (as 
the approach is continuous, moving just a few metres away from the 
boundary already results in individuals visiting less than once per day; 
that is, fmin < fhome). Under these assumptions, ρpop( j) is deduced from 
the distribution ρ r f{ ( , )}j j f f≥ home

 of individuals living on the boundary

∫ρ j ρ r f f
μ

r f
( ) ≈ ( , )d =

1
. (2)

f
j j

j

j
pop

∞

2
home

home

Consequently, the magnitude of the flows is approximated as 
μj ≈ ρpop( j)rj

2fhome. Because the empirical data are based on mobile phone 
records that do not cover every visit, the pre-set values fhome,data (see Meth-
ods section ‘Data pre-processing’), are used for fhome (if the location 
recordings were complete, the natural choice would be fhome ≈ 1 d−1).

The average daily number of trips of those individuals who live at an ori-
gin i and visit destination j is then A A∫V fρ f μ r f f≈ d = / ln( / )ij i f

f

j j i ij
2

max minmin

max  

with iA  being the area of the origin location and rij being the distance 
between the origin and the destination. The main text (Fig. 5) reports 
the total number of trips, which also includes individuals living at  j and 
returning home and is given as A AV V μ μ r f f= = ( + )/ ln( / )ij ji j i i j ij

tot tot 2
max min

. 
The frequency limits can either be set according to the objective of the 
study (for example, if the focus is on high-frequency visitors) or, if all 
types of trip are to be included, they can be set as fmin = 1/T, where T ≫ 1 d 
is the observation period and fmax = 1 d−1 (for r ≫ rj). Because of the log-
arithmic form, even a large error in the estimation of the frequency 
limits does not appreciably affect V ij

tot. The number of unique visitors, 
∫Q ρ f≈ dij i jA , is obtained in the same manner.

Gravity and radiation models
Gravity models are defined as Vij = Gmimj/g(rij), where Vij is the number 
of trips (or number of commuters) from location i to location j, G is a 
constant, mi and mj represent key local attributes, and g(rij) describes 
the distance dependence of population flows12,25,51. The distance–decay 
function g typically corresponds to a power law or an exponential func-
tion. In the main text (Fig. 5), the (unconstrained) power-law form of 
the gravity model was used. It is defined as V GP P r= /ij i

a
j

b
ij
c, where Pi and 

Pj are the resident populations of cell i and cell j, respectively, and the 
model parameters G, a, b and c were determined by regression analysis. 
We additionally tested the exponential form of the distance depend-
ence. In all regions, the model performance was substantially worse 
than that of the power-law form.

The radiation model14 is defined as Vij = Vimimj/[(mi + sij)(mi + mj + sij)], 
where Vi is the number of trips (or number of commuters) per time 

starting from location i, mi and mj are the number of opportunities at 
the origin and at the destination, respectively, and sij is the number of 
opportunities within a circle of radius rij centred in i. In the main text, 
the standard form was used, which takes the population size of each 
grid cell as a proxy for the number of opportunities14.

To compare the performance of different mobility models, we 
applied the conventional performance index52, which is based on the 
Sørensen–Dice similarity index (SSI) in ecology. For each model, it 
quantifies the similarity between the predicted number of trips and 
the data as

∑ ∑ ∑V V V VSSI ≡ 2 min( , )/ + . (3)
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i j

ij
i j
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model
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data










The coefficient takes values between 0, when no agreement is found, 
and 1, when there is a perfect match between the model and the data. 
Only flows originating from cells with a minimum user population 
of 25 individuals were considered in Fig. 5. The frequency threshold 
used to distinguish between low-frequency and high-frequency visi-
tors (Fig. 5d) was set to five, two and four visits per month for Boston, 
Portugal and Singapore, respectively, and to two visits per week for 
Dakar and Abidjan (roughly following the sampling frequency of the 
underlying data).

Data availability
Raw mobility data are not publicly available to preserve privacy. 
Grid-cell-level data to reproduce the findings of this study can be 
requested from the corresponding author.

Code availability
The code to replicate this research can be requested from the corre-
sponding author.
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Extended Data Fig. 1 | The spatio-temporal structure of movement in cities. 
Panels show visitor influx maps for Greater Boston for different parameters 
(r, f ). The colour of each grid cell (500 m × 500 m) indicates the value of the 
spectral flow ρ. Remarkably, visitor influx maps for the same quantity v = rf are 

nearly identical, as is clear from viewing along the diagonals indicated by the 
coloured arrows in the figure. Hence, doubling the visitation frequency f (from 
top row to bottom row) results in the same quantitative decrease of the influx 
as doubling the travel distance r (from left column to right column).
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a b

Extended Data Fig. 2 | Empirical power-law exponents of the distance–
frequency distribution. a, Histogram of the exponents for all locations in the 
Greater Boston area. The values were determined using ordinary least squares 

minimization to a linear relation of the logarithmically transformed  
variables. The red line shows η = 2, consistent with our theoretical argument.  
b, Corresponding histogram of the R2 values.
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Extended Data Fig. 3 | Universality of the scaling relation ρ ∝ (rf)−2 across 
Greater Boston. The panels depict the data for individual locations 
(500 m × 500 m grid cells), ranked according to the total number of visitors 
from neighbouring cells. Shown are locations of rank 1–30 (from top left to 

bottom right). The geographic coordinates of each location (latitude and 
longitude of the centre point of the grid cell) are indicated. The straight lines 
denote the inverse square of rf (slope = −2), consistent with our theoretical 
argument.
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Extended Data Fig. 4 | Universality of the scaling relation ρ ∝ (rf)−2 across 
Portugal. The panels depict the data for individual locations (1 km × 1 km grid 
cells), ranked according to the total number of visitors from neighbouring 
cells. Shown are locations of rank 1–30 (from top left to bottom right).  

The geographic coordinates of each location (latitude and longitude of the 
centre point of the grid cell) are indicated. The straight lines denote the inverse 
square of rf (slope = −2), consistent with our theoretical argument.
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Extended Data Fig. 5 | Universality of the scaling relation ρ ∝ (rf)−2 across 
Dakar. The panels depict the data for individual locations (1 km × 1 km grid 
cells), ranked according to the total number of visitors from neighbouring 
cells. Shown are locations of rank 1–30 (from top left to bottom right).  

The geographic coordinates of each location (latitude and longitude of the 
centre point of the grid cell) are indicated. The straight lines denote the inverse 
square of rf (slope = −2), consistent with our theoretical argument.
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Extended Data Fig. 6 | Universality of the scaling relation ρ ∝ (rf)−2 across 
Singapore. The panels depict the data for individual locations (500 m × 500 m 
grid cells), ranked according to the total number of visitors from neighbouring 
cells. Shown are locations of rank 1–30 (from top left to bottom right).  

The geographic coordinates of each location (latitude and longitude of the 
centre point of the grid cell) are indicated. The straight lines denote the inverse 
square of rf (slope = −2), consistent with our theoretical argument.



Extended Data Fig. 7 | Simulation results of the EPR model. a, b, Generated 
number of visits (a) and attractiveness values μi (b). c, d, The EPR model 
generates the rf scaling of the population flows with a scaling exponent that is 
in remarkable agreement with the data. The generated visitor counts, Ni(r, f ), 

are shown in c, and the resulting rf scaling of the spectral flows, ρi(r, f ), is shown 
in d. The generated attractiveness values μi are rather homogeneous and 
uniform across space, which is in contrast to the empirical data (b). Model 
parameters are taken from Song et al.32 (Methods).
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Extended Data Fig. 8 | Estimation of the magnitude of flows from 
population density ρpop. The schematic shows a zoom-in on the immediate 
vicinity of a destination location j (small values of r), where it is reasonable to 
assume that ρpop( j) ≈ constant. Hence, the local population density imposes an 
upper bound on the influx, ∫ρjdf ≤ ρpop( j). A simple boundary condition of the 
continuous model then dictates that the minimum visiting frequency of all 

individuals living directly on the boundary (each being assigned to a point at 
r = rj) assumes the minimum frequency with which the individuals living inside 
the attracting location return home, fmin ≈ fhome. The minimum distance rmin for 
locations from which individuals visit with minimum frequency fmin < fhome 
increases with decreasing value of fmin.



1

2

3

4

5 10

f (2-week period)

<
r>

 (
km

)

1

2

3

4

5

5 10

f (2-week period)

<
r>

 (
km

)

9

12

15

0 10 20 30 40 50

f (4-month period)

<
r>

 (
km

)

f (2-month period)

5

6

7

8

9

0 10 20 30 40 50

f (8-month period)

<
r>

 (
km

)

5.5

6.0

6.5

7.0

7.5

8.0

5 10 15 20

<
r>

 (
km

)

b

d e

Boston

Dakar Abidjan

a
R2 = 0.986

R2 = 0.954R2 = 0.979

c

f Lisbon

R2 = 0.897

Singapore

R2 = 0.944

Extended Data Fig. 9 | CPT and radius of attraction. a, Schematics of CPT, 
showing the spatial arrangement of three tiers of centres (see Supplementary 
Information for details). This hierarchical arrangement of central places results 
in the most efficient transport network. b–f, Average travel distance per visit 
⟨r⟩f to perform activities with fixed visiting frequency f across all locations in 

Greater Boston (b), Singapore (c), Dakar (d), Abidjan (e) and Lisbon (f). We find 
a clear inverse relation, ⟨r⟩f ∝ 1/f. The quantity ⟨r⟩f can be interpreted as the 
characteristic distance associated with the level of specialization of the 
functions provided by the locations.
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Extended Data Fig. 10 | Fermat–Torricelli–Weber (FTW) efficiency of 
collective human movements. a, The schematic shows how the FTW 
efficiency is computed (see Supplementary Information). The effective 
distance travelled by the visitors of a specific location (cell) can be minimized 
by moving it on the grid. The efficiency is Δ /D D, which is the ratio between the 
reduction of the effective travel distance of all visitors when moving the cell 
from its actual location to the optimum FTW point ( DΔ ) and the actual effective 
travel distance of all visitors to that cell (D). b, Density plots representing the 

number of cells with a given number of visits and FTW efficiency for the Greater 
Boston area (for the month of August 2009). The FTW efficiency is computed 
for each cell based on visits made by visitors who live at distances larger than a 
given threshold value rthr. For rthr = 0 (top left), the density of locations is 
particularly high where the FTW efficiency is very high. As the number of visits 
is increased, the distribution becomes narrower and the FTW efficiency 
increases. This pattern is generally also valid for larger values of rthr but 
becomes weaker.
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