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Human mobility impacts many aspects of a city, from its spatial structure' > toits
response to an epidemic*”. Itis also ultimately key to social interactions®,
innovation®° and productivity". However, our quantitative understanding of the
aggregate movements of individuals remains incomplete. Existing models—such as
the gravity law'>" or the radiation model**—concentrate on the purely spatial
dependence of mobility flows and do not capture the varying frequencies of recurrent
visits to the same locations. Here we reveal a simple and robust scaling law that
captures the temporal and spatial spectrum of population movement on the basis of
large-scale mobility data from diverse cities around the globe. According to this law,
the number of visitors to any location decreases as the inverse square of the product
of their visiting frequency and travel distance. We further show that the
spatio-temporal flows to different locations give rise to prominent spatial clusters
with an area distribution that follows Zipf’s law". Finally, we build an individual
mobility model based on exploration and preferential return to provide amechanistic
explanation for the discovered scaling law and the emerging spatial structure. Our
findings corroborate long-standing conjectures in human geography (such as central
place theory* and Weber’s theory of emergent optimality'®) and allow for predictions

of recurrent flows, providing a basis for applications in urban planning, traffic
engineering and the mitigation of epidemic diseases.

The movement of people is fundamental to our societies: it enables
social, economic and cultural exchanges®" "%, shapes the form of
cities"?*?, givesrise to traffic congestion and pollution?, and fuels the
spread of contagious diseases””. For all these aspects, it is crucial to
understand not only how many individuals move from place to place
butalso how oftenthey do so.Indeed, as places attract individuals for
reasons as diverse as work, shopping or recreation, mobility fluxes
span a wide range of both temporal and spatial scales, from daily vis-
its within the same neighbourhood to once-in-a-lifetime visits that
require travel across continents**?, Itis this heterogeneity of trips that
dictatestherate at whichindividuals from different neighbourhoods,
regions or parts of the world share the same space and may interact
with each other.

However, despite thisimportance, our understanding of the flows of
individuals to locations has remained surprisingly incomplete. Exist-
inglarge-scale mobility studies® and state-of-the-art models—such as
thegravity law'>", the radiation model* and related approaches? 2°—
concentrate on the spatial dependence of population flows (for
example, the aggregate number of individuals travelling between
two locations) and do not consider recurrent movements associated
with varying frequency of visitation; that is, the question of how the

number of visitors to alocation depends on their visitation frequency
hasremained largely unanswered. At the same time, fine-grained mod-
els for the mobility behaviour of individuals***'—such as the exploration
and preferential return (EPR) model® or the recently proposed con-
tainer model*—reproduce the frequency with which asingle individual
visits different locations. However, the link between this microscopic
behaviour and the temporal spectrum of recurrent mobility fluxes aris-
ingfromanentire populationis missing. Thisignorance of the temporal
spectrum of flows may lead to misconceptions of the spatial mixing of
individuals, and thus may have far-reaching practical consequences for
the mitigation of epidemic spreading, urban planning, infrastructure
design and many other applications.

Here we address this gap and decompose the flows of individuals
into the underlying distribution of both travel distance and visitation
frequency, allowing us to simultaneously consider the spatial and tem-
poral spectrum of mobility fluxes. We find a powerful scaling law that
governs the number of visitors to any locationbased on how far they are
travelling and how often they are visiting. Amicroscopic model shows
that the discovered scaling law accords well with the EPR mechanism of
individual mobility, establishing a link between periodic movements
at the individual level and the resulting flows at the population level.
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Fig.1| The universal distance-frequency distribution of population flows.
a, For eachlocation, we count the number of visitors who are living at adistance
[r,r+&r)away and are visiting with frequency f. The map coloursindicate the
populationdensity derived from the mobile phone data (users per grid cell).

b, Forafixed frequencyf, the visitor flow to aspecific location, p,(r, f),
decreases withincreasing distancer.c, When keeping the distance rfixed, the
flow decreases similarly withincreasing frequency f. d, Rescaled values
collapse onto asingle curve, making the flows dependent only on the single

The visitation law opens up unprecedented possibilities to accurately
predict flows between locations, and it provides large-scale empiri-
cal support for well established yet largely untested conjectures in
human geography (that is, central place theory (CPT) and Weber’s
theory of emergent optimality). Our findings are derived on the basis

@ Greater Boston 4 C  Dakar
LI

Distance per I

visitor (km) |
e F 200
_#.g' 150
: 100
50

] d  Avigjan

40 km
e Lisbon

Distance per =

: visitor (km)

I150

100
50

10 km

Fig. 2| Constant effective travel distance per visitor. a-f, The average
effective distance, (d);, covered by anindividual over time to visita given
locationiislargely invariant across space and independent of the
attractiveness of thelocation (in terms of number of visitors) in Greater Boston
(a), Singapore (b), Dakar (c), Abidjan (d) and Lisbon (e). The R?values of the
linear regression between the number of visitors and average distance per
visitor, as shownin thescatter plots (f), are very small (Greater Boston,

rf (km per period)

rf (km per period)

variable rf. The entire distance-frequency distribution is very well described
by apower law of the form p,(r,f) = 1,/ (rf)", with exponent =2 (n is the slope of
thebest-fitline by the least squares method; standard error in parentheses).

e, Rescaled flows across all studied regions, demonstrating that the same
scaling relation holds for radically different urban regions worldwide. Symbols
areaverage values acrossalllocationsineachregion. To visually compare the
different world regions, the shown curves were superimposed by normalizing
thedistance-frequency distribution of eachindividual location.

of the analysis of mobility data from millions of anonymized mobile
phoneusersinhighly diverse urbanregions across the world (see ‘Data
description’ in Methods): Greater Boston in the United States (North
America), Lisbon, Porto and Braga in Portugal (Europe), Singapore
(Asia), Dakar in Senegal (Africa) and Abidjanin Ivory Coast (Africa).
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R?=0.0115; Singapore, R*=0.0298; Dakar, R*< 0.001; Abidjan, R>< 0.001;
Lisbon, R?=0.001). Notice that there are some ‘anomalous’ locations that are
associated with larger effective travel distances. In the majority of cases, these
locations correspond to ports (for example, Singapore and Dakar) or tourism
attractions (Lisbon) and thus have anintrinsic reason to attract visitors from
particularly far away.
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Fig.3|Spatial structure of the location-specific attractiveness.

a, Geographicdistribution of the attractiveness values y;across the Greater
Bostonarea.b, Arearatio of the largest spatial cluster to all spatial clusters
versus the minimum attractiveness threshold y* as derived through the
CCA%38 Forvery small values of u* the entire geographicareais merged into
onesingle cluster (resultinginan arearatio of about1). Conversely, for very
large values of u*, only one cluster (Boston downtown) would exist (again
resultinginaratioofaboutl).c, Detected clusters at the critical value of
1*~10%%, where the arearatio of the largest cluster is minimized (vertical
dashedlineinb). Distinct clusters arerepresented by different colours.

d, Rank-size distribution at the critical value of *. Consistent with Zipf’s law,
the dataare well approximated by apower law with exponent {=-1.17.

Distance-frequency scaling of spectral population
flows

To exploreboth spatial and temporal components of recurrent popu-
lation flows, we partitioned each geographical region into a
high-resolutionsquare grid (depending on the granularity of the data-
set, we used 500 m x 500 m cells for Greater Boston and Singapore and
1km x1km cells for all other regions; see Methods) and estimated the
home location of each mobile phone user, being defined as the grid
cell in which the user spent most of the time at night (Methods). We
thendetermined foreachlocationithe set of unique users who visited
the corresponding cell and grouped them according to the distance r
of their home location (using distance bins of equal length 6r=1km,
Fig.1a) and according to their visitation frequency f (number of days
over a period T during which they visited for a minimum duration
7, see Methods). Finally, to factor out the effects of area size, we
normalized the resulting visitor counts, N{(r, f), by the area of their
origin, giving p,(r, f) = N(r, f)/ A(r), with A(r) = 2tr&r. We will refer to
the quantity p,(r, f) as the ‘spectral’ flow as we essentially decompose
anaggregate population flow fromagiven distanceinto its underlying
frequency spectrum. We now show that p,(r, f) does not depend on r
andfseparately but on the single rescaled variable rf.

We start by illustrating the behaviour of p,(r, f) with the example of
Back Bay West, a central location in Boston (Fig. 1a). The distribution
of the spectral flows spans a wide range of distance and frequency
values. For a fixed frequency f, the values of p,(r, f) systematically
decrease with travel distance r (Fig. 1b), which is a well known feature
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of aggregate flows'>>* that do not explicitly distinguish between dif-
ferent frequencies of travel. Similarly, for a fixed distance r, the flows
pi(r,f) decrease systematically with increasing visitation frequency f
(Fig. 1c)—frequent visitors to a location tend to be outnumbered by
infrequent visitors. Strikingly, a close comparison of Fig. 1b and Fig. 1c
reveals that, apart fromnoisein the data, p(r, f) scalesidentically with r
andf; thatis, p(Ar,f) = p/(r,Af) for any r, fand dimensionless factor 1> 0.
As a consequence of this symmetry, the data collapse onto a single
curve when plotted against the rescaled variable rf (Fig. 1d), which
shows that the spectral flows are actually a function of the single vari-
able rf. Extending this analysis to tens of thousands of locations in our
datasets demonstrates that the same distance-frequency scaling is
validinvery different urban systems across the world (Fig. 1e, Extended
DataFigs.1-6, Supplementary Figs. 4-18) and is well reproduced by a
power law of the form

H
p(r.f)= Itk (n

with scaling exponent p = 2. The proportionality constant u; deter-
mines the magnitude of the flows and thus reflects the location-specific
‘attractiveness’. The discovered scaling relation s truly remarkable as
the regularity is mostly unaffected by location-specific conditions,
including strong variations in surrounding population densities or in
the level of economic or infrastructural development.

The universality of equation (1) calls for a simple theoretical argu-
ment for the attraction of individuals to locations: the willingness to
visita particular destination is primarily due to the commonly shared
interest for its characteristics, and is thus approximately constant
across all origins. Indeed, for a fixed destination, the inverse square
law revealed here (equation (1) with p =2) is equivalent to (1/2)pv* =
constant, where the combined variable v:=rfcorresponds to the indi-
viduals” average velocity towards the destination (the effective dis-
tance they cover per unit of time to get there). This relation can then
beinterpreted as the physical manifestation of the constant collective
effort (quantified by the energy term (1/2)pv?) that people are willing
to maketo visit the location (thisargumentis derived indetail from the
standard equation of motion in Supplementary Section III).

Asadirect consequence of the discovered visitation law, we expect
that the effective distance covered per visitor over time, {(d),, to get to
agiven destination i, does not depend on the attractiveness y; of the
location. More precisely, (d); = d;°/N:°t, where d; " is the effective dis-
tance travelled towards location i, summed over all its visitors, N,
and accumulated over an observation period T (Methods). Figure 2
confirms that the values of (d); are indeed statistically invariant across
space, so that the effective distance travelled per visitor and time unit
constitutes aconserved quantity. This invariance might be surprising
because it means that more attractive places differ only in the larger
number of visitors they receive. They do not increase, however, the
effective distance travelled per visitor, as one might expect.

Spatial distribution of the attractiveness

The spatial distribution of the location-dependent attractiveness ;,
obtained fromthedatathroughlinear regression of the log-transformed
values of equation (1), is depicted in Fig. 3a for Greater Boston. We
observe prominent spatial clusters, where larger clusters with higher
values of u; (for example, the city of Boston) tend to be surrounded by
smaller clusters with lower values of i;. This formation of centres and
subcentres is consistent with the literature on urban structure?®*
as well as with previous empirical studies of urban mobility*?¢, being
largely explained by the agglomeration effect of cities (that is, the
tendency of businesses and facilities to cluster). To characterize the
size distribution of these clusters in terms of their area, we applied
the city clustering algorithm (CCA)**8, First, all attractiveness values
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Fig.4 |Microscopic model of spectral population flows. a, Schematic of the
PEPR model. Ateach time step, anindividual (agent) decides to explorea
previously unvisited location with probability P,.,. The radial distance Arand
direction @ of this displacement are drawn from random distributions that
capture the characteristic jump-size distribution of human trajectories and the
propensity to explore popular areas. With probability 1- P, the agent returns
toapreviously visited location. b—f, Results for n,=10° agents on aregular
squaregrid (with parametersa=0.55,0=0.6 and y=0.21according to existing
measurements®and R=10 and v=4 determined experimentally, see Methods).
Panelsb, cshowthespectral flows, obtained vianumerical simulation of the

less than a minimum value y* are set to zero. Second, locations with
non-zero values that are contiguous in space are merged recursively
until all locations with non-zero values belong to one specific cluster.
We determined the threshold * by plotting the ratio of the area of the
largest cluster to the sum of the areas of all clusters formed for different
p* (Fig.3b), providing a critical value of u* where the ratio is minimized.
This value marks the onset of the emergence of a single giant cluster
and thus serves as a natural choice of y*. We then ranked the clusters
by their area, so that Rank =3 represents the third-largest cluster, and
find that the area distribution is well approximated by Size =< Rank’
with the rank-size exponent {=-1.17 (Fig. 3d). This shows that the area
distribution of the clusters follows Zipf’s law (exponent of about -1),
afundamental regularity in city science that generally applies to the
population and area distribution of cities***°,

Microscopic model of spectral population flows

Our empirical analysis reveals that (1) spatio-temporal population flows
to locations follow a highly reproducible scaling law and (2) although
the magnitudes of these flows vary substantially across locations, they
show a systematic spatial clustering. We now present a model that
predicts these two key observations from the mobility behaviour of
individuals. To capture the main mechanisms of individual mobility, we
use the wellknown EPR model*? as a starting point. At each time step, an
individual (agent) chooses, with a certain probability, to either explore a
new, previously unvisited location or, with complementary probability,
toreturntoone ofthe previously visited locations (with a preference for
those locations that the agent visited more often). If the agent decides
to explore anew location, the radial distance Ar of such displacement
isdrawn from aheavy-tailed jump-size distribution P(Ar) ~ |Ar| " “with
displacement exponent a = 0.55, while the direction (angle) @is drawn
from a uniform distribution P(0) - (2m)™ (Methods), where - indicates
‘isdistributed as’. Numerical simulation of a population of agentsona
regularsquare grid demonstrates that the EPR modelindeed generates

150

modeland averaged over all analysed grid cells, exhibiting the scaling
properties of the empirically observed population flows; that is, they obey
equation (1) and scale astheinverse square of travel distance and visitation
frequency. Consistent with the empirical results, the model givesrisetoa
spatial clustering of those cells that attract a high number of individuals (d),
whereas the effective travel distance per agent and time unit remains spatially
invariant (e). Thearea distribution of the spatial clusters follows Zipf’s law
(derived through the application of the CCA with threshold z*=10to a total of
50 modelrealizations, leading to a power-law scaling with exponent
{=-1.14+0.13(s.d.)), whichis againin agreement with the data (f).

the distance-frequency scaling of the flows toindividual locations (key
observation 1) with a scaling exponent of n = 2, which is in excellent
agreement with the empirical observations (Extended Data Fig. 7).
However, as the agents choose their locations independently of each
other, the EPR model is unable to reproduce the heterogeneity in the
attractiveness of locations and their systematic spatial clustering (key
observation 2). Inreality, the trajectories of individuals are not inde-
pendent but spatially coupled through common attraction points*:
people tend to go to popular places (for example, a shopping area)
that are frequented by others. Thus, by ignoring this coupling of the
agents’motion, the EPR model generates attractiveness values y;that
are rather homogeneous and uniform across space (Extended Data
Fig.7),insystematic conflict with the empirical observations (Fig. 3a).

To resolve this discrepancy, we couple the agents’ motion in the
model so that, when exploring new locations, they are preferentially
attracted towards highly frequented areas. To that end, the radial jump
distance Aris still sampled from the same distribution asin the original
EPRmodel, but the direction @is no longer drawn uniformly at random.
Instead, directions towards regions of high visitation are preferentially
selected as follows. Let, for a given cell i, di(e ; R) be the effective dis-
tance travelled by all agents to all cells within distance R and between
angles 6 and 6 + d6 (the quantity di thus measures the visitation level
ofthecellsineach direction in terms of the travel efforts by the agents).
Then agents starting from cell i sample 6 from the distribution
P(O;R,V) -~ d,.(e ; R)” with parameter v > O (Fig. 4a). We will refer to this
modification of the EPR model as the preferential exploration and
preferential return (PEPR) model (an alternative mechanism of pref-
erential exploration has been proposed by Pappalardo et al.*; however,
itimposes the gravity law'?, and thus a presumed aggregate behaviour,
on the motion of the agents). Simulations (Fig. 4b-f) show that the
PEPR model not only generates the distance-frequency scaling of
the spectral flows with the correct scaling exponent but also leads to
the formation of clear spatial clusters that follow an area distribution
that is quantitatively consistent with the data. Note that the exact
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Fig.5|Predicting the flows betweenindividual locations. a, Predictions for
the observed trips to Back Bay West, Boston, derived from the gravity law and
theradiation model compared with predictions based on the rf-scaling
framework. Symbols are mean values for eachbin and lines are the 0.1-0.9
quantiles. The dashed line corresponds to a perfect agreement between the
observed values and the predictions, clearly showing that the rf-scaling
framework systematically outperforms the existing models. The performance
ofeachmodelis further quantified based on the SSI, with SSI=1if thereisa
perfect matchand SSI=0ifthereis nomatch atall (Methods). b, Number of
unique visitors. Thefitting parameters of the gravity law from the number of
trips (a) do not allow the prediction of the number of individuals. The radiation
model does not provide aprediction of the number of visitors either, because it
assigns only one destination locationto eachindividual. Itis therefore unable
to explicitly consider the fact that anindividual may visit several different
locations. ¢, Number of high-frequency visitors. d, Systematic comparison
over all considered locationsin the studied world regions for number of trips
(), number of visitors (v), number of high-frequency visitors () and number of
low-frequency visitors (/). The gravity model (calibrated for ¢) and the radiation
modelare unable to predictv, horl. Therfscaling overcomes this limitation.

spatial layout of the model clusters is different to the empirical data,
as the current model setup ignores many complexities that probably
influence the development of human settlements, such as natural
resources, rivers and topography. However, such factors can be inte-
grated in future model extensions.

Prediction of origin-destination flows

Equation (1) implies that the magnitude of the entire distance-
frequency spectrum of flows toanylocationcan, inprinciple, be obtained
by just knowing one single point on the universal scaling curve. This
simplification opens up awide range of possibilities for the prediction
of various flow quantities between each pair of locations. As an exam-
ple, for agiven destinationj, the magnitude y; can be estimated from
the population density, assuming that individuals return back home
onadaily basis®, which generates alocal flow with minimum frequency
frome =1d ™. This leads to the approximation :ppop(j)rﬁome, where
Prop(/) isthe population density atlocationjand r;is the distance to the
boundary of the location (see derivation in Methods). Once the value
of yjis established, itis straightforward to calculate the number of trips
or the number of unique visitors from any origin location. These pre-
dictions are in remarkable agreement with the data (Fig. 5). Besides
population density, other input quantities such as simple traffic counts
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are equally well suited (especially for those locations where population
density is not agood predictor, see Supplementary Information).

To put the accuracy of these predictions in relation to existing
approaches, we compared them with those of the gravity model*"
and the radiation model™, which at present are the most widely used
mobility models for aggregate population flows? (Methods). These
established approaches do not take into account the frequency compo-
nentofthe flows. Thus, the gravity model requires separate parameter
calibrations for each specific flow quantity, so that knowing the num-
ber of trips does not allow inference of how many unique individuals
are actually visiting a location over time and vice versa. Similarly, as
each individual may give rise to several trips to multiple locations,
the radiation model can predict the number of trips but not the num-
ber of unique individuals who are visiting a location over time. This
ignorance of the frequency spectrum may lead to biased conclusions
regarding the spatial mixing of people with potentially far-reaching
consequences, for example, for understanding the spreading of infec-
tious diseases. Our framework addresses this limitation. Itisapplicable
inparticular to fine-grained spatial scales (Fig. 5a, again using Back Bay
West in Boston as anillustrative example) and it allows for the simul-
taneous prediction of both the number of trips and the number of
individuals across the entire frequency spectrum without the need for
model calibrations (Fig. 5b, ¢). Predictions of origin-destination flows
inallworld regions considered here empirically confirm the enhanced
performance of our framework (Fig. 5d).

Discussion

Given the extensive literature on and detailed analyses of movement
and transport in cities, it is surprising that the simple but powerful
visitation law derived here had not yet been discovered. It states that
the number of visitors to any location scales as the inverse square of
both travel distance and visitation frequency and thus advances our
understanding of human mobility by the frequency spectrum of flows.
We have shown that the scaling relation is remarkably robust across
different geographies, cultures and levels of development, and that it
is consistent with our state-of-the-art understanding of the mobility
patterns of individuals.

This new perspective on human mobility makes it possible to scru-
tinize long-standing conjectures in human geography and spatial
economics. Indeed, the distance-frequency distribution of visits
corroborates several key ideas behind the well known CPT** that,
so far, have been difficult to test. For instance, our results support the
existence of a nested hierarchy of locations (Fig. 1, Fig. 3), in which
higher-order centres with specialized functions (for example, shopping
centres and museums)—reflected in lower visitation frequencies—also
embrace non-specialized functions of lower-order centres (for exam-
ple, groceries and restaurants), reflected in higher visitation frequen-
cies. Thereby, more specialized functions are associated not only with
alower visitation frequency but also with a larger service radius (that
is, peopletravel farther). Thisis again supported by our data, showing
that the average travel distance per visit is inversely proportional to
the visitation frequency (Extended Data Fig. 9, see Supplementary
Information for a more detailed discussion).

Aninteresting question here is how close the revealed visitation pat-
terns are to the most efficient spatial configuration of the attracting
locations, as postulated by CPT and other theories in human geogra-
phy*®. To that end, we computed the Fermat-Torricelli-Weber** metric
used in spatial economy. The metric determines for each attracting
location the potential reduction in the effective distance travelled by
all its visitors when moving the location to another geographic posi-
tion. Interestingly, we find that for most locations, it is not possible
to appreciably reduce the visitors’ effective travel distance, showing
that the current spatial configuration of the locations is close to the
optimum interms of transportation efficiency (Extended Data Fig.10).



Although game theory shows that collective human behaviour is often
non-rational and far from the socially desired outcome***, this result
suggeststhat, when it comesto travel effort, humans are able toachieve
optimal group-level behaviour (see Supplementary Information for
details).

Froma practical view, we have shown that the discovered visitation
law opens up new possibilities to accurately predict recurrent popula-
tion flows of varying frequencies, offeringimmediate applications for
trafficengineering, urban planning and the containment of epidemic
diseases. In future work, these predictions can be further refined by
establishing the detailed connection between the characteristics of a
location and the frequencies of recurrent visits.
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Methods

Datadescription

For the empirical analysis, we make use of five mobile phone datasets
that differ strongly in terms of the geographic region, the socioeco-
nomic and infrastructural setting, and the underlying data collection
method, thus providing several safeguards that variations of these
factors do notinfluence the results. These datasets are from Greater
Boston, Portugal, Senegal, Ivory Coast and Singapore. Together,
our datasets contain more than three billion time-stamped location
records of more than eight million anonymized users. In general,
mobile phone location records are considered as the most compre-
hensive type of data for the study of population-wide movement
patterns®*,

The dataset for the Greater Boston area contains around one billion
location records from around two million anonymized mobile phone
users during four months in 2009 (July to October)*. Each record
consists of an anonymized ID of the corresponding user, latitude,
longitude and atime stamp. These records were generated each time
auser connected to the mobile phone network (through calls, text
messages (SMS) and Internet connections). The latitude and longi-
tude of eachrecord were approximated by the data provider through
cell-tower triangulation*t. As a result, the records have a precision
of about 220 m and thus have a much higher spatial resolution than
tower-based records (see Supplementary Information for the sam-
pling statistics).

The dataset covering Portugal consists of about 440 million call
detail records (CDRs) from about two million anonymized users®. The
CDRsarerestricted to voice calls and were collected by asingle telecom
provider over a period of eight months in 2006 and 2007. Each CDR
consists of the anonymized IDs of the two connected individuals, the
call duration, the date and time of the call initiation, as well as the IDs
of the two mobile phone towers routeing the call at its initiation. In
total, the dataset contains 6,511 mobile phone towers together with
their geographiclocation (latitude and longitude). Owing to the spar-
sity of the mobile phone towers in rural areas, the statistical analysis
of the influx is limited to those grid cells that are located within the
metropolitan areas (larger urban zones) of Lisbon, Porto and Braga
(Supplementary Section ).

The dataset of Senegal is based on anonymized CDRs provided by
thetelecom provider Sonatel and the Orange Group within the context
of the Data for Development (D4D) Senegal Challenge®. It covers the
year 2013 and is divided into 25 individual two-week periods. Each
period contains about 44 million tower-based location records of about
300,000 randomly sampled and anonymized users. The temporal
resolutionis 10 min and the spatial resolutionis given by the provider’s
1,666 mobile phone towers distributed over the country. The statistical
analysis of the influxis limited to the region of Dakar (Supplementary
Section).

The dataset of Ivory Coast is based on anonymized CDRs provided by
the D4D Ivory Coast Challenge*s. It covers the time between1December
2011and 28 April 2012 and is split into two-week periods. Each period
contains individual trajectories for 50,000 randomly sampled users.
The spatial resolution is given by the provider’s 1,231 mobile phone
towers. The statistical analysis of the influx is limited to the region of
Abidjan (Supplementary Section I).

The dataset of Singapore consists of around four million anonymized
users of Singapore’s largest telecom company. The datawere collected
during a two-month period from mid-March to mid-May 2011 for bill-
ing purposes. A time-stamped record was produced when a call was
initiated or received (both at the beginning and the end of the call),
an SMSwas sent or received, or when the mobile phone connected to
the Internet. Each record contains the ID of the mobile phone tower
routeing the activity. In total, there are 5,587 mobile phone towers for
which the geographic location was provided.

Data pre-processing

In afirst step, each study area was partitioned into a regular grid with
equally sized square cells of size s, x s,. We used s, =500 m for Greater
Boston and Singapore and s, =1 km for Portugal, Senegal and Ivory
Coast (Supplementary Fig.2). We additionally tested the robustness of
ourresults against variationsin the cell size (Supplementary Section I).
Subsequently, for each grid cell, we identified those users who visited
thelocation with agiven frequency. To do so, we imposed a minimum
stay time, 7, during which a user had to stay inside a given cell to be
counted. This removed those users who only travelled through agiven
grid cellwithout engaging in some form of activity*. If not stated other-
wise, aminimum stay time of r=1hwas used, but our findings are robust
against variations in the specific value (Supplementary Section II).

Using a temporal resolution of one day, the visitation frequency f
corresponds to the number of distinct days during which a user vis-
ited a given grid cell per observation period T, with T=4 months for
Greater Boston, T=8 months for Portugal, T=2 weeks for Senegal and
Ivory Coast and T=2 months for Singapore. The statistical analysis of
the distance-frequency distribution is then based on those grid cells
that during T attract at least ten visitors from neighbouring grid cells
(whereas we considered the flows originating from all cells, including
those that have less than ten visitors).

Thehomelocation of eachmobile phone user was determined using
astandard procedure*®. Specifically, for each user the home location
was assumed to be the cell with the largest number of nights (8 pm to
7 am) during which she/he visited that cell (Supplementary Fig. 2). In
line with previous work®®, we only considered regularly active users
thatvisited their home location, on average, at least during one night
perweek (f1.ome.data = 1 PEr Week) for the case of Greater Boston, Senegal,
Ivory Coast and Singapore and at least during one night per two-week
period (fiome.daa = 0.5 per week) for the case of Portugal (due to the
lower number of location records).

Effective travel distance per visitor

For agiven location i, the effective travel distance per visitor during
the observation periodis(d); = d;°/N*, where d;*"is the effective dis-
tance travelled by all visitors (V;*") during the time period T. Thus,
N LIl ifToie for drdp Spf TG 'r dr
)= 3elfoir.pordrde ~ spfaf)r dr
influx), which does not depend on y;.

(where ¢ is the angle of the

PEPR model and simulation procedure

The probability that an agent chooses to explore a previously unvisited
locationis P,.,,=0S", where S is the number of locations the agent vis-
ited so far. The parameter values 6= 0.6 and y = 0.21 were taken from
Song et al.*?, so that P,.,, decreases as the agent visits more and more
locations. With complementary probability 1-P,.,, the agent returns
to one of the previously visited locations. The agent selects this loca-
tionwithaprobability thatis proportional to the number of the agent’s
previous visits to that location.

Numerical simulations were performed for a population of n,=10°
agentsmovingonaregularsquare grid of 300 x300 cells that represent
possiblelocations. The homelocations of these agents correspond to
theirinitial position (at time ¢t =0) assigned uniformly at randomacross
aninner grid of 100 x 100 cells. Analysis was confined to the inner grid
only; the purpose of the outer 300 x 300 grid was to eliminate boundary
effects. Ifanagentjumped outside the 300 x 300 grid, his/her trajectory
was stopped. Simulations followed a discrete-time scheme, updating
the position of agivenagent after every time step At =1 (for simplicity,
the duration of the visits does not follow a waiting-time distribution as
in the original EPR model®). Agents were simulated ‘one atatime’: the
firstagent executes his/her trajectory from¢=0, ...,10% then the second
agentbegins his/her trajectory and so on. After T=10° anapproximate
steady state was achieved in which the motion of each agent becomes



dominated by his/her most visited locations and the mean displace-
ment from his/her initial position saturates (or the agent has jumped
outside the grid). Simulation with different grid sizes and simulation
times did not appreciably alter the results. Finally, the parameter values
for the preferential exploration mechanism (R, v) were found by strob-
ingoveragridin parameter space and selecting those values thatled to
aclustersize distribution following Zipf’s law (the distance-frequency
scaling is not sensitive against changesin Rand v).

Estimating origin-destination flows from population density
The use of population density for estimating the flows to alocationj
isbased onthree assumptions. (1) Owing to the daily rhythms of human
activity®, individuals return to their home location with a minimum
frequency of fime = 1d™". (2) The population density p,,,,(j) within the
location’s area of radius r;is equal to the population density atitsbound-
ary. (3) Although any distance that is sufficiently large to be of practi-
cal relevance (more than a few tens of metres) implies a substantial
reduction inthe number of visitors, individuals who are theoretically
living on the boundary visitj with approximately the same minimum
frequency as those living inside the area of j (Extended Data Fig. 8).
Therefore, a frequency f=f,., = foome Can be associated with them (as
the approach is continuous, moving just a few metres away from the
boundary already results inindividuals visiting less than once per day;
thatis, fiin <fhome). Under these assumptions, p,,,(/) is deduced from
the distribution {pj(r-, f)}fthome of individuals living on the boundary
/A

o= [ pnnar="31

2 .
rih
Sfhome J“home

(2

Consequently, the magnitude of the flows is approximated as
1= Poop( DI frome- Because the empirical data are based on mobile phone
records that do not cover every visit, the pre-set values f; ome qara (S€€ Meth-
ods section ‘Data pre-processing’), are used for f;,,. (if the location
recordings were complete, the natural choice would be f;, . = 1d7).

Theaverage daily number of trips of those individuals who live at an ori-

giniand visit destinationjisthen V= _Aij‘ﬁ:fpj df= ”,'Ai/rijz‘l"(fmax i)
with A; being the area of the origin location and r;; being the distance
between the origin and the destination. The main text (Fig. 5) reports
thetotal number of trips, which also includesindividuals living at jand
returninghomeandisgivenasy/* = V2= (A + wANFANCE )
Thefrequency limits caneither be setaccordingto the objective of the
study (for example, if the focus is on high-frequency visitors) or, if all
typesoftriparetobeincluded, they canbesetasf,,,=1/T,where T>1d
is the observation period and f,,, =1d™ (for r>r;). Because of the log-
arithmic form, even a large error in the estimation of the frequency
limits does not appreciably affect l/,-}‘“. The number of unique visitors,

Q;= A,-jpjdf, is obtained in the same manner.

Gravity and radiation models
Gravity models are defined as V;= Gm;m,/g(r;), where V;is the number
of trips (or number of commuters) from location i to locationj, Gis a
constant, m;and m; represent key local attributes, and g(r;) describes
the distance dependence of population flows'>**!, The distance-decay
functiongtypically corresponds to a power law or an exponential func-
tion. In the main text (Fig. 5), the (unconstrained) power-law form of
the gravity model was used. Itis defined asV; = GP,-“P’}/r,-j-, where P;and
P;are theresident populations of cell iand cellj, respectively, and the
model parameters G, a, band c were determined by regression analysis.
We additionally tested the exponential form of the distance depend-
ence. In all regions, the model performance was substantially worse
than that of the power-law form.

Theradiation model**is defined as V;= Vimm/[(m;+s,)(m;+ m;+s;)],
where V;is the number of trips (or number of commuters) per time

starting from location i, m;and m; are the number of opportunities at
the originand at the destination, respectively, and s; is the number of
opportunities within a circle of radius r; centred in i. In the main text,
the standard form was used, which takes the population size of each
grid cell as a proxy for the number of opportunities™.

To compare the performance of different mobility models, we
applied the conventional performance index®, which is based on the
Sgrensen-Dice similarity index (SSI) in ecology. For each model, it
quantifies the similarity between the predicted number of trips and
the dataas

SSi=2 Z min(v;’/ﬂodel’ V;}ata)/ Z V][jl_’lodel_'_ z Vgata . (3)
ij ij ij

The coefficient takes values between O, when no agreement is found,
and 1, when there is a perfect match between the model and the data.
Only flows originating from cells with a minimum user population
of 25 individuals were considered in Fig. 5. The frequency threshold
used to distinguish between low-frequency and high-frequency visi-
tors (Fig. 5d) was set to five, two and four visits per month for Boston,
Portugal and Singapore, respectively, and to two visits per week for
Dakar and Abidjan (roughly following the sampling frequency of the
underlying data).

Data availability

Raw mobility data are not publicly available to preserve privacy.
Grid-cell-level data to reproduce the findings of this study can be
requested from the corresponding author.

Code availability

The code to replicate this research can be requested from the corre-
sponding author.
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Extended DataFig. 8| Estimation of the magnitude of flows from
populationdensity p,,,. The schematic showsazoom-inon theimmediate
vicinity of adestinationlocation,j (small values of r), whereitis reasonable to
assume that p,,(j) = constant. Hence, the local population density imposes an
upper bound on the influx, [p,df< p,.,(j). A simple boundary condition of the
continuous model then dictates that the minimum visiting frequency of all
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individualsliving directly on the boundary (each being assigned toa point at
r=r;) assumes the minimum frequency with which theindividualslivinginside
theattracting locationreturnhome, f,;;, = fi.ome- The minimum distance ., for
locations from which individuals visit with minimum frequency f,in < fhome
increases with decreasing value of ;..
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characteristic distance associated with the level of specialization of the
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travel distance of all visitors to that cell (D). b, Density plots representing the becomesweaker.
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