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Network science helps us to better understand the evolu-
tion of the highly interconnected world in which we live1. 
It sheds light on myriad systems—everything from how 

rumours spread in a social network to how large ecosystems sta-
bilize in spite of competing interactions between species. A key 
feature shared by such systems is that they are characterized by a 
complex set of interactions that govern their emergent dynamics2–4. 
In recent years, the architecture of social networks, ecosystems and 
the human brain have all been modelled as graphs, with collections 
of nodes describing the units of the systems—humans, animals 
or neurons—and edges encoding their pairwise interactions. This 
approach has led to the discovery that a heavy-tailed distribution 
in the number of contacts within a population causes the epidemic 
threshold to vanish, putting everyone at risk during a pandemic5,6. 
It has inspired the realizations that small-world networks and clus-
tering promote synchronization7 and that efficient communication 
structures tend to reach rapid and diffused consensus, but are also 
prone to the spreading of misinformation8.

Graphs, however convenient, can only provide a limited descrip-
tion of reality. They are inherently constrained to represent systems 
with pairwise interactions only. Yet, in many biological, physical 
and social systems, units may interact in larger groups, and such 
interactions cannot always be decomposed as a linear combination 
of dyadic couplings9 (Fig. 1). For example, evidence from neural 
systems shows that higher-order effects are present and important 
both statistically10–12 and topologically13,14. However, there is also 

evidence to suggest that such higher-order signatures might in some 
cases be redundant, and may be fully describable in terms of pair-
wise interactions15,16. In ecological systems, evidence clearly shows 
the existence of complex many-body interactions between multiple 
species17–19, although the effects induced by their interaction pat-
terns have only recently been investigated formally20. Other exam-
ples include metabolic and genetic systems21, social coordination22 
and group formation23.

The idea of higher-order interactions is well-known in the set-
ting of many-body physics, for example in strong interactions24,25 
or van der Waals interactions26, as well as in statistical mechan-
ics27. However, in all these cases, representations of higher-order 
interactions are simple in the sense that they do not contribute 
to the emerging complexity of the problem. In complex systems, 
typically described as networks, the story is different, and in many 
cases these interactions must be taken into account using more 
advanced mathematical structures, such as hypergraphs and sim-
plicial complexes9. Several investigations have already shown that 
the presence of higher-order interactions may substantially impact 
the dynamics on networked systems, from diffusion28,29 and syn-
chronization30,31 to social32–34 and evolutionary processes35, possibly 
leading to the emergence of abrupt (explosive) transitions between 
states. Furthermore, although most research in complex systems 
focuses on the dynamical evolution of the states of the nodes, it 
is natural to consider that higher-order structures (described by 
hyperedges) could themselves possess a dynamical state, leading to 
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a whole new panorama of dynamical processes. Finally, although 
many datasets can be easily visualized as networks, very few are 
readily described using a hypergraph representation. The chal-
lenge of going from the dynamics of units, and possibly informa-
tion about their pairwise interactions, to a meaningful pattern of 
higher-order interactions between these units, remains substantial. 
In this Perspective, we outline the main signatures of new physics 
arising in higher-order systems, and we propose three key direc-
tions for future research.

A general pathway to explosive transitions
Most processes on networks, from the dynamical evolution of 
coupled oscillators to the spreading of diseases, display emerging 
collective behaviours. Typically, such phenomena are described by 
continuous phase transitions: the order parameter describing, for 
example, the emergence of synchronization between oscillators 
increases continuously as the control parameter crosses a critical 
threshold. Similar transitions are also well known for percolation 
on networks, where small clusters that are initially separated merge 
together to span a non-vanishing fraction of the system size at a crit-
ical point. In contrast, an explosive transition was first found some 
years ago for a particular set of link selection rules36, for which the 
size of the largest cluster seemed to jump abruptly to a finite value at 
the transition. Although this specific transition was later classified 
as continuous with anomalous scaling37,38, explosive phenomena 
became a focus of intense research activity in the years following 
the initial discovery39. Several discontinuous phase transitions were 
confirmed for different processes, such as synchronization.

Explosive phenomena are rather difficult to obtain for systems 
represented as networks—those with only pairwise interactions. 
They can be engineered by adding artificial elements or rules to the 
most natural dynamical set-ups in an attempt to prevent the tran-
sition. Eventually, though, these additions produce abrupt jumps 
in the order parameter once the transition becomes inevitable. 
For example, synchronization can become explosive in heteroge-
neous networks by correlating the natural frequency of oscillators 
to their degree40. However, explosive phenomena are known to 
exist in nature, and developing a better understanding of how they 
behave is of key interest in many fields, primarily because they are 
more difficult to handle, predict and control than their continuous 
counterparts.

A modelling approach that goes beyond networks by taking 
higher-order interactions into account provides a framework in 
which explosive phenomena emerge naturally and can therefore 
be studied more easily. An abrupt transition was recently observed 
in a model of social contagion evolving on simplicial complexes32, 
in which individuals can assume either an infected or susceptible 
state. In contrast to previous proposals, here, pairwise transmission 
does not operate alone, but can be reinforced by simplicial interac-
tions associated with group pressure (Fig. 2a). The model can be 
solved analytically with a mean-field approximation, showing that 
a discontinuous transition from a healthy to endemic phase (in 
which a large fraction of the population is infected) emerges when 
the relative weight of higher-order interactions crosses a threshold. 
Interestingly, the inclusion of three-body interactions is sufficient 
to obtain a bistable region where endemic and non-endemic states 

Networka b cHypergraph Simplicial complex

Fig. 1 | Pairwise and higher-order representations. a, Systems comprising many interacting units have long been represented as networks, with 
interactions restricted to pairs of nodes and represented as edges. However, it is not always possible to describe group interactions as sums of pairwise 
interactions only. b, Representations allowing for genuine group interactions include hypergraphs, which can encode interactions among an arbitrary 
number of units without further constraints. Here, shaded groups of nodes represent hyperedges. c, Simplicial complexes offer another approach. 
Although more constrained than hypergraphs, they provide access to powerful mathematical formalisms111. Edges (1-simplices) are shown here in black, 
full triangles (2-simplices) in yellow. Note that, in simplicial complexes, all subfaces of a simplex (for example, the edges of a triangle) need to be included. 
This constraint does not hold for hypergraphs.
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Fig. 2 | higher-order interactions lead to explosive phenomena. Edges and hyperedges encode pairwise and group-level couplings among the nodes of 
a complex system. a, Hyperedges modulate group infection and many-body feedback in higher-order processes of contagion. Susceptible nodes (S, blue) 
can be infected by infectious ones (I, orange) in the usual way along edges, but also by groups containing a large fraction of infected nodes (for example, 
orange 2-simplices). b, Hyperedges have a similar effect on higher-order processes of synchronization, in which oscillators on nodes can be coupled along 
edges, or in groups via higher-order interactions (HOIs). c, Abrupt transitions emerge when increasing the strength of such interactions, suggesting a 
general pathway to explosive phenomena.
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can coexist. This result has been found to be robust and general. 
Explosive transitions have in fact been observed in heterogeneous41 
and time-varying42,43 structures, as well as in the more general set-up 
of hypergraphs33,44,45, where they can also be related to higher-order 
discontinuous percolation processes46.

Explosiveness is not limited to spreading processes. Of para-
mount importance for biology and neuroscience are systems of 
coupled oscillators, where the states of the nodes are d-dimensional 
continuous variables that evolve over time under mutual influence 
(Fig. 2b). The most well-known set-up is probably the one intro-
duced by Yoshiki Kuramoto47, in which unidimensional phase 
oscillators are endowed with natural frequencies, and interactions 
occur through sinusoidal couplings. When generalized to account 
for structured higher-order interactions among oscillators, the 
additional nonlinearity generates abrupt switches between syn-
chronized and incoherent states48. The emergence of bistability and 
the appearance of hysteresis cycles are driven by the presence of 
higher-order interactions alone, without the need for ad hoc cou-
pling mechanisms between the dynamical evolution and the local 
connectivity of the nodes.

In both examples, the introduction of higher-order interactions 
corresponds to having the state variable of a node influenced by a 
nonlinear combination of the states of several other nodes. Tuning 
the relative importance of the strength of the higher-order and 
pairwise interactions provides a way, in both cases, to change the 
nature of the transition from continuous to discontinuous (Fig. 2c). 
The similarity of the mechanisms yielding a first-order transition 
in these two very different dynamical processes leads to conjecture 
that the introduction of nonlinear higher-order interactions and the 
tuning of their intensity form a general ingredient sufficient to pro-
vide abrupt transitions in a dynamical process.

Despite this preliminary evidence, however, a rigorous and gen-
eral proof of this conjecture is still lacking. Approximate approaches 
based on linearization around a fixed point of ordinary differential 
equations link the stability of hypergraphs dynamics to their graph 
projections49–51, suggesting general conditions for stability associ-
ated to the different orders of the interactions. Mean-field treatment 
allows for an analytical solution for diffusion and spreading pro-
cesses on arbitrary structures, separating stability conditions into 
structural and dynamical terms52,53. A general argument based on 
bifurcation theory shows that variations on pairwise models, such 
as adding higher-order interactions, can lead to a change of criti-
cal behaviour from a continuous to a discontinuous transition for a 
wide class of models, including epidemic, synchronization and per-
colation transitions54. Under some conditions, mathematicians have 
been able to formally prove that higher-order interactions are suffi-
cient to induce bistable behaviour in the ‘susceptible–infected–sus-
ceptible’ model, whereas it is impossible to achieve bistability in the 

traditional pairwise scheme55. All in all, findings indicate that the 
presence of higher-order interactions provides a general pathway to 
explosive phenomena. Yet, this marker of the fragility of collective 
behaviour in higher-order systems is still awaiting formal proof.

Topological dynamical processes
Most research on dynamical processes on networks has focused on 
the dynamics of node states, with interactions mediated by links. 
This is a natural and intuitive approach, because it describes the 
evolution of the most basic units of the system, coupled through the 
only possible (and simplest) interactions in networks56. However, by 
encoding higher-order interactions, it becomes possible to define 
couplings between interactions of different orders (nodes, and 
hyperedges or simplices). More importantly, we can associate state 
variables, not only to nodes, but also to hyperedges and simplices. 
For example, the state of an edge can influence the states of its two 
associated nodes, while contributing to and being influenced by the 
states of the higher-order interactions (for example, a 3-hyperedge) 
to which it belongs. In this way, higher-order dynamical systems 
transform static interactions into active agents that are coupled to 
the rest of the system and evolving in time.

Recent results on simplicial oscillators offer a particularly strik-
ing example of this phenomenon. Consider a Kuramoto model 
defined on a simplicial complex comprising nodes, edges and 
2-simplices (Fig. 3a). In this case, phases are defined not only on 
nodes—as in the traditional description—but also on higher-order 
faces. The equations used in the classical formalism can be directly 
adapted to higher-order interactions by substituting node inci-
dence matrices with the appropriate higher-order analogues7. 
In simplicial complexes, these matrices correspond to boundary 
operators between interactions of orders differing by one—for 
example, node and edges, or edges and 2-simplices—effectively 
providing a canonical mapping between phase dynamics of dif-
ferent orders. Interesting phenomena emerge without adding fur-
ther complications: the dynamics on 1-simplices (edges) displays a 
synchronization transition57 that is only revealed when projected 
onto simplices of higher (2-simplices, Fig. 3b) or lower (nodes, Fig. 
3c) dimension. Indeed, phase transitions appear in both projected 
dynamics, which are related to the irrotational and solenoidal com-
ponents of higher-order dynamics. When these dynamics are cou-
pled via the respective global order parameters, these transitions 
become explosive.

The Hodge decomposition provides a rationale for this behav-
iour in terms of the inner structure of higher-order states28,57. In fact, 
these can be decomposed into harmonic, solenoidal and irrotational 
components, corresponding respectively to the dynamics induced 
by the kernel of the higher-order Laplacian and to those induced by 
the projection to simplices one dimension higher and lower. In this 

Edge dynamicsa b cUpward projection Downward projection

Fig. 3 | higher-order systems are fully dynamical. a, As opposed to traditional descriptions focused on node dynamics, it is possible to define state 
variables for hyperedges or simplices of arbitrary order, for example by associating oscillators to edges57 and coupling them to each other using their 
higher-order adjacency. In so doing, the distinction between dynamical units and interactions dissolves, and dependencies and feedback loops between 
orders become possible. b, For example, it is possible to project the dynamics of hyperedges of order k (here k = 1, edges or 1-simplices) onto their 
analogues of larger order (here k = 2, 3-hyperedges or 2-simplices). c, It is similarly possible to project onto analogues of smaller order (k = 0, nodes).
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light, higher-order systems can be considered to be collections of 
topological signals—time series associated with interactions on all 
orders, which lend themselves to analysis using tools at the interface 
between algebraic topology, differential geometry and discrete cal-
culus28,58. As an example of this paradigm, higher-order Laplacians 
were recently shown to improve the description of flow information 
on edges with respect to standard graph Laplacians59. The descrip-
tion was improved even when simplicial complexes contained only 
nodes and edges. Higher-order Laplacians also provided the first 
formulation for signal processing on generic topological spaces60.

Finally, even when states for higher-order interactions are 
defined, the topological structure of the system—that is, the pres-
ence or absence of simplices and hyperedges—has typically been 
considered fixed in time (for example, in neural codes15). However, 
in many systems, the organization of the interactions changes over 
time61. It remains an open question how to define realistic mod-
els of topological co-evolution, where higher-order structure and 
higher-order dynamics evolve together under the effect of mutual 
feedback62.

Inferring higher-order interactions from data
A crucial ingredient in modelling real systems is the reconstruction 
of higher-order interactions from data (Fig. 4). The vast majority of 
data available on network systems contain only records of pairwise 
interactions, even when the underlying rules rely on higher-order 
patterns. Naïvely attributing every observed dense subgraph in 
the pairwise network (for example, triangles and larger cliques) 
to a putative higher-order interaction conflates the existence of 
an actual hyperedge with the coincidental accumulation of edges, 
which may otherwise emerge from community structure, homoph-
ily or a geometric embedding. Recent work63 has demonstrated that 
it is possible to distinguish between hyperedges and combinations 
of lower-order edges by casting the problem as a Bayesian inference 
task, taking into account the parsimony of the resulting reconstruc-
tion. With such an approach, hyperedges are identified only if they 
are supported by statistical evidence. It is as yet unclear how such 
approaches might be generalized to include more realistic model-
ling assumptions, containing a tighter interplay with mesoscale 
structures and latent space embeddings64.

Even when explicit hyperedge data are available, just as with 
pairwise network data, errors and incompleteness are unavoid-
able, requiring us to reconstruct the object of study from uncertain 
observations65,66. For hypergraph data, recent work67 has proposed 
an approach based on comparisons with null models, which is 

capable of filtering out hyperedges that are not statistically signifi-
cant. More work is needed to provide uncertainty quantification on 
the analyses that are conditioned on the reconstruction, as well as 
leveraging more advanced techniques of hyperedge prediction to 
improve accuracy.

In addition to reconstruction from direct but uncertain data, it 
is challenging to infer higher-order structures from indirect data, 
such as time series, which encode the dynamical behaviour of the 
nodes rather than directly measured edges and hyperedges. This is 
an important issue in many biological systems such as the brain, 
where diseases like Parkinson’s and schizophrenia have been associ-
ated with dysfunctional brain connectivity68–70, but direct network 
measurements are often not available. A common approach is to 
compute correlations71 and measure synchronization72 between 
time series. However, these approaches yield an unreliable under-
standing of the underlying system, because they cannot distinguish 
correlation from causation—two or more nodes can be highly cor-
related even if they do not share an edge or hyperedge. Another set 
of approaches involves exploiting temporal correlations, for exam-
ple, the phase-dynamics reconstruction given a set of multivariate 
time series73. Originally devised for pairwise interactions only, this 
methodology has been generalized to account for small motifs of 
interacting units74.

The development of new synchronization measures for triplets 
has made it possible to identify multi-body locking from experi-
mental data, even when every pair of systems taken in isolation 
remains asynchronous75. This approach can better differentiate 
between the physical connections and the effective ones, which 
are associated with the temporal influence of one node on another, 
leading to more reliable network reconstruction methods76,77.

Finally, another possibility involves extending information- 
theoretical techniques, such as Granger causality78 and transfer 
entropy79, to account for the existence of multi-body interactions. 
Despite promising first steps in reconstructing higher-order inter-
actions from static lower-order projections63 and in multi-body 
information-theoretic quantities80, the task of broadening this 
framework to consider fully higher-order interaction schemes 
remains an open problem.

Reconstruction methods that are based only on temporal cor-
relations still suffer from the problem of not being able to fully 
distinguish between direct and indirect causation, meaning they 
cannot differentiate between the existence of an actual edge or 
hyperedge between nodes and a longer path that connects them. 
They are similarly incapable of discerning non-causal correlation. 
Circumventing this problem is only possible, in general, if we can 
make interventions, rather than relying on observational data 
alone81. Nevertheless, methods based on Bayesian inference of gen-
erative models are able to convey the uncertainty about the causal 
relationships82. An important future direction is to generalize such 
methods to incorporate higher-order interactions83–89 that vary in 
time42,43,90 and describe emergent higher-order geometry91.

Future directions from past inspiration
The study of networked systems with higher-order interactions 
is still in its infancy, posing new challenges and opportunities for 
discoveries9,92–94. Yet, it is also inspired by ideas from the past. For 
example, earlier work considered systems of coupled cells where 
dependencies of different orders were encoded via particular 
graph structures95, clarifying how higher-order symmetries affect 
synchronization96,97. Higher-order interactions can also gener-
ate new insights on older problems where they emerge as effec-
tive theories. A paradigmatic example is that of networks of phase 
oscillators with higher-order interactions, which arise from the 
phase reduction of nonlinear oscillator systems98–100. As a conse-
quence, understanding the dynamics of phase-reduced systems 
with higher-order interactions can also clarify the physics of the 

Reconstruction

?

Fig. 4 | Inference of higher-order systems is still an open and challenging 
problem. In spite of abundant network data, few records contain the 
information necessary to reconstruct a system’s higher-order interactions. 
A number of tools and concepts have been proposed to overcome 
this problem, but existing methods to extract signals associated with 
higher-order interactions are still lacking. Reconstruction techniques based 
on a combination of data-driven modelling and Bayesian inference offer 
early evidence of an effective approach.
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general higher-dimensional system101–104, in particular at the onset 
of chaos105 and metastable chimeras106,107. Thus, in addition to pro-
viding an exciting way forward for network science, higher-order 
interactions can also create opportunities for a wider dialogue on 
the physics of dynamical systems.

From p-spin models12,108 to multilayer109 and non-Markovian 
temporal networks110, the past suggests that new phenomena may 
occur when more realistic patterns of interactions are considered. 
Overcoming previous limitations, new data and new theory are now 
informing our network models beyond pairwise interactions9.
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