
International Journal of Data Science and Analytics (2020) 9:257–272
https://doi.org/10.1007/s41060-019-00189-x

REGULAR PAPER

Temporal betweenness centrality in dynamic graphs

Ioanna Tsalouchidou1 · Ricardo Baeza-Yates1,2 · Francesco Bonchi3,4 · Kewen Liao5 · Timos Sellis6

Received: 20 November 2018 / Accepted: 22 May 2019 / Published online: 5 June 2019
© Springer Nature Switzerland AG 2019

Abstract
Measures of centrality of vertices in a network are usually defined solely on the basis of the network structure. In highly
dynamic networks, where vertices appear and disappear and their connectivity constantly changes, we need to redefine our
measures of centrality to properly capture the temporal dimension of the network structure evolution, as well as the dynamic
processes over the network. Betweenness centrality (BC), one of the most studied measures, defines the importance of a vertex
as a mediator between available communication paths. BC value of a node is expressed as the fraction of the shortest paths
passing through this node. In other words, given the context that information flow follows the shortest paths, a nodewith higher
BC potentially has greater influence on the information flow in the network. In temporal dynamic graphs, a communication
path should be seen as a path both in space (i.e., the network structure) and in time (i.e., the network evolution). Toward this
goal, in this paper we propose the bi-objective notion of shortest–fastest path (SFP) in temporal graphs, which considers
both space and time as a linear combination governed by a parameter. Based on this notion, we then define a novel temporal
betweenness centrality (TBC) metric, which is highly sensitive to the observation interval and the importance of space and
time distances of the vertices, that can provide better understanding of the communication mediators in temporal networks.
We devise efficient algorithms for exactly computing all-pairs SFPs and the corresponding BC values both in a single graph
window and sliding graph windows. We also present a distributed implementation of our approach on Apache Spark which
shows great solution effectiveness and efficiency. We provide a thorough experimentation on a large variety of datasets. An
application to the analysis of information propagation proves that our notion of TBC outperforms static BC in the task of
identifying the best vertices for propagating information.

Keywords Temporal networks · Dynamic graphs · Betweenness centrality

B Francesco Bonchi
francesco.bonchi@isi.it

Ioanna Tsalouchidou
ioanna.tsalouchidou@upf.edu

Ricardo Baeza-Yates
rbaeza@acm.org

Kewen Liao
kewen.liao@cdu.edu.au

Timos Sellis
tsellis@swin.edu.au

1 Pompeu Fabra University, Barcelona, Spain

2 NTENT Inc., San Diego, CA, USA

3 ISI Foundation, Turin, Italy

4 Eurecat, Barcelona, Spain

5 Charles Darwin University, Sydney, Australia

6 Swinburne University, Melbourne, Australia

1 Introduction

Measuring the importance of a vertex in terms of its position
in a static network structure, i.e., its centrality, is a funda-
mental task in network analysis. An actor in a network can
be deemed important thanks to its ability to influence other
actors, as well as to spread or to block information propaga-
tion. As shortest paths are often used to model the flow of
information in a network, one of the most studied measures
of the importance of a vertex is betweenness centrality (BC),
i.e., the fraction of shortest paths that pass through it [3,10].
BC has been used to analyze a variety of different networks
such as online social networks (OSN) [29], social [27], pro-
tein [19], wireless ad hoc [28], mobile phone call [9], and
multiplayer online gaming [2] networks, just to mention a
few. It is also at the basis of one of the first and most well-
known algorithms for community detection [11].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-019-00189-x&domain=pdf
http://orcid.org/0000-0001-9464-8315

258 International Journal of Data Science and Analytics (2020) 9:257–272

However, real-world networks are rarely static: new ver-
tices arrive and old vertices disappear, as well as new
connections are created or removed continuously. Therefore,
the analysis of dynamic networks is receiving increasing
attention. In this regard, substantial research effort has been
devoted to the problem of dynamically maintaining BC val-
ues up-to-date on streaming graphs: this is to say that at
each temporal instant, the BC value of each vertex should
match the current status of the network structure, avoiding
to recompute everything from scratch each time. Contrarily,
the problem of defining and computing notions of BC on a
sequence of contiguous temporal snapshots (i.e., a temporal
window) has received little attention (brief survey in Sect. 2).

When we drop the strong assumption of measuring cen-
trality instant by instant, we can obtain interesting temporal
characterization of a network. For instance a path fromvertex
a to vertex b might materialize in two different timestamps,
e.g., by means of an edge (a, c) at time 1 and an edge (c, b)

at time 4, even if the two edges never coexist at the same
time. Similarly, a path from a to b might materialize through
edges (a, d) and (d, f) at time 2 and edge (f , b) at time 3.
Although the first path is shorter in terms of network struc-
ture, the second one is faster in terms of temporal duration.
The second path also starts later and ends earlier.

These examples highlight the need of reconsidering the
notion of shortest path when reasoning on an extended tem-
poral window in a dynamic network. Wu et al. [41] define
four different types of interesting paths over temporal graphs:
(1) earliest-arrival path, (2) latest-departure path, (3) fastest
path, and (4) shortest path.

In this paper, we generalize the last two of these notions,
by means of a linear combination, governed by a parame-
ter, which allows us to give more importance to the length
of path in terms of hops or to its temporal duration. We call
these paths shortest–fastest paths (SFPs). Based on this novel
definition of paths, we introduce a new measure of temporal
betweenness centrality (TBC) and study how to efficiently
compute it. Our analysis starts in a static time window which
includes snapshots of a graph at different timestamps and
continues with the sliding window case where new snap-
shots of the graph appear in a streaming fashion, while old
snapshots are discarded as they fall out of the currentwindow.

1.1 Challenges, contributions, and roadmap

In our endeavor of developing methods for TBC, the main
challenge is given by the fact that measuring BC is compu-
tationally intensive even in simple static graphs. Indeed, the
best known algorithm for BC, proposed by Brandes [6], runs
inO(nm) time. Dealing with TBC in dynamic networks does
not make things easier.

The approach developed in this paper starts with a graph
transformation that converts a temporal graph in a unique

directed and weighted graph. We show that, thanks to a care-
ful weighting of the links in this transformed graph, we can
obtain all the SFPs by computing all-pairs shortest paths in
the transformed graph, and by filtering out some of them.
We then extend Brandes’ algorithm [6] to deal with the novel
notion of TBC: the resulting algorithmcomputes, on the basis
of their participation in SPFs, the TBC of all the vertices
for a given temporal window of a dynamic temporal graph.
Then we extend our method to deal with a sliding tempo-
ral window. Finally, we devise a distributed implementation
in Apache Spark which achieves efficiency and scalability
for this computationally intensive task, as confirmed by our
extensive experimentation.

The contributions of this paper can be summarized as fol-
lows:

– We introduce the notion of shortest–fastest paths (SFPs)
in dynamic graphs combining spatial length and temporal
duration. We then define a notion of TBC based on SFPs
(Sect. 3).

– We extend Brandes’ algorithm to compute this new
notion of TBC over a static temporal window (Sect. 4),
and we prove theoretically the correctness of the algo-
rithm. Then we extend our algorithm to the sliding
window case (Sect. 5).

– We devise a distributed implementation of the method
in Apache Spark for higher efficiency and scalability
(Sect. 5.1).

– Extensive experimentationon several real-world dynamic
network provides insights on how our notion of TBC is
sensitive to the observation interval and to the parame-
ter governing importance of distance and duration of the
paths (Sect. 6).

– Anapplication to informationpropagationproves that our
notion of TBCoutperforms static BC in the task of identi-
fying the best nodes at propagating information (Sect. 7).

Section 2 provides a brief survey of related literature,
while in Sect. 8, we conclude the paper and discuss future
work.

2 Related work

2.1 Static and incremental betweenness centrality

For the problem of computing BC of all vertices in a
static graph, Brandes’ algorithm [6] achieves the current
best asymptotic time with linear space. This significantly
improves the approach of naively computing and accumu-
lating all-pairs shortest paths (APSP). More recent studies
[5,13,18,20,24,25,33] have been devoted to incrementaly
maintaining/updating static BC on dynamic networks. These

123

International Journal of Data Science and Analytics (2020) 9:257–272 259

networks are treated as streaming graphs where edges are
inserted or removed.

Kas et al. [20] and Green et al. [13] are the first proposals
of update algorithms for evolving graphs to avoid full BC
re-computation. Kourtellis et al. [24] extended [13] to fully
dynamic and improved in both time and space together with
a scalable distributed implementation. Jamour et al. [18] pro-
pose an incremental distributed computation that uses linear
space and outperforms the previous works. Our work differs
from the incremental approaches, since at every time instance
our algorithm receives as input the latest view of the graph
and removes the most obsolete one out of the observation
window, which implies multiple additions and deletions of
nodes and edges. Furthermore, we aim at computing the BC
values of the vertices in a time frame (TBC), that differs to
the above approaches that incrementally calculate/update the
static BCs of the vertices in a streaming fashion.

As none of the above exact methods are asymptotically
better thanBrandes [6], for the sake of scalability, researchers
[4,16,35,36] have recently drawn their attentions to approx-
imated BC computation via sampling-based methods. Most
noticeably, Riondato and Kornaropoulos [35] sample pairs
of vertices for an unbiased estimate of BC in static graphs.
Based on that, Bergamini et al. [4] propose the fully dynamic
counterpart. However, determining the sample size is the bot-
tleneck in these approaches due to the VC dimension theory.
Later, Riondato and Upfal [36] got around this bottleneck
with progressive sampling and the analysis of Rademacher
Averages. Their sampling step combined with the dynamic
maintenance technique of Hayashi et al. [16] is highly accu-
rate and efficient. Just recently, Alghamdi et al. [1] survey
and benchmark most of the approximated BC algorithms.

2.2 Temporal paths

Given a dynamic network, where edges are timestamped,
temporal paths are paths in the graph structure, along the
temporal dimension. In particular, temporal paths must be
time-respecting, that is, edges along a path appear in either
strictly increasing or non-decreasing time. Kempe et al. [22]
study connectivity problems in temporal networks based on
time-respecting paths. Additionally, they focus on recon-
structing a partially specified time labeling while respecting
the observed history of the information flow in the network.
Bui-Xuan et al. [8] analyze three types of least cost journeys:
hop count, arrival date and time span. Wu et al. [41] add to
the interesting paths studied in [8] the latest-departure paths
and propose more efficient methods to compute these paths
in both streaming and transformed graph models. Recently,
some parallel algorithms for computing the four different
types of temporal paths [30,42] have been proposed. Our
work differs from this literature, as we propose the general

notion of shortest–fastest paths which considers both space
and time as a linear combination.

2.3 Temporal betweenness centrality

Extending BC definition to consider temporal aspects has
been investigatedby [14,15,23,32,34,38,40] adopting slightly
different definitions of shortest paths, butmostly based on the
temporal duration of the paths.

Habiba et al. [15] define as geodesic distance the time
difference between the first and last link of the path. Their
approach does not allow simultaneous interactions of the
nodes in one time instance. They define three different paths
that have the same geodesic distance. Shortest temporal path
is the shortest time respecting path between two individuals,
whereas shortest link path is the shortest temporal path with
minimumnumber of individuals on the path. Finally, shortest
temporal trails is defined with respect to the ratio of the time
spent on an intermediate node over the total length of the
path. Based on two of these definitions, they define temporal
BC based on shortest temporal paths and delay-betweenness
centrality based on shortest trails. Kim and Anderson [23]
restrict their model to one edge per timestamp and define as
shortest path within a fixed interval of time, the path with
the shortest distance in terms of hops. Habiba et al. [15]
and Kim and Anderson [23] both only consider strict time-
respecting/time-increasing paths without taking into account
nodes interacting almost instantly at a given time or in a very
small time interval. This is actually the case of online social
networks and is also what we care about.

As a remedy, the definition from Tang et al. [38], focus-
ing more on online social networks, allows non-decreasing
time paths andwithin the same timewindowmessages can be
passed up to a certain number of hops.More in details, Tang et
al. [38] define non-decreasing time paths in non-overlapping
windows of time, restricting the number of simultaneous
interactions in one timespan to a fixed value. The length of
the path is defined as the difference in time between the first
and the last interaction of the path. Tang et al. [38] do not
actually count these instantaneous paths at any given time
when computing their temporal BC, whereas we do consider
them here. Additionally, they assume that the snapshots of
the temporal graph have the same set of vertices, whereas
we allow additions and deletions of vertices in the new snap-
shots. Moreover, all these notable earlier works focused on
studying concepts of temporal BC while ignoring how best
it can be computed. On the other hand, we also focus on
efficient approaches to carry out our exact BC computation.

The recent and probably the closest works to ours are
[32,34]. Pereira et al. [32] study both closeness and between-
ness centralities in a streaming model tailored for Twitter
data. Nevertheless, in their work only fastest path based on
time were considered and their algorithm has high space

123

260 International Journal of Data Science and Analytics (2020) 9:257–272

and time (at least cubic) costs in maintaining all-pairs fastest
paths. Furthermore, how centrality values were accumulated
and then computed is not properly described in [32]. Afrasi-
abi et al. [34] define foremost BC, based on foremost journeys,
i.e., the paths that have the earliest arrival time and propose
algorithms with worst-case exponential time. Gunturi et al.
[14] define shortest path in an observation period similarly
to [32] and propose an epoch-point based approach to avoid
redundant computation of shortest paths when the network
does not change. The algorithm depends on the number of
epoch points, which can be significantly high when we con-
sider fast evolving temporal networks.

Our approach differs from this literature as it considers
non-decreasing timepaths but also allows simultaneous inter-
actions of the vertices in one time instance similar to [41]. It
allows multiple additions and deletions of vertices and edges
in time and considers both spatial and time distance of the
paths as a linear combination, without imposing further con-
straints on the starting and finishing times of the paths.

There are also recent studies on spatio-temporal networks
[37,40], where our temporal path definition can also be
viewed as spatio-temporal if our considered instantaneous
path lengths are regarded as a spatial dimension.

3 Problem formulation

A temporal graph is a continuous stream of timestamped
edges (u, v, t), where u, v ∈ V are vertices and t is a times-
tamp from a potentially infinite temporal domain T . We can
represent the temporal graph as the sequence of sets of edges
that arrive in each timestamp, i.e.,G = 〈E0, E1, . . . , Et , . . .〉
where Ei = {(u, v, i)}. A window graph is a projection
of G over a temporal interval (or window): i.e., given the
window W = [t − (|W | − 1), t] of length |W |, we denote
GW = (V ,EW) the window graph defined over W , where
EW = ⋃

i∈W Ei . We also denote as Vt the subset of vertices
V that appear in timestamp t .

Definition 1 (Temporal path) A temporal path between a pair
of vertices u, v ∈ V in a window graph GW = (V ,EW) is a
sequence of edges p(u, v) = {(u = v0, v1, t0), (v1, v2, t1),
. . . , (vn, vn+1 = v, tn)} such that ∀i ∈ [1, n] it holds that
ti−1 ≤ ti .

When dealing with temporal dynamic graphs, one can use
different characteristics to define the interestingness of a path
between two vertices. In fact, besides the usual spatial defi-
nition of shortest path based on the number of intermediate
vertices, one can also consider the temporal duration of the
path itself. For instance, Wu et al. [41] study four different
types of interesting paths over temporal graphs within a time
window: (1) earliest-arrival path, (2) latest-departure path,
(3) fastest path, and (3) shortest path.

We next introduce our notion of interesting path which
combines and generalizes the last two definitions by Wu et
al. [41].

Definition 2 (Shortest–fastest path) Given a user-defined
parameterα ∈ [0, 1], we define as shortest–fastest path (SFP)
between a pair of vertices u, v ∈ V in a window graph GW ,
a valid temporal path p(u, v) = {(u, v1, t0), . . . , (vn, v, tn)}
minimizing the cost:

L(p) = α|p(u, v)| + (1 − α)(tn − t0) (1)

As said above, our definition generalizes both shortest and
fastest path notions, since it combines the spatial (number of
edges) and the temporal distance (steps in time) as number
of hops in two dimensions. In fact by setting α = 1 we
obtain shortest paths, while setting α = 0 we obtain fastest
paths. In general, depending on the application at hand, one
can tune the parameter α to give more importance to the
temporal dimension (α < 0.5) or the spatial one (α > 0.5).
The parameter α can also be tuned in such a way to favor one
dimension, but using the other dimension for tie-breaking
among equivalent paths in the first dimension.More in detail,
by setting α to a small positive quantity ε, the temporal paths
that we obtain by Eq. (1) correspond to fastest paths with the
minimum number of intermediate hops. Similarly, if we set
α = 1 − ε, Eq. (1) will return the shortest paths that expand
in fewer number of timestamps.

We next define our notion of TBC based on shortest–
fastest paths. Before, we recall the standard definition of BC
on a static graph G = (V , E). Let σ(s, d) denote the total
number of shortest paths from s to d in G; moreover, for any
v ∈ V , let σ(s, d|v) be the number of shortest paths from
s to d that pass through v. Note here that σ(s, s) = 1 and
σ(s, d|v) = 0 if v ∈ s, d [6]. For every vertex v ∈ V its
betweenness centrality (BC) is defined as:

BC(v) =
∑

s,d∈V ,s �=d

σ(s, d|v)

σ (s, d)
. (2)

Let us now consider a temporal graph as defined at
the beginning of this section. Given a window W let
GW = (V ,EW) denote the corresponding window graph.
Let σSFP(s, d) be the number of SFPs from vertex s to vertex
d in GW according to Definition 2.

Definition 3 (Temporal betweenness centrality) TBC of a
vertex v in a window graph GW is defined as:

TBC(v) =
∑

s,d∈V ,s �=d

σSFP(s, d|v)

σSFP(s, d)

The first problem studied in this paper is as follows.

123

International Journal of Data Science and Analytics (2020) 9:257–272 261

t0 t1 t2

|W| = 3

1-

1- 1-1-

1- (t2-t0)(1-) = 2(1-)

(0,0)

 (0,-1)
0

0 0

0

1 2

0

1

3 0

1 2

3

(1,1)(1,0) (2,0)

 (0,1) (3,1) (3,2)(0,2)

(1,2) (2,2)
1-

1- 1-1-

1- 2(1-)

(0,0)

(1,1)(1,0) (2,0)

 (0,1) (3,1) (3,2)(0,2)

(1,2) (2,2)

Fig. 1 An input window graph GW (left), its transformation G ′ (center), its augmentation with the dummy vertex (right)

Problem 1 (Static window case) Given a window graph
GW = (V ,EW) and a parameter α ∈ [0, 1], compute the
T BC(v) ∀v ∈ V .

After having proposed our algorithm to solve Problem 1
(in Sect. 4), we move to the sliding window case (Sect. 5),
in which at every new timestamp the window W slides, one
position, to include the latest set of edges while excluding the
set that falls outside of the limits of the window, as defined
in the next problem statement.

Problem 2 (Sliding window case) Given a window length
|W |, a parameter α ∈ [0, 1] and a timestamp t ∈ T that
increases continuously in time, compute the T BC(v)∀v ∈ V
in the window graphGW = (V ,EW) defined by the window
W = [t − (|W | − 1), t].

4 Static window case

In this section we introduce our method for computing the
TBC of all vertices, given a parameter α ∈ [0, 1] and a win-
dow graph GW .

4.1 Computing shortest–fastest paths

Our approach to compute all-pairs SFPs consists of three
phases. In the first phase (inspired by [41]) we transform
the input window graph to a static graph by linking, through
directed edges, the various replicas of the same vertex in
different snapshot and by appropriately weighting these aux-
iliary edges and the original edges. In the second phase, for
each vertex u of the original graph, we create a dummy ver-
tex connected to all the temporal replicas of u and we run
Dijkstra’s algorithm from the dummy vertex to compute the
shortest paths to all the other vertices in the transformed
graph. Finally, in the third phase, we aggregate the results
so that vertices with the same id across different timestamps
are considered as the same vertex. We next describe more
formally all three phases.

Phase 1: graph transformation. Given a graph window
GW = (V ,EW), we transform it to a static, directed and

weighted graph G ′(V ′, E ′, r), where r is the weighting func-
tion, as follows:

1. Vertices: for each t ∈ W , v ∈ Vt we create a vertex id
as a pair vertex-timestamp (v, t), i.e., V ′ = {(v, t) : t ∈
W , v ∈ Vt }.

2. Edges: for each v ∈ V and each pair of timespans ti , t j ∈
W with t j = min{t : (v, t) ∈ V ′, t > ti }, we create a
directed edge ((v, ti), (v, t j))withweight (t j −ti)(1−α).
The edges in EW are instead assigned a weight of α.

An example of this transformation is shown in Fig. 1.
Let us consider now a pair of vertices (u, v) ∈ V × V ,

and let us define P(u, v) = {p((u, ti), (v, t j))|ti , t j ∈ W }
the set of all paths from any replica of u to any replica of v in
the transformed graph G ′. Let us also denote �(p) the length
of one such path p, i.e., the sum of the weights of the edges
in the path. Thanks to the edge labeling in G ′, the following
(straightforward) lemma holds.

Lemma 1 A path p on the transformed graph G ′ from a
replica of u to a replica of v corresponds to a valid tem-
poral path p′ from u to v in the window graph GW , and the
length of p in G ′ corresponds to the cost of p′ in GW , i.e.,
�(p) = L(p′).

Following this observation, our method computes, for each
pair of vertices (u, v), all the shortest paths from any replica
of u to any replica of v (and viceversa), on the transformed
graph G ′.

Let �∗(u, v) = argminp∈P(u,v) �(p). We want to com-
pute the set of path S P(u, v) = {p ∈ P(u, v)|�(p) =
�∗(u, v)},∀(u, v) ∈ V × V .

This is achieved in the next two phases. Phase 2 produces,
for any vertex (v, t) ∈ V ′, the shortest paths among all the
paths from any replica of u. Phase 3 instead aggregates all
the shortest paths from any replica of u to any replica of v to
finally produce S P(u, v).

Phase 2: shortest paths in the transformed graph. In order
to compute the shortest paths from any replica of u to any
other vertex in G ′, phase 2 creates a dummy vertex (u,−1)
and connect it to all the replicas of u in G ′ by means of

123

262 International Journal of Data Science and Analytics (2020) 9:257–272

directed arcs with weight of 0. An example is given in Fig. 1
(right), where wewant to calculate all shortest paths that start
from the vertex with id 0. In this case, we need to concur-
rently calculate all shortest paths from vertices (0, 0), (0, 1)
and (0, 2). Therefore we create the dummy vertex (0,− 1)
with directed edges to the vertices (0, 0), (0, 1) and (0, 2)
highlighted in red. Finally, we run Dijkstra’s algorithm with
the dummy vertex as source, returning three lists:

• S, which is the list of vertices (v, t) ∈ V ′ in non-
decreasing distance from the source (u,−1),

• D, which contains the distance, i.e., the length of the
shortest path, of each vertex (v, t) ∈ V ′ from (u,−1),

• P , which is the list of predecessors for each vertex
(v, t) ∈ V ′ in all the shortest paths from (u,−1).

Theorem 1 Running Dijkstra’s algorithm from dummy
source vertex (u,−1) correctly finds the set of all the shortest
paths from any replica of u to a vertex (v, t) ∈ V ′.

Proof First we observe that in a shortest path p((u,− 1),
(v, t)), there is at most one intermediate vertex from the
set {(u, t ′) : t ′ ∈ W }, that can by proved by absurd.
Therefore, a shortest path from a dummy vertex (u,−1)
to a vertex (v, t) ∈ V ′ will be p((u,− 1), (v, t)) =
〈(u,− 1), (u, ti), xi , . . . , (v, t)〉 where xi �= (u, t j) for any
t j ∈ W . Using Bellman Criterion on shortest paths of static
graphs [6], we have that the shortest path from (u, ti) to
(v, t) can be obtained by removing (u,− 1) from the path
p((u,− 1), (v, t)).
�

Phase 3: aggregation. Consider the example of Fig. 2 with
a transformed graph defined over only two timestamps. Con-
sider the pair of vertices with id (in the original graph) 0 and
5. Dijkstra’s algorithm over the transformed graph detects
two shortest paths (marked in red) from some replica of 0 to
some replica of 5. At the end of phase 2, vertices with the
same id but different timestamps are still treated as different
and thus we have two different results (shortest path in times-
tamp 0 and in timestamp 1). However, (5, 0) and (5, 1) are
the same vertex viewed in two different timestamps. There-
fore, the SFP from vertex with id 0 to the vertex with id 5
is the one with source (0, 1), destination (5, 1) and length α.
On the other hand, the SFP from vertex with id 0 to vertex
with id 4 can come from both timestamp zero and one, when
α < 0.5 (paths highlighted with blue color). In this case,
there are four paths from vertex 0 to vertex 4 all of which
have length 3α.

Therefore in phase 3, we need to aggregate all the shortest
paths that regard the same vertex id. This is done by removing
from S vertices forwhich a replicawith the same vertex id has
appeared earlier in the list with smaller distance. Following
[6], we use an “augmented” Dijkstra that also maintains an

(0,0)

(1,0)

(2,0) (3,0)

(5,0) (4,0)

(6,0)

(0,1)

(5,1)

(2,1) (3,1)

(4,1)

(6,1) (1,1)

1-

1- 1-

1-

1-

1-

1-

Fig. 2 Shortest paths on a transformed graph defined over two times-
tamps. Paths from vertex 0 to vertex 5 are marked with red. Paths from
vertex 0 to vertex 4 are marked with blue and green. For α < 0.5, SFPs
are only the blue paths. For α > 0.5, the only SFP is the green path,
whereas for α = 0.5 both blue and green are SFPs (color figure online)

Algorithm 1: All-pair Shortest–Fastest Paths (APSFP)
input : GW = (V ,EW) = {(Vt , Et) : t ∈ W }, |W |, α
output : S, S′, P , D, σ , σ ′

1 V ′ ← ∅; E ′ ← ∅
2 V ′ ← ⋃ {(v, t) : v ∈ Vt , t ∈ W }
3 E ′ ← ⋃{((u, t), (v, t), α) : (u, v) ∈ Et , t ∈ W }
4 E ′ ← E ′ ∪ {((v, t), (v, t ′), (1 − α)(t ′ − t)) : (v, t) ∈ V ′}, where

t ′ = min{ti : (v, ti) ∈ V ′, ti > t}
5 for u ∈ V do
6 V ′

u ← V ′ ∪ {(u,−1)}
7 for t ∈ W do
8 if (u, t) ∈ V ′ then
9 E ′

u ← E ′ ∪ {((u,−1), (u, t), 0)}
10 G ′

u ← (V ′
u, E ′

u)

11 S[u], P[u], D[u], σ [u] ← Dijkstra(G ′
u , (u,−1))

12 S′[u]← []; D′[u]← {}; σ ′[u]← {};
13 for (i = 0; i < |S|; i = i + 1) do
14 (x, t) ← S[u][i]
15 if ((x, t) �= u) and (x /∈ D′[u] or

D[u][(x, t)] = D′[u][x]) then
16 S′[u].append((x, t))
17 D′[u][x] ← D[u][(x, t)]
18 σ ′[u][(x, t)] ← σ [u][(x, t)]
19 else
20 σ ′[u][(x, t)] = 0

additional structure σ that contains the number of shortest
paths from the source vertex (u,− 1) to each of the other
vertices: this will result useful later in Sect. 4.2 to compute
TBC. When we update S also σ and D must be updated
accordingly: in the pseudocode inAlgorithm 1, we use S′, D′
and σ ′ to denote the updated S, D and σ , respectively.

All-Pair Shortest–Fastest Paths (APSFP). Algorithm 1
summarizes the method. Given GW and α the algorithm

123

International Journal of Data Science and Analytics (2020) 9:257–272 263

starts with the graph transformation (lines 1–4) as described
in Phase 1. Lines 5–11 computes the shortest paths in the
transformed graph as described in phase 2 and outputs the
structures S, P, D and σ . Finally, the aggregation process
described in phase 3 is given in lines 12–20. In this phase,
we use the output of phase 2 to compute σ ′, which is the
dictionary that contains the number of shortest paths (after
the merging) of each vertex v ∈ V ′ from the source vertex
(u,− 1) and is initially empty (line 12). At the end of phase
3, it holds that the σ ′

uv = ∑
(v,t):t∈W σ ′[u][(v, t)],where σ ′

uv

is the number of SFPs between u and v for the given α in
GW .

To produce σ ′, we need to employ the auxiliary structure
D′ (initially empty), which contains the distance of each v ∈
V from the source vertex. We start by traversing all vertices
(v, t) contained in S and add their distance D[(v, t)] in D′,
if these vertices are endpoints of some shortest path after
merging (condition in line 15). If (v, t) is endpoint of some
shortest path, we update the value of σ ′[u][(v, t)] with the
value of σ [u][(v, t)], otherwise, we set it to 0.
Theorem 2 Algorithm 1 computes all SFPs from each vertex
u ∈ V to the rest of the vertices on the graph window GW .

Proof Algorithm 1 constructs structure S′[u] from S[u], that
contains all vertices in non-decreasing distance from the
source (u,− 1). The distance of each vertex from the source
is the sumof theweightα, when an edge corresponds to a hop
during one timestamp, and (t j − ti)(1 − α) when the edge
corresponds to a hop between vertices of the same id that
appear in timestamps ti and t j . Thus, as already highlighted
in Lemma 1, the length of one of these paths in the trans-
formed graph corresponds to the cost L(·) in Definition 2.
By selecting from S[u], among the vertices of the same id,
the ones with the smallest distance from the source, we con-
struct the structure S′[u] that contains the destination vertices
of all and only the SFPs from u.
�

4.2 Temporal betweenness centrality

Brandes’ algorithm. In a static graph G(V , E) Brandes’
algorithm [6] uses the notion of dependency of a vertex s ∈ V
to another, intermediate, vertex v ∈ V , defined as:

δs•(v) =
∑

w∈V

δsw(v).

The pair-dependency δsw(v) = σsw(v)
σsw

of the vertices s, w
on the vertex v is the number of shortest paths from s to w

that v lies on divided by the total number of shortest paths
from s to w. Note here that σsw is the number of shortest
paths from s to w, σsw(v) is the number of shortest paths
from s to w that go through v and finally that σss = 1 and
σsw(v) = 0 if v ∈ {s, w}. Brandes proves that the above

partial sums obey a recursive relation which is the core of its
algorithm:

δs•(v) =
∑

w:v∈Ps (w)

σsv

σsw
· (1 + δs•(w)),

where Ps(w) is the list of the predecessors of node w on
shortest paths from s. In other words, the dependency of s
on the vertex v can be calculated using the dependencies s
on the successors of v. Each successor w of v contributes
to δs•(v) their dependency score δs•(w) plus 1 which is the
shortest path that starts from s to w. This value is multiplied
by the ratio σsv

σsw
which is the proportion of shortest paths

from s to w passing by the vertex v and the edge {v,w}.
Therefore, by traversing the vertices in non-increasing dis-
tance from s we can accumulate the dependency scores for
all vertices. Finally, the betweenness centrality of a vertex v

can be calculated as:

BC(v) =
∑

s �=v �=w∈V

δsw(v).

Temporal betweenness centrality.Consider Fig. 2: the SFP
from vertex with id 0 to the vertex with id 5, is only the path
that includes vertices 〈(0, 1), (5, 1)〉 as vertex (5, 0) is not
a destination of any SFPs starting from source with id 0.
However, vertex (5, 0) lies on the shortest path from (0, 0)
to (6, 0), and therefore, there is pair dependency of vertices
(0, 0) and (6, 0) to the vertex (5, 0) which should be calcu-
lated. Finally, in order to compute the dependency of vertex
(0, 0) to the vertex (2, 0), which is the endpoint of the SFP,
we should also consider the dependency of vertex (5, 0) even
if it is not the endpoint of any SFP.

Definition 4 Given shortest paths and shortest–fastest paths
counts (σ and σ ′), we can define the pair-dependency δst (v)

of a pair of vertices s, t to the vertex v in a graph window,
where s, t, v ∈ V ′:

δst (v) = σst (v)

σst

σ ′
st

σst

According to Definition 4, the pair dependency of vertices
s, t on v will be either 0, if vertex t is not endpoint of any

SFP, or σst (v)
σst

, since σ ′
st

σst
is either 0 or 1.

Theorem 3 The dependency of s ∈ V ′ on any vertex v ∈ V ′
obeys:

δs•(v) =
∑

w:v∈Ps (w)

σsv

σsw
·
(

σ ′
sw

σsw
+ δs•(w)

)

123

264 International Journal of Data Science and Analytics (2020) 9:257–272

Proof According to proof of correctness of Brandes’ algo-
rithm [6, Theorem 6], we have that

δs•(v) =
∑

t∈V ′
δst (v) =

∑

t∈V ′

∑

w:v∈Ps (w)

δst (v, {v,w})

=
∑

w:v∈Ps (w)

∑

t∈V ′
δst (v, {v,w}), (3)

where δst (v, {v,w}) is the pair-dependency that includes the
edge {v,w}. More formally we have that δst (v, {v,w}) =
σst (v,{v,w})

σst
, where σst (v, {v,w}) is the number of shortest

paths from s to t that include both the vertex v and the edge
{v,w}.

Let w be any vertex with v ∈ Ps(w). If vertex t = w

then from σsw paths that go from s to w only σsv pass from
vertex v first. In case that vertexw is not an endpoint of some
SFP, δst (v, {v,w}) = 0. When t = w, these two cases can

be expressed as δst (v, {v,w}) = σsv
σsw

σ ′
sw

σsw
. Recall that σ ′

sw
σsw

is
either 0 or 1.

In case that t �= w, if t is the endpoint of some SFP
(σ ′

st = σst), we have δst (v, {v,w}) = σsv
σsw

σst (w)
σst

(see [6]) and
0 otherwise. Therefore, when t �= w these two cases can be

expressed as δst (v, {v,w}) = σsv
σsw

σst (w)
σst

σ ′
st

σst
. The above are

summed up by:

δst (v, {v,w}) =
{

σsv
σsw

σ ′
sw

σsw
, t = w

σsv
σsw

σst (w)
σst

σ ′
st

σst
, t �= w

and from Eq. 3:

δs•(v) =
∑

w:v∈Ps (w)

⎛

⎝ σsv

σsw

σ ′
sw

σsw
+

∑

t∈V ′\{w}

σsv

σsw

σst (w)

σst

σ ′
st

σst

⎞

⎠

=
∑

w:v∈Ps (w)

σsv

σsw

(
σ ′

sw

σsw
+ δs•(w)

)

�
Merging TBC results. Until here, our algorithm computes
the temporal betweenness centralities of all vertices in the
transformed graph, i.e., for all vertices (v, t) in V ′. The final
step of our approach is to merge the BC results of the vertices
with the same id in different timestamps to compute TBC for
all vertices v ∈ V .

Theorem 4 The TBC of a vertex v in a graph window GW is
the sum of the TBCs of this vertex in all timestamps of the
window W .

T BC(v) =
∑

t∈W

T BC((v, t))

Proof The dependency of a vertex s ∈ V to a vertex v ∈ V
is:

δs•(v) =
∑

w∈V ′
δsw(v) =

∑

w∈V ′

σsw(v)

σsw

σ ′
sw

σsw

=
∑

w∈V ′

∑
t∈W σsw((v, t))

σsw

σ ′
sw

σsw
=

∑

t∈W

δs•((v, t))

Therefore, we have:

T BC(v) =
∑

s∈V

δs•(v) =
∑

s∈V

∑

t∈W

δs•((v, t))

=
∑

t∈W

∑

s∈V

δs•((v, t)) =
∑

t∈W

TBC((v, t))

�

5 Sliding window case

In this section, we extend the static window TBC to the slid-
ing window setting. We consider an infinite stream of input
graphs that update thewindow graph at every timestampwith
the newest snapshot of the temporal graph, and at the same
time, we remove the most obsolete snapshot. This process
implies changes on the values of the TBCs of the vertices,
not only due to the changes on the shortest paths between the
existing vertices, but also due to the appearance and removal
of the vertices and edges in the window graph at every times-
tamp.

Figure 3 shows the case of a sliding window of length 3 in
three consecutive timestamps. Timestamp 0, which does not
appear in the figure, contains only the first snapshot of the
graph in the rightmost position of the window. Timestamp 1
(left side of Fig. 3) shows the window after the appearance of
the second snapshot of the graph. Therefore, the first snap-
shotmoves one position to the left of thewindow and gives its
position to the new timestamp. Finally, we create the links
between the vertices with same ids in the different times-
tamps. In the next timestamp, when a new snapshot arrives,
occupies the rightmost position of the window, whereas the
older snapshots move one position to the left. If all the posi-
tions of the window are occupied, the oldest snapshot is
removed from the window graph, as shown in the right part
of Fig. 3 marked with red color (Timestamp 3).

The calculation of the TBCs of the vertices in a window
is done in the following steps that are shown in Algorithm 2.
The newest timestamp, upon arrival (line 3), takes the right-
most position in the window, its vertices are renamed, the
edges get weighted, while the leftmost snapshot is removed
(lines 4–7) so as to produce the updated transformed graph
(line 8). To compute the TBC of the vertices (line 9)
Algorithm 2 calls the distributed process described by Algo-
rithm 3. In line 2 of Algorithm 3 all ids = {v ∈ ⋃

t∈W Vt } are
distributed across the computation entities. Then, the algo-

123

International Journal of Data Science and Analytics (2020) 9:257–272 265

(0,0)

(1,0)

(2,0) (3,0)

(5,0) (4,0)

(6,0)

(0,1)

(5,1)

(2,1) (3,1)

(4,1)

(6,1) (1,1)

1-

1- 1-

1-

1-

1-

1-

(0,0)

(1,0)

(2,0) (3,0)

(5,0) (4,0)

(6,0)

(0,1)

(5,1)

(2,1) (3,1)

(4,1)

(6,1) (1,1)

(

(0,2)

(2,2)

(4,2)

(6,2) (1,2)

(5,2) (7,2)

(0,3)

(2,3)

(4,3)

(6,3) (1,3)

(5,3) (7,3)

(3,3)

1- 1-

1-

1-

1-

1- 1- 1- 1-

1-

1-

1-

2(1-)

1-

(0,0)

(1,0)

(2,0) (3,0)

(5,0) (4,0)

(6,0)

(0,1)

(5,1)

(2,1) (3,1)

(4,1)

(6,1) (1,1)

1-

1- 1-

1-

1-

1-

1-

(0,2)

(2,2)

(4,2)

(6,2) (1,2)

(5,2) (7,2)

1-

1-

1-

1-

1- 1-

Timestamp 1 Timestamp 2 Timestamp 3

Fig. 3 Transformed graph for 3 consecutive timestamps for |W | = 3. The figure shows the second timestamp (Timestamp 1) where W contains
two snapshots of G. In the last instance of the figure, we the most obsolete snapshot is removed from W for the newest one to enter

Algorithm 2: Sliding Window TBC
input : |W |, α, rounds
output : TBC

1 GW ← [], V ′ = ∅, E ′ = ∅, t = 0
2 while t < rounds do
3 read Gt (Vt , Et) //Read new timestamp
4 V ′ ← V ′ ∪ {(v, t) : v ∈ Vt } //vertex renaming
5 V ′ ← V ′ \ {(v, ti) : ti = t − (|W | − 2)}
6 E ′ ← E ′ ∪ {((v, t), (u, t), α) : (v, t) ∈ V ′, (u, t) ∈ V ′ and

(v, u) ∈ Et } //static edges
7 E ′ ← E ′ ∪ {((v, t ′), (v, t), (1 − α)(t − t ′))}, where

t ′ = max{ti : (v, ti) ∈ V ′, ti < t} //temporal edges
8 G ′ = (V ′, E ′)
9 T BC ← Algorithm 3

10 report TBC
11 t + +

rithm computes the dependencies of each vertex s ∈ GW to
every other vertex (line 3), with the function described by
Algorithm 4. Finally, all dependency results are summed up
in line 4. The result of this summation is the value of the TBC
of all vertices in GW , according to Theorem 4.

Algorithm 4 calculates the dependencies of a vertex to the
rest of the vertices in a window and is called for each one of
the vertex ids of the graph. It first creates the dummy vertex
(line 1) and then calculates the shortest paths from the dummy
vertex to the rest of the vertices using Dijkstra’s algorithm
(line 2). The calculation of SFPs, described in Algorithm 1,
remains the same. The final step is the calculation of the
dependencies (line 4) using the extended Brandes’ algorithm
for window graphs as described in Sect. 4.2.

5.1 Distributed implementation

Due to its computational complexity, BC can be prohibitive
to compute for large-scale graphs. This is mostly due to the
calculation of APSPs that cannot be avoided. However, by
exploiting the properties of the algorithms, i.e., the indepen-

Algorithm 3: Distributed TBC
1 ids ← {v ∈ ⋃

t∈W Vt };
2 distrIds ← sc. parallelize(ids);
3 dependencies_RDD ← distrIds.map(lambda s:

dependencies(s, |W |, G ′, t)) //Algorithm 4.
4 T BC ← dependencies_RDD.reduce(lambda δx,•,δy,•:

sum(δx,•,δy,•)) //Sum values of δx,• and δy,• by key.

Algorithm 4: Dependencies
input : s, W , G ′(V ′, E ′), t
output : δs•

1 Add dummy vertex (s,-1): Algorithm 1 lines 6–10;
2 S, P, D, σ ← Dijkstra(G ′

s , (s,−1));
3 SFPs: Algorithm 1 lines 12–20;
4 δs• ← Brandes(S, S′, P, σ, σ ′, s, W);
5 report δs•

dence of the calculation of Dijkstra’s algorithm for each
source vertex and the summation of the dependencies to
compute the TBCs of the vertices, we can distribute the com-
putation on a cluster ofmachine cores (CM).Therefore,while
the complexity of the calculation remains the same, we can
have a theoretical improvement of the execution time up to
a factor of 1

|C M| , where |C M | is the number of cores.
For the implementation of our algorithms, we used the

Apache Spark framework. Figure 4 shows an overview of
the distributed process that is described by Algorithm 3. The
first step is the distribution of the data, i.e., the vertex ids
of the window graph, across the CM. Spark framework uses
the notion of Resilient Distributed Dataset (RDD), which is
the basic Spark abstraction. Each computation machine has
assigned one partition of the data, for which is exclusively
responsible. The computation of the shortest paths and the
dependencies from all source vertices of the partition to the
rest of the vertices of the graph is done in parallel for all CM.
After the computation of the dependencies in the various

123

266 International Journal of Data Science and Analytics (2020) 9:257–272

Table 1 Dataset name, number
of vertices n, number of edges
m, time span T and temporal
granularity

Network n m T Time granularity

Infectious 279 3928 10 1h

LastFM 1372 596,496 314 1day

MathOverflow 12,491 147,968 27 1month

DBLP 35,851 316,570 18 1year

FBwall 44,609 310,089 13 1month

WikiConflict 116,230 4,524,510 60 1month

WikiTalk 1,094,018 8,020,640 2185 1 day

ids

RDD Partition 1 RDD Partition kRDD Partition k

reduce()
using sum()

dependencies() dependencies()

TBC

sc.parallelize()

map()
using dependencies()

Fig. 4 High level overview of the distributed implementation described
by Algorithm 3. Vertex ids are distributed to the CM, whereas the graph
is replicated. Dependencies calculated in CM are summed to produce
the TBC results

cores, we sum the values in order to calculate the TBC of the
vertices [reduce() function in Fig. 4].
Complexity. Given a source s ∈ V the length and the num-
ber of SFPs can be determined in O(m + n log n), where
m is the total number of edges in the transformed graph.
Therefore, the computational complexity for the serial algo-
rithm is O(n(m + n log n)). The computational cost of the
distributed algorithm is reduced by a factor of |C M | to
O(n

|C M| (m + n log n)). The space complexity of the serial
algorithm is O(m + n), whereas the distributed algorithm,
which maintains each structure for each source node s,
requires O(n

|C M| (m + n)) space.

6 Experimental evaluation

The objectives of our experimentations are: (1) to character-
ize SFPs in terms of temporal duration and spatial distance;
(2) to characterize TBC w.r.t. static BC applied to a dynamic
network, w.r.t. time, and w.r.t. the parameter α, (3) to study
scalability of the proposed distributed implementation with
varying number of cores.

We use seven real-world dynamic networks summarized
in Table 1.

Infectious: This is human contact data available from
SocioPatterns (http://www.sociopatterns.org/) and described
in [17]. Vertices represent visitors of an exhibition and edges
represent face-to-face contacts. The data expand in 10 hourly
timestamps.

LastFm: This dataset contains the graph of friendship
between the users of Last.fm together with a timestamped
activity log, i.e., users listening to songs. We define a tem-
poral edge when two users, which are friends in the social
network, listen to the same song. It expands in 314 daily
timestamps from 1/1/2012 to 11/9/2012.

MathOverflow: The vertices of this graph are users of the
Math Overflowwebsite. An edge represents answers or com-
ments to questions or comments between two users. The
dataset expands in 35monthly timestamps between 2014 and
early 2016. This network was created in [31] and is available
at https://snap.stanford.edu.

DBLP:This is the co-authorship network of nine conferences
(VLDB, SIGMOD, ICDE, EDBT, KDD, ICDM, SIGIR,
CIKMandWWW)collected from theDBLPdatabase (http://
dblp.uni-trier.de/). Each vertex is an author and each edge
represents co-authorship. It contains 18 yearly timestamps
that expand from the 2000 to 2017.

FBwall: Each vertex represents a user of the Facebook social
network. Each edge is a wall post from one user to some
other user’swall. For our experiments,we created 13monthly
timestamps from January 2008 to January 2009. This com-
munication network is described in [39] and is available at
the http://konect.uni-koblenz.de/.

WikiConflict: Each vertex represents a user of English
Wikipedia, and each edge represents a conflict between two
users. This is a subset of the dataset described by [7] and
is available at the Konect database. It contains 60 monthly
timestamps from 2004 to 2009.

WikiTalk: Each vertex represents a user of Wikipedia, and
an edge between two users represents an edit from one user
to the Talk page of the other user. It contains 2185 daily

123

http://www.sociopatterns.org/
https://snap.stanford.edu
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/
http://konect.uni-koblenz.de/

International Journal of Data Science and Analytics (2020) 9:257–272 267

timestamps, is described by [26,31] and is available at https://
snap.stanford.edu.

Experimental Environment:We created a Spark cluster of
80 cores that expand in 5 machines. Each machine has 16
cores Intel(R) Xeon(R) CPU E5620@ 2.40 GHz. The driver
programhas a limitedmemory of 6GBand runs in one core of
the cluster.We created 5worker nodes, one per eachmachine.
In eachworker,we raise 3 executorswith 5 cores per executor.
For each executor, we allocate 7GB of memory. In total we
use up to 70 cores out of the 75 available on the Spark cluster
(5workers × 3executors × 5cores).
Reproducibility: Our code (serial and distributed version)
is available at https://goo.gl/PAAJvp.

6.1 Shortest–fastest paths characterization

Figure 5 reports a characterization of SFPs in terms of tem-
poral duration and spatial length (as number of hops on the
network structure), between pairs of randomly selected ver-
tices, for various |W | and α. For each dataset, we present four
plots that show the cumulative function of pairs of vertices:

i.e., on the y-axis we have the number of pairs of vertices that
have (temporal or spatial) distance smaller than the value on
the x-axis. On the left part, we see the temporal distance for
two different window sizes |W | and on the right column we
see the spatial distance. In each plot, we present the cumula-
tive function for three different values of α. For α = 0.001
the SFPs approximate the fastest paths, which are paths with
smaller duration. Therefore, we expect more paths with tem-
poral distance 0 than in the case of SFPs with α = 0.999,
which approximate the shortest paths. Equivalently, when
α = 0.999 we expect more SFPs with higher spatial distance
than in the case of α = 0.001.

Starting from the top left to bottom right in Fig. 5, we
present the results for |W | = 6 and |W | = 10 for the Infec-
tious dataset and for |W | = 6 and |W | = 12 for the LastFM,
MathOverflow, DBLP, FBwall andWikiConflict datasets. For
Infectious, we have used up to |W | = 10 window length,
since the dataset contains only 10 timestamps. On the other
hand, for the rest of the datasets, we could use even larger
size of window. For the Infectious dataset, we selected 130
random pairs of vertices, for LastFM we select 600 random

Fig. 5 Cumulative function for spatial and time distance of SFPs of pairs of vertices randomly selected. We present results for two values of |W |
for Infectious, LastFM, MathOverflow, DBLP, FBwall and WikiConflict datasets

123

https://snap.stanford.edu
https://snap.stanford.edu
https://goo.gl/PAAJvp

268 International Journal of Data Science and Analytics (2020) 9:257–272

pairs, whereas for the last two datasets we selected 1000 ran-
dom pairs.

In Fig. 5, we observe that when α takes small values
(α = 0.001 marked with a red line), the number of pair
of vertices with smaller temporal distance is much higher
than in the case of higher α (α = 0.999 marked with a blue
line). Depending on the dataset, the difference between the
number of pairs can vary up to 200 (FBwall dataset). For all
different datasets, the red line converges faster to the total
number of pairs and follows the green line (α = 0.5) and
the blue line (α = 0.999). On the other hand, the blue line
converges always faster in the case of spatial distance and
is followed by the green and the red lines. These results are
as expected and match the desired behavior of the parameter
α: smaller values of α means less importance on the spa-
tial distance, while higher values of α reduces the weight of
temporal dimension, and thus, the SFPs are more likely to
expand over several timestamps. SFPs affect directly TBC,
and therefore, we expect that varying α will impact the value
of TBC, as we show in the following subsection.

6.2 Temporal betweenness centrality

We next characterize the behavior of TBC against static BC,
against time, and against α.

TBC versus Static BC. We compare the ranking of impor-
tance of the vertices by means of TBC, with the rankings
that we can obtain by applying static BC to the dynamic net-
work. In particular, we consider three ways of applying static
BC to a dynamic network: i.e., maximum, average and union
graph. For the maximum and average characterizations, we
fix a window length and we run the static BC algorithm at
each one of the snapshots of the window. The value of BC
of each vertex is the maximum and the average of the val-
ues in these snapshots. The union graph characterization is
obtained by merging the snapshots of the graph to create a
static graph with the union of vertices and edges. The BC of
each vertex is given by running the static BC algorithm on
the union graph.

Figure 6 shows the results of the Jaccard and Kendall Tau
similarity measures comparing the rankings of TBC versus
maximum (max with red color), TBC versus average (avg

Fig. 6 Jaccard and Kendall Tau values for max (TBC vs. maximum), avg (TBC vs. average) and union (TBC vs. union graph). We present results
for different values of |W | and α for Infectious, LastFM, MathOverflow, DBLP, FBwall and WikiConflict datasets

123

International Journal of Data Science and Analytics (2020) 9:257–272 269

with green color) and TBC versus union graph (union with
blue color) for different values of |W | and α. Jaccard is
measured among the top-10 vertices by centrality value. It
represents the similarity of TBC and maximum (max), TBC
and average (avg) and TBC and union graph (union) top-10
sets. This similarity measure shows how the top-10 central
nodes chosen by TBC are similar to the three characteriza-
tions. Kendall Tau is measured in the first 15% of the total
rank of V by centrality, and discarding the vertices which is
not common in the two compared rankings. This similarity
measures shows the similarity of the rankings of the com-
mon vertices among the TBC andmaximum (max), TBC and
average (avg) and TBC and union graph (union) rankings.

As expected, both Jaccard andKendall Tau similarities are
higher for small windows, whereas for larger windows the
importance of using a temporal notion of centrality increases,
resulting in lower similarity values. In most of the cases, for
the different values of α, max and avg get smaller values as
we increase α. This situation is reversed for the union graph
which, by construction, includes all temporal paths including
not valid ones, i.e., paths that go back in time.

TBC versus Time. In this experiment, we present how the
value of TBC changes in time for four vertices taken from
the Infectious dataset and show significant changes depend-
ing on the choice of parameters. Figure 7 shows the ranking
of the vertices in a range of 6 timestamps (timestamps 3 to
8) for three different window lengths |W | = [4, 6, 8]. On
the y-axis, we report the ranking of the vertices in the net-
work, where a value of 1 indicates the most central vertex in
the graph. It is important to note here that depending on the
window length the ranking of the vertices can change sig-
nificantly. For example, we observe that vertex 3 (blue line)
has a better ranking value comparing to vertex 1 (red line)
for window |W | = 4 at timestamp 6. This situation changes
when the window increases to length 6 and 8. This confirms
our hypothesis that the length of the observation period can
change dramatically the vertices’ centrality.

Figure 8 shows the ranking of four vertices of MathOver-
flow dataset for timestamps 14–26. In this set of plots, we
observe how the ranking of the vertices change while chang-
ing the length of W (|W | = [9, 12, 15]) and also the value of
α (α = [0.001, 0.5, 0.999]). For α = 0.5 (second line plots)
different values of |W | result in different rankings. For exam-
ple, vertex 2 (green line) has better rank than vertex 1 (red
line) in window 9, which changes dramatically for windows
12 and 15. Finally, for a fixed |W | and for different values
of α, the rankings also vary significantly. For example, for
|W | = 12 the rank of vertex 2 has improved w.r.t. vertex 4 in
timestamps 17–21 as α gets bigger values.

TBC versus α. Next, we present the difference between the
rankings of the vertices for various |W | and for different
α values for all datasets. Figure 9 shows the Jaccard and

Fig. 7 In the Infectious network, the figure shows how the TBC values
change along time for four different vertices. We use |W | = [4, 6, 8]
and α = 0.5 for six consecutive timestamps (3–8)

Fig. 8 In the MathOverflow network, we present TBC versus time
for four different vertices that show significant changes depending
on the choice of parameters. We use |W | = [9, 12, 15] and α =
[0.001, 0.5, 0.999] for 13 consecutive timestamps (14–26)

Fig. 9 Kendall Tau and Jaccard similarity for the rankings of TBC
method for α = [0.001, 0.999] and different W for all datasets

Kendall Tau similarity measures for the top 15% of the ver-
tices for with α = 0.001 and α = 0.999. For Infectious, we
use |W | = [2, 4, 6, 8] whereas for the rest of the datasets
we use |W | = [3, 6, 9, 12]. For Infectious, we see that for
|W | = 4 Kendall Tau is less than 0.4 whereas Jaccard simi-
larity is 1. This means that the top-15% of the two rankings
contain the same vertices but the ranking of the vertices is
very different. We also see greater dissimilarity of the rank-
ings as the window grows for the majority of the datasets.
These results support our hypothesis that by giving differ-
ent weights to spatial and time links (different values of α)
vertices can have very different BCs.

123

270 International Journal of Data Science and Analytics (2020) 9:257–272

Fig. 10 Execution time versus |CC | for the serial and distributed versions for all datasets and for various |W |

6.3 Scalability

Figure 10 shows the performance gain when we increase the
number of compute cores (CC) for different |W |. We show
results for all datasets and for |W | = [3, 6, 9, 12, 15]. We
performed experiments for the serial version of our imple-
mentation (|CC | = 1) and for the distributed version using
10–70 compute cores. We define as speedup the fraction of
the serial execution time over the distributed execution time,
i.e., tserial

tdistributed
. For Infectious dataset, first plot from the left,

we see that for small windows the distributed implementa-
tion does not scale, since the execution time for the serial
version is very small. Therefore, the overhead added by the
spark processed increases the latency. However, for larger
windows (|W | = 9), we can observe a speedup up to 2.5. For
the rest of the datasets, we see a speedup up to 18 for LastFM
and as the size of the datasets increase we get speedup up to
30 for WikiTalk and for |CC | = 70.

7 Information propagation

Betweenness centrality can be used to quantify the impor-
tance of a vertex in a network in terms of its capacity of
spreading information by bridging other vertices. In the tem-
poral setting, this role is extended to a bridge between two
other vertices that do not have contact at the same time.
Therefore, betweenness centrality can be used to identify
a good spreader of information during a period of time [21].

In this section, we compare the information propagation
capability of vertices with high TBC measure against the
three versions of static BC described before (maximum,
average, and union graph) applied to temporal interaction
networks, plus a pure static case, i.e., static BC applied to the
static social network. For our experiment, we use the LastFM
and DBLP datasets.

For assessing the capability of nodes in spreading infor-
mation, we need to define a propagation model: in this
experiment, we adopt the popular independent cascade
model (IC) [21]. IC propagation model requires a directed
and probabilistic graph where each directed arc (u, v) indi-
cates that v is a follower of u, thus information that arrives
in u can propagate over the arc and reach v. The probability
p(u, v) associatedwith each arc (u, v) indicates the influence
of u over v, or in other terms, the probability of information
propagating from u to v.

In the LastFM dataset, we have both the social graph and
the additional information ofwhich user listens towhich song
atwhich time. Consider two vertices (users), v1 and v2, which
are connected in the friendship graph. If user v1 listens to a
song at timestamp t1 and the user v2 listens to the same song
at a timestamp t2 > t1, there is a probability that the user
v1 has influenced the user v2. Therefore, we construct the
probabilistic graph (Gp), where each direct edge (v1, v2) is
labeled with a probability p(v1,v2) = #interactions(v1→v2)

#actions(v1)
i.e.,

the vertex v1 can influence the vertex v2, as it is described by
[12].

123

International Journal of Data Science and Analytics (2020) 9:257–272 271

Fig. 11 Number of infected vertices on the graph when we infect the top-k vertices of each ranking for LastFM dataset (left plot) and DBLP dataset
(right plot)

For computing TBC, we use the temporal network GW ,
using all the 314 timestamps as W , with α = 0.5. On the
same network, we also compute the three notions of static
BC over temporal networks (i.e., maximum, average, and
union graph). Finally, we also compute standard BC over the
social graph (we call this case “static”).

For each of these measures, we select the top-k users as
seed set and run IC propagations over the probabilistic graph
Gp. For each run, we compute the number of “infected” ver-
tices starting from the seed set and report the average of this
measure over 10,000 runs.

For the DBLP dataset, we use a unique temporal win-
dow |W | = 12 (2000–2011 with yearly granularity) and
α = 0.5 as before. The probabilistic directed graph (Gp)
is constructed by first taking the union graph of the 12 years,
by considering each undirected edge as the two directed arcs,
and setting all the edge probabilities uniformly to 0.1.

Figure 11 (left plot) shows the results for LastFM dataset
for various k values and for the static case, max, avg, union
andTBC. Ifwe select the top-k vertices ofTBCweget always
more vertices infected with up to 1035 more vertices from
the second better method (avg) for k = 70. Finally, union
and static methods give the least number of infected vertices.
Figure 11 (right plot) shows the results for DBLP dataset,
where TBC outperforms the second better method up to 3982
more vertices for k = 60.

It is worth noting how the benefits of using the defini-
tion of temporal betweenness centrality are more evident in
the dataset (LastFM) in which some temporal information
is maintained in the definition of the influence probabilities,
than in the dataset in which no temporal information is used
in the definition of the influence probabilities (DBLP).

8 Conclusions

We present a general definition of shortest paths in tempo-
ral networks that integrates and extends previous definitions.

Based on this definition, we introduce a novel metric of
temporal betweenness centrality that is highly sensitive to
changes on the dynamic graphs, as well as the observation
period and the different importance given to the temporal
span over the spatial distance covered by a path. We present
a fast exact algorithm to compute betweenness centrality for
window graphs and we prove its correctness. We present our
distributed implementation in Apache Spark that allows us
to scale the computation of temporal betweenness centrality
in dynamic graphs.

Finally, an application to the analysis of information prop-
agation proves that our notion of temporal betweenness
centrality outperforms static betweenness centrality in the
task of identifying the best spreaders of information in a net-
work.

For future work, we plan to optimize the computation of
betweenness centrality in the sliding window by only updat-
ing the values that change in a streaming fashion. Moreover,
due to its high computational complexity, it is important to
study approximated methods in the dynamic graph settings:
in this regards, a good starting point could be to extend the
existing approximatedmethods for betweenness centrality in
static graphs.

References

1. AlGhamdi, Z., Jamour, F., Skiadopoulos, S., Kalnis, P.: A bench-
mark for betweenness centrality approximation algorithms on large
graphs. In: Proceedings of the 29th International Conference on
Scientific and Statistical Database Management (SSDBM), p. 6
(2017)

2. Ang, C.S.: Interaction networks and patterns of guild community
in massively multiplayer online games. Soc. Netw. Anal. Min. 1,
341 (2011)

3. Anthonisse, J.: The rush in a directed graph. Technical Report,
Stichting Mathematisch Centrum (1971)

4. Bergamini, E., Meyerhenke, H.: Fully-dynamic approximation of
betweenness centrality. In: Algorithms-ESA 2015, pp. 155–166.
Springer, Berlin (2015)

123

272 International Journal of Data Science and Analytics (2020) 9:257–272

5. Bergamini, E., Meyerhenke, H., Ortmann, M., Slobbe, A.: Faster
betweenness centrality updates in evolving networks. In: 16th Inter-
national SymposiumonExperimental Algorithms, SEA2017, June
21–23, 2017, pp. 23:1–23:16, London (2017)

6. Brandes, U.: A faster algorithm for betweenness centrality. J.Math.
Sociol. 25, 163–177 (2001)

7. Brandes, U., Kenis, P., Lerner, J., van Raaij, D.: Network analy-
sis of collaboration structure in Wikipedia. In: Proceedings of the
18th International Conference on World Wide Web, WWW 2009,
Madrid, Spain, April 20–24, pp. 731–740 (2009)

8. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest,
and foremost journeys in dynamic networks. Int. J. Found. Comput.
Sci. 14(2), 267–285 (2003)

9. Catanese, S., Ferrara, E., Fiumara, G.: Forensic analysis of phone
call networks. Soc. Netw. Anal. Min. 3, 15–33 (2012)

10. Freeman, L.: A set of measures of centrality based on betweenness.
Sociometry 40, 35–41 (1977)

11. Girvan, M., Newman, M.E.J.: Community structure in social and
biological networks. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

12. Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence
probabilities in social networks. In: WSDM (2010)

13. Green, O., McColl, R., Bader, D.A.: A fast algorithm for streaming
betweenness centrality. In: Privacy, Security, Risk and Trust (PAS-
SAT), 2012 International Conference on and 2012 International
Conference on Social Computing (SocialCom), pp. 11–20 (2012)

14. Gunturi,V.M., Shekhar, S., Joseph,K.,Carley,K.M.: Scalable com-
putational techniques for centrality metrics on temporally detailed
social network. Mach. Learn. 106(8), 1133–1169 (2017)

15. Habiba, H., Tantipathananandh, C., Berger-Wolf, T.Y.: Between-
ness centrality measure in dynamic networks. DIMACS Technical
Report 2007-19 (2007)

16. Hayashi, T., Akiba, T., Yoshida, Y.: Fully dynamic betweenness
centrality maintenance on massive networks. Proc. VLDB Endow.
9(2), 48–59 (2015)

17. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J., Van den
Broeck,W.:What’s in a crowd?Analysis of face-to-face behavioral
networks. J. Theor. Biol. 271(1), 166–180 (2011)

18. Jamour, F., Skiadopoulos, S., Kalnis, P.: Parallel algorithm for
incremental betweenness centrality on large graphs. IEEE Trans.
Parallel Distrib. Syst. 29, 659–672 (2018)

19. Jeong, H., Mason, S., Barabási, A., Oltvai, Z.: Lethality and cen-
trality in protein networks. Nature 411, 41 (2001)

20. Kas, M., Wachs, M., Carley, K.M., Carley, L.R.: Incremental algo-
rithm for updating betweenness centrality in dynamically grow-
ing networks. In: 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM),
pp. 33–40 (2013)

21. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of
influence through a social network. In: Proceedings of the 9thACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD’03 (2003)

22. Kempe,D.,Kleinberg, J.M.,Kumar,A.:Connectivity and inference
problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–
842 (2002)

23. Kim, H., Anderson, R.: Temporal node centrality in complex net-
works. Phys. Rev. E 85(2), 026107 (2012)

24. Kourtellis, N., Morales, G.D.F., Bonchi, F.: Scalable online
betweenness centrality in evolving graphs. IEEE Trans. Knowl.
Data Eng. 27(9), 2494–2506 (2015)

25. Lee, M.-J., Choi, S., Chung, C.-W.: Efficient algorithms for updat-
ing betweenness centrality in fully dynamic graphs. Inf. Sci. 326,
278–296 (2016)

26. Leskovec, J., Huttenlocher, D.P., Kleinberg, J.M.: Governance in
social media: a case study of the Wikipedia promotion process. In:
Proceedings of the 4th International Conference on Weblogs and

Social Media, ICWSM 2010, Washington, DC, USA, May 23–26
(2010)

27. Liljeros, F., Edling, C., Amaral, L., Stanley, H., Aberg, Y.: The web
of human sexual contacts. Nature 411, 907 (2001)

28. Maglaras, L.A., Katsaros, D.: Newmeasures for characterizing the
significance of nodes in wireless ad hoc networks via localized
path-based neighborhood analysis. Soc. Netw. Anal. Min. 2, 97–
106 (2012)

29. Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are
who you know: inferring user profiles in online social networks.
In: Proceedings of the 3rd ACM International Conference on Web
Search and Data Mining, WSDM’10 (2010)

30. Ni, P., Hanai, M., Tan, W.J., Wang, C., Cai, W.: Parallel algorithm
for single-source earliest-arrival problem in temporal graphs. In:
2017 46th International Conference on Parallel Processing (ICPP),
pp. 493–502 (2017)

31. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal net-
works. In: Proceedings of the 10th ACM International Conference
on Web Search and Data Mining, WSDM 2017, Cambridge, UK,
February 6–10, 2017, pp. 601–610 (2017)

32. Pereira, F.S.F., de Amo, S., Gama, J.: Evolving centralities in
temporal graphs: a Twitter network analysis. In: IEEE 17th Interna-
tionalConferenceonMobileDataManagement,MDM2016, Porto,
Portugal, June 13–16, 2016—Workshops, pp. 43–48 (2016)

33. Pontecorvi, M., Ramachandran, V.: Fully dynamic betweenness
centrality. In: Algorithms and Computation—26th International
Symposium, ISAAC 2015, Nagoya, Japan, December 9–11, 2015,
Proceedings, pp. 331–342 (2015)

34. Rad, A.A., Flocchini, P., Gaudet, J.: Computation and analysis of
temporal betweenness in a knowledgemobilization network. Com-
put. Soc. Netw. 4, 5 (2017)

35. Riondato, M., Kornaropoulos, E.M.: Fast approximation of
betweenness centrality through sampling. In: Proceedings of the
7th ACM International Conference on Web Search and Data Min-
ing, WSDM’14, pp. 413–422, New York (2014)

36. Riondato, M., Upfal, E.: Abra: approximating betweenness cen-
trality in static and dynamic graphs with rademacher averages. In:
Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1145–1154 (2016)

37. Shekhar, S., Brugere, I., Gunturi, V.M.: Modeling and analysis
of spatiotemporal social networks. Encycl. Soc. Netw. Anal. Min.
2014, 950–960 (2014)

38. Tang, J., Musolesi, M., Mascolo, C., Latora, V., Nicosia, V.:
Analysing information flows and key mediators through temporal
centrality metrics. In: Proceedings of the 3rd Workshop on Social
Network Systems, SNS’10, pp. 3:1–3:6, New York (2010)

39. Viswanath, B., Mislove, A., Cha, M., Gummadi, P.K.: On the
evolution of user interaction in Facebook. In: Proceedings of the
2nd ACM Workshop on Online Social Networks, WOSN 2009,
Barcelona, Spain, August 17, pp. 37–42 (2009)

40. Williams, M.J., Musolesi, M.: Spatio-temporal networks: reacha-
bility, centrality and robustness. Open Sci. 3(6), 160–196 (2016)

41. Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Path problems
in temporal graphs. Proc. VLDB Endow. 7(9), 721–732 (2014)

42. Wu, H., Cheng, J., Ke, Y., Huang, S., Huang, Y., Wu, H.: Efficient
algorithms for temporal path computation. IEEE Trans. Knowl.
Data Eng. 28(11), 2927–2942 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Temporal betweenness centrality in dynamic graphs
	Abstract
	1 Introduction
	1.1 Challenges, contributions, and roadmap

	2 Related work
	2.1 Static and incremental betweenness centrality
	2.2 Temporal paths
	2.3 Temporal betweenness centrality

	3 Problem formulation
	4 Static window case
	4.1 Computing shortest–fastest paths
	4.2 Temporal betweenness centrality

	5 Sliding window case
	5.1 Distributed implementation

	6 Experimental evaluation
	6.1 Shortest–fastest paths characterization
	6.2 Temporal betweenness centrality
	6.3 Scalability

	7 Information propagation
	8 Conclusions
	References

