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ABSTRACT

A simplicial complex is a generalization of a graph: a collection
of n-ary relationships (instead of binary as the edges of a graph),
named simplices. In this paper, we develop a new tool to study the
structure of simplicial complexes: we generalize the graph notion
of truss decomposition to complexes, and show that this more
powerful representation gives rise to different properties compared
to the graph-based one. This power, however, comes with important
computational challenges derived from the combinatorial explosion
caused by the downward closure property of complexes.

Drawing upon ideas from itemset mining and similarity search,
we design a memory-aware algorithm, dubbed STruD, which is
able to efficiently compute the truss decomposition of a simpli-
cial complex. STruDadapts its behavior to the amount of available
memory by storing intermediate data in a compact way. We then
devise a variant that computes directly the n simplices of maxi-
mum trussness. By applying STruDto several datasets, we prove
its scalability, and provide an analysis of their structure.

Finally, we show that the truss decomposition can be seen as a
filtration, and as such it can be used to study the persistent homology
of a dataset, a method for computing topological features at different
spatial resolutions, prominent in Topological Data Analysis.
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1 INTRODUCTION

Graphs have been widely used to model complex relationships
(edges) between pairs of entities (vertices). Aiming to discover use-
ful patterns such as communities, and identify important vertices in
a graph, several metrics and substructures have been defined, and
applied in settings such as biology, sociology, and Internet topol-
ogy. Among them, truss decomposition has received considerable
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authors conference year

DH, JK SODA 1994
CF, JK, JL SIGKDD 2005

CF, DC, JK, JL PKDD 2005
CF, DC CSUR 2006
CF, JL SIGKDD 2006

JK, JL, LB SIGKDD 2009
DH, JK, JL WWW 2010

LB, JL WSDM 2011
LB, JK CSCW 2014
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Figure 1: Authors, conference, and year of publication of a

set of papers (left), the corresponding co-authorship rela-

tions represented as a simplicial complex K (center), and as

a simple collaboration network G (right).

attention [21, 40] thanks to its efficiency and effectiveness. Trusses
are cohesive subgraphs that are rich in triangles: a relaxation of
cliques that can be computed exactly in polynomial time.

However, many real-world interactions occur among more than
two entities at once [8, 41]. For example, people are likely to col-
laborate in groups when writing papers, and often send emails that
have multiple recipients. Simple graphs are not able to capture such
higher-order relationships, because they cannot distinguish the case
of three authors writing three papers in pairs from the case where
all three authors collaborate on a single paper.Hypergraphs [10] and
simplicial complexes [2] are higher-order generalizations of simple
graphs that can characterize interactions between any number of
entities [38]. Hypergraphs generalize graphs by allowing an edge to
connect several vertices. A hypergraph H is a pair (VH ,EH ) where
VH is a set of vertices and EH a family of subsets of vertices called
hyperedges. Conversely, a simplicial complex is a collection of poly-
topes such as triangles and tetrahedra, which are called simplices.
Both these structures can be used to represent any higher-order
relation [37]. The key difference between hypergraphs and sim-
plicial complexes is that the latter satisfy the downward closure
property: every substructure (also known as face) of a simplex that
is contained in a complex K is also in K . While it might appear
constraining, this property naturally arises in all systems charac-
terized by interactions that are “maximal” [42]: e.g., in scientific
collaborations (the authors of a paper are all co-authors) or gene
activation pathways (largest group of collectively activated genes).

Example 1. The table in Figure 1 (left) reports authors, conference,
and year of publication of a set of papers extracted from DBLP. A
typical representation of this type of data is a collaboration network
built around the co-authorship relation: two authors (vertices) are
connected by an edge if they have been co-authors in some paper. This
type of simple graph is reported in Figure 1 (right).

A richer representation can be obtained by interpreting each subset
of authors of a paper as co-authors, and representing it as a simplex:
this leads to the simplicial complex K illustrated in Figure 1 (center).
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For example, D. Chakrabarti (DC), C. Faloutsos (CF), J. Kleinberg (JK),
J. Leskovec (JL) form a tetrahedron because they wrote together a
paper at PKDD 2005. Although in the table there is no paper authored
solely by (DC, JK, JL), such a triangle is nevertheless part of the sim-
plicial complexK , which represents the fact that these three scientists
have been co-authors in a paper (even though with other co-authors).

The simplicial complex conveys information that is lost if the co-
authorship relations are modeled as a simple collaboration network.
For instance, the latter would represent the case where JK, JL, and DH
wrote a paper together in the same way as the case where they wrote
papers only in pairs.

Simplices and simplicial complexes have been successfully ap-
plied to analyze the organization of the brain [28, 30], understand
the mechanics of social contagion [16], predict the appearance of
new links [3], and study protein interaction networks [11].

In this paper, we develop a new tool to study the structure of
simplicial complexes, by generalizing the graph notion of truss
decomposition. The definition of truss decomposition in a graph
is based on triangles, i.e., a k-truss is a subgraph whose edges
participate in (are supported by) at least k triangles.1 When the
input is a simplicial complex, a truss can as well be determined by
the existence of higher-order structures.
Challenges and contributions. We bridge two different disci-
plines, i.e., graph mining and Topological Data Analysis (TDA),
by generalizing the notion of truss decomposition to simplicial
complexes. Our problem statement is a proper generalization of
truss decomposition on graphs: if the simplicial complex in input
is a collection of only 1-dimensional simplices (edges), or in other
terms, it is a graph, then the truss decomposition of the simplicial
complex corresponds to that of the graph.

We show several properties of simplicial truss decomposition,
and show how this more expressive representation differentiates
itself from the graph-based one. However, computing it is much
harder than for a graph. Indeed, due to the downward closure
property of simplicial complexes that produces a combinatorial
explosion of the candidate substructures, the computation becomes
especially demanding in terms of memory.

To tackle these significant computation challenges, this paper
introduces STruD, an efficient and scalable algorithm for simplicial
truss decomposition. A key observation towards developing our
method is an a-priori property similar to the one from frequent
itemset mining: a (q + 1)-simplex has simplicial trussness no larger
than a q-simplex that it contains. Based on this key observation,
we derive lower and upper bounds for the simplicial trussness of
a simplex which are at the basis of our method. Our algorithm
relies on finding joists, higher-order generalization of triangles that
compose the support of a simplex. The identification of the joists
of a simplex is a major computational bottleneck, as their num-
ber can be extremely large. To tackle this challenge, we leverage a
compact inverted index, and devise a memory-aware strategy that
switches to out-of-core operations depending on the memory avail-
able. Our extensive empirical assessment confirms the scalability of
STruDand of the relevance of the simplicial truss decomposition.

Finally, we show how the simplicial truss decomposition can
be interpreted and used as a filtration in the context of persistent
homology [14], a technique used to quantify the shape of the data
via summarization of its topological features. Persistent homology

Table 1: Simplicial trussness trK of the simplices inK in Fig-

ure 1 (center), number of joists |J | containing each simplex,

and graph trussness trG of the edges inG in Figure 1 (right).

σ (q) | J | trK trG σ (q) | J | trK trG

[CF , DC] 2 2 2 [DH, JL] 1 1 1
[CF , JK ] 2 2 2 [DH, JK, JL] 0 0 -
[CF , JL] 2 2 2 [JK, JL, LB] 0 0 -
[DC, JK ] 2 2 2 [DC, JK, JL] 1 1 -
[DC, JL] 2 2 2 [CF , JK, JL] 1 1 -
[JK, JL] 4 2 2 [CF , DC, JL] 1 1 -
[LB, JK ] 1 1 1 [CF , DC, JK ] 1 1 -
[LB, JL] 1 1 1 [CF , DC, JK, JL] 0 -
[DH, JK ] 1 1 1

requires to define a nested sequence of simplicial complexes called
filtration, and tracks the topological features which exhibit long
persistence through the filtration. Persistent homology has been
applied, among others, to characterize financial markets [39], study
multivariate time series [35], and analyze sensor networks [9].

The contributions of our work can be summarized as follows:
• We define the truss decomposition of a simplicial complex.
• We design an efficient and scalable algorithm that leverages
bounds and techniques from itemset mining and similarity
search to compute the simplicial truss decomposition.
• We provide extensive empirical evidence of the scalability of
the algorithm, and of the relevance of the simplicial truss de-
composition.
• We showcase the use of the simplicial truss decomposition as a
filtration to compute a persistent homology.

2 PROBLEM DEFINITION

We next provide the formal definitions of the needed notions and
of the computational problem addressed in this paper.

Let V be a ground set of elements. A q-dimensional simplex, or
simply q-simplex, is a relation connecting q + 1 elements of V .

Definition 1 (q-simplex, face, coface). A q-simplex σ (q) is a
set of q + 1 elements (or vertices) σ (q) = [v0, . . . ,vq ] ⊂ V . Each
r -simplex σ (r ) ⊂ σ (q) (with r < q) is called a face of σ (q), and it is
called a coface when r = q − 1.

According to this definition, a vertex of a graph is a 0-simplex,
and an edge a 1-simplex, while a 2-simplex can be seen as a triangle,
a 3-simplex a tetrahedron, and so on. For instance, in Figure 1
(center), the triplet of authors (LB, JL, JK) constitutes a 2-simplex σ ,
and each pair of authors is a coface of σ .

Definition 2 (simplicial complex, dimension, n-skeleton).
A simplicial complex K is a set of simplices such that all the faces
of all the simplices in K are also in K . The dimension of K is the
dimension of its largest simplex, and the n-skeleton of K is the subset
of simplices of K of dimensions q ≤ n.

According to this definition, the 1-skeleton of a simplicial complex
corresponds to the underlying (undirected simple) graph of K . For
instance, the 1-skeleton of the simplicial complex in Figure 1 (center)
is the graph in Figure 1 (right).

1The original definition of k -truss though, requires that each edge take part to at least
k − 2 triangles, so that a k -clique is a k -truss [7]. Given that the two definitions are
analogous, for convenience in this work we adopt the one requiring k triangles.
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In a simple graph G = (V ,E), a k-truss is defined as the sub-
graph GTk of G induced by the edges S that participate in at least
k triangles in S [7].1 According to this definition, for each edge e
in the k-truss GTk , there exist k pairs of edges [e1, e2] such that
the edges [e, e1, e2] forms a triangle in GTk ; as such, a k-clique is a
(k − 2)-truss. As an example, the graph in Figure 1 (right) contains
the 2-truss formed by the subgraph induced by the vertices (CF,
DC, JK, JL), and the 1-truss formed by the whole graph. We gener-
alize this notion to simplicial complexes by considering q-simplices
instead of edges, and joists (defined next) instead of triangles.

Definition 3 (joist). The joist of a simplex σ (q) is the set Jσ (q)
of all its cofaces (of which there are q + 1).

Definition 4 (simplicial k-truss). Given a simplicial complex
K , a k-truss in K is a maximal set of simplicesTk ⊆ K of dimension
greater than 0, such that for each σ (q) = [v0, . . . ,vq ] ∈ Tk there exist
at least k joists J1, . . . , Jk such that ∀i ∈ [1,k], σ (q) ∈ Ji and ∀τ ∈ Ji ,
τ ∈ Tk . The maximal k such that σ (q) ∈ Tk is called simplicial
trussness of σ (q) and denoted as trK (σ (q)).

Example 2. The simplicial complex in Figure 1 (center) contains
a 1-truss and a 2-truss. The 1-truss includes the simplices in Table 1
with simplicial trussness trK greater or equal to 1, while the 2-truss
includes the simplices with simplicial trussness greater or equal to 2.
Differently from the standard truss decomposition, in this case the
1-truss T1 contains also all the 2-simplices (triangles) spanned by the
vertices CF, DC, JK, and JL.

We next provide two key properties of simplicial k-trusses. The
proofs can be found in Appendix B.

Property 1 (Uniqeness). The k-truss of a simplicial complex
K is unique.

Property 2 (Containment). The (k + 1)-truss of a simplicial
complex K is a subset of its k-truss.

Thanks to the properties of uniqueness and containment we can
define a simplicial truss decomposition, i.e., the problem of comput-
ing all the non-empty k-trusses of a simplicial complex K .

Problem 1 (Simplicial Truss Decomposition). Given a sim-
plicial complex K , find the simplicial truss decomposition of K , i.e.,
the sequence of k-trusses T = [T1, . . . ,TK ], where K is the maximal
integer such that TK , �.

Observation 1. Our problem statement is a proper generalization
of the standard truss decomposition on graphs. When a simplicial
complex K contains only binary relationships, there exists a bijection
f : T 7→ GT between the simplicial truss decomposition T of K
and the standard truss decomposition GT of the 1-skeleton of K . The
bijection maps each k-truss Tk ∈ T to the k-truss GTk ∈ GT , by
associating each 1-simplex [v1,v2] to the edge (v1,v2).

For instance, the simplicial truss decomposition of the graph in
Figure 1 (right) is T1 = {[CF ,DC], [CF , JK], [CF , JL], [DC, JK],
[DC, JL], [JK , JL], [LB, JK], [LB, JL], [DH , JL], [DH , JK]} andT2 =
{[CF ,DC], [CF , JK], [CF , JL], [DC, JK], [DC, JL], [JK , JL]}, which
maps to the 1-truss GT1 = G and the 2-truss GT2 with edge set
{(CF ,DC), (CF , JK), (CF , JL), (DC, JK), (DC, JL), (JK , JL)}.
1The original definition of k -truss requires each edge to take part to at least k − 2
triangles, so that a k -clique is a k -truss. Given that the two definitions are analogous,
for convenience in this work we adopt the one requiring k triangles.

3 SIMPLICIAL TRUSS DECOMPOSITION

In this section we present our algorithms for computing the simpli-
cial truss decomposition. A key property (proof in in Appendix B)
derives directly from the downward closure of simplicial complexes,
and helps greatly to prune the search space, similarly to the a-priori
property of frequency in frequent itemset mining [1].

Property 3 (A-priori Property). A q-simplex σ (q) that is a face
of a (q + 1)-simplex σ (q+1) has trussness trK (σ (q)) ≥ trK (σ

(q+1)).

A corollary of Property 3 is that a k-truss Tk is a simplicial
complex, because if a q-simplex belongs to Tk , then all its faces
belong to Tk as well. In addition, we can identify a lower bound of
the simplicial trussness of any σ (q) in K by looking at the largest
simplex that contains σ (q) (i.e., that σ (q) is a face of):

Property 4 (Lower bound). Let σ (q) be a q-simplex and σ (q+h)

be the largest simplex in K such that σ (q) ⊂ σ (q+h). Then,

trK (σ
(q)) ≥ h − q.

Finally, since a simplicial truss is defined by a set of joists, an
upper bound of the trussness of σ (q) is given by the total number
of joists containing σ (q):

Property 5 (Upper bound). Let σ (q) be a q-simplex in K and
Jσ (q+1) indicate a joist of a (q + 1)-simplex. Then,

trK (σ
(q)) ≤

��{Jσ (q+1) | Jσ (q+1) ⊆ K ∧ σ (q) ∈ Jσ (q+1)
}��.

We propose algorithms to solve two different variants of the
truss decomposition problem. The first algorithm performs the
complete truss decomposition of the simplicial complex, and the
second one finds the top-n simplices with maximum trussness and
given size q. Both algorithms follow a 3-step, apriori-like approach
that materializes and examines simplices of increasing dimension.
In the first step, they extend the simplices retained in the previous
iteration by adding an additional vertex; in the second step, they
search for all the sets of simplices that form a joist; and in the last
step, they compute the trussness of each simplex. The simplices
with positive trussness will be extended in the following iteration.
The pseudocode of our STruD algorithm is reported in Algorithm 1.

Recall that a q-simplex σ (q) belongs to a joist when, together
with other (q + 1) q-simplices, it forms the cofaces of the same
(q + 1)-simplex. Therefore, σ (q) shares exactly q vertices with any
other simplex in the joist. As a consequence, we can run STruD
separately on each connected component of the 1-skeleton of the
simplicial complex. Moreover, thanks to Property 3, only the sim-
plices with trussness greater than 0 are extended by the procedure
extendSimplices (line 6). This procedure receives in input a set of
simplices S and the set of simplices in the connected component
under examination C , and extends each σ ∈ S by appending each
vertexv ∈ Vσ , the set of all the vertices that appear in some σ ′ ∈ K
such that σ ⊂ σ ′. Generating the extensions by using only those
vertices guarantees that we create only simplices that exist in K .

Once the set of extended simplices E is computed, we need to
find all the joists formed by simplices in E. To do so, we need to find,
for each q-simplex σ ∈ E, all the q-simplices in E that could be part
of a joist with σ . Therefore, as the size of E increases, the memory
required to store the candidate joists increases as well. To deal with
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Algorithm 1 STruD

Require: Simplicial complex K ; Max size d
Ensure: Trussness of the simplices in K
1: tr ← �
2: for C ∈← connectedComponents(K) do
3: S ← �; d ← min(d,maxσ ∈C |σ |)
4: for q ← 2 to d do

5: if q > 2 and S = � then break

6: E ← extendSimplices(S,C,q)
7: if E = � then break

8: lb[σ ] ← maxτ ∈C∧σ ⊆τ (|τ |) − |σ | for σ ∈ E
9: C J ← findJoists(E)
10: tr [σ ] ← |C J [σ ]| for σ ∈ E
11: if �σ s.t. lb[σ ] , tr [σ ] then
12: S ← {σ | σ ∈ E ∧ tr [σ ] > 0}
13: continue

14: S ← � ▷ simplices to extend in the next iteration
15: Q ← � ▷ ordered queue of simplices to examine
16: Q[tr [σ ]] ← Q[tr [σ ]] ∪ {σ } for σ ∈ E
17: while Q , � do

18: M ← simplices with minimum trussness in Q
19: for σ ∈ M do

20: for subset ξ of σ of size |σ | − 1 do
21: for v ∈ C J [σ ] do
22: τ ← ξ ∪ {v}
23: if tr [τ ] > tr [σ ] then
24: remove σ \ τ from C J [τ ]
25: update Q if tr [τ ] has changed
26: if tr [σ ] > 0 then S ← S ∪ {σ }

27: remove σ from Q

28: remove from tr each σ with tr [σ ] = lb[σ ]

29: return tr

the large memory requirement, and hence allow the algorithm to be
executed also on less powerful machines, we propose two different
strategies to find and validate all the candidate joists. The first one
is an in-memory strategy, while the second one temporarily stores
the candidates in chunks on disk, and then reads one chunk at a
time to validate the candidates in it. To decide which strategy to use,
we keep track of the memory consumption of the data structures
that store the candidates. When we reach the memory limit, we
createM chunks, where the ith chunk contains the pairs (idx1, idx2)
such that idx1 mod M = i and idx2 is the id of the simplex that
could be part of a joist with the simplex with id idx1. Then, if the
chunk can be loaded into main memory, we load and validate its
candidates by calling Procedure validateJoists. Otherwise, if the
size of the chunk exceeds the memory limit, we need to load it in
batches. Procedure validateJoists requires all the simplices that
could form a joist with a given simplex σ to determine the actual
joists containing σ (Algorithm 2, line 25). To make sure that we
process them in the same batch, we sort the chunk by idx1 via
an algorithm for external sorting; then we load and validate the
candidate joists of one simplex at a time.

Algorithm 2 findJoists
Require: Set of simplices E
Ensure: The joists formed by simplices in E
1: C J ← �; I ← �
2: for s ∈ E do

3: C J ← merge(C J , findMatches(s,I), s)
4: for subset ξ of σ of size |σ | − 1 do
5: I [ξ ] ← I [ξ ] ∪ {s}

6: C J ← validateJoists(C J )
7: return C J

8: function findMatches(σ ,I)
9: C J ← �
10: for subset ξ of σ of size |σ | − 1 do
11: for τ ∈ I [ξ ] do C J ← C J ∪ {τ }

12: return C J

13: function merge(C J ,matches,σ )
14: for τ ∈matches do
15: v ← σ \ τ ; u ← τ \ σ
16: add τ to C J [σ ] if u ≻ σ [|σ | − 1]
17: add σ to C J [τ ] if v ≻ τ [|τ | − 1]
18: return C J

19: function validateJoists(C J )
20: J ← �

21: for σ ∈ C J do
22: W ← vertices in the simplices in C J [σ ] but not in σ
23: forw ∈W do

24: C Jwσ ← {τ | τ ∈ C J [σ ] ∧w ∈ τ }
25: if

��C Jwσ �� = |σ | then
26: addw to J[σ ]
27: add σ \ τ to J[τ ] for τ ∈ C Jwσ
28: return J

3.1 Finding the joists

To determine which sets of simplices could form a joist, we borrow
techniques from similarity search and build a pruned inverted index
for the simplices. To do so, we associate to each simplex σ a set of
fingerprints, or codes, defined as subsets of vertices of σ . Since a
necessary condition for two q-simplices σ1 and σ2 to be in the same
joist is to share all but one vertex, we generate codes of size |σ | − 1.
This way, we ensure that each simplex shares one code with all and
only candidate cofaces of a joist. Then, Algorithm 2 dynamically
creates an inverted index that maps a code ξ to a set of simplices
that contain ξ . In the first step, the algorithm uses Procedure find-
Matches to find all the simplices τ that share an indexed code with
the current simplex σ . In the second step, the algorithm indexes all
the codes of σ . Executing findMatches before indexing the codes
of σ ensures that each pair of simplices is compared only once.

Once found all the simplices that share a coface ξ with σ , Proce-
dure merge updates the data structure C J , which tracks candidate
joists. To ensure that Procedure validateJoists examines each can-
didate joist only once, we leverage the natural order of the vertices,
and thus add to the set of candidates C J [σ ] of a simplex σ only
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the simplices τ such that the vertex v in τ but not in σ satisfies
v ≻ σ [|σ | − 1] (Algorithm 2 lines 16-17). This condition is true only
for a single q-simplex [v0, . . . ,vq ] in each joist [v0, . . . ,vq+1].

Procedure validateJoists extracts subsets of simplices in the
candidate set C J [σ ] of a simplex σ = [v0, . . . ,vq ] that could form,
together with σ , the joist of a (q + 1)-simplex [v0, . . . ,vq ,w]. Each
subset of (q + 1) simplices in a joist J of a (q + 1)-simplex share
a vertex w , because each pair of simplices in J have q vertices in
common. Therefore, for each vertexw in some simplex inC J [σ ] but
not in σ , the algorithm checks if the total number of simplices in
C J [σ ] that containw is equal to q+ 1 (line 25). When this condition
holds, it addsw to the set of real joists J[σ ], and τ \ σ to the set of
real joists J[τ ] of all the simplices τ containing v (lines 26-27).

3.2 Computing the simplicial trussness values

We first illustrate the algorithm that performs the complete truss
decomposition and then explain how the top-n algorithm differs
from it. Algorithm 1 initializes the trussness of each simplex σ in
E as its upper bound (line 10), which is the number of joists that
contain σ . By exploiting an inverted index, the lower bound lb[σ ]
of the simplicial trussness of a simplex σ can be computed in linear
time. Therefore, the algorithm stores only the simplicial trussness
tr [σ ] of the simplices such that tr [σ ] > lb[σ ]. If all the simplices
σ have lower bound equal to the upper bound, the algorithm has
already found their real simplicial trussness. Therefore, it inserts
them in the set S of simplices to extend in the next iteration, in-
creases q, and finally continues to the next iteration. Otherwise,
the simplices need to be processed.

To compute the real simplicial trussness values, we insert the
simplices in a dictionary Q (line 16) that allows us to extract them
in increasing order of upper bound. When examining a simplex σ ,
all the simplices in the same joists of σ are visited by generating
them on the fly. Since the set C J stores the vertices v such that σ
is a coface of the (q + 1)-simplex σ ∪ {v}, we can generate those
simplices by adding the vertexv to all the subsets of σ of size |σ | −1
(line 22). If some τ has trussness greater than that of σ (line 23),
we remove from C J [τ ] the vertex that belongs to σ but not to τ . If
this is the first time that we remove it, the simplicial trussness of
τ is decreased by 1 and Q is updated accordingly (line 25). Finally,
if tr [σ ] > 0 we insert σ in the set of simplices to extend in the
next iteration. At the end of the computation, we remove all the
simplices σ such that tr [σ ] = lb[σ ] from tr , so that tr contains only
the non-trivial simplicial trussness values.

To find the top-n simplices of size q with maximum simplicial
trussness for given parameters n and q, we modify two procedures
of Algorithm 1. First, we let procedure extendSimplices generate
only the simplices of size q. Secondly, we replace the while cycle at
lines 17-27 with Algorithm 3, whose pseudocode is reported in Ap-
pendix A. This algorithm examines the simplices in the dictionary
Q in descending order of upper bound, to increase the likelihood
that the simplices with largest real simplicial trussness are discov-
ered sooner. Then, it exploit a priority queueT of (t ,φ) pairs sorted
on t to maintain the trussness t of the simplices φ for which the
real simplicial trussness has been found. This way, it can terminate
the examination of a simplex σ as soon as at least n simplices have
been collected in T , and the estimate of the trussness of σ is lower

Table 2: Characteristics of the real datasets.

DBLP Enron Zebra ETFs

Vertices 1918581 50224 5375 2340
Edges 7683001 330179 159134 5543
Triangles 11350197 1431200 3080990 7130
Maximal Simplices 2465299 106442 5250 2157
Max Dimension 17 64 61 71
Min/Max Jaccard 0.01/0.97 0.007/0.95 0.013/0.81 0.07/0.87
Avg/Median Jaccard 0.61/0.68 0.55/0.60 0.55/0.61 0.39/0.33
Connected Components 60773 1004 313 174

than the minimum key in T (line 8). Moreover, the algorithm can
terminate the computation as soon as the largest upper bound of the
simplices still inQ is lower than the minimum keyT (line 4). Finally,
the algorithm returns the top n elements inT , which correspond to
the n simplices in K with maximum trussness.

3.3 Complexity

Let K be a simplicial complex with vertex set V of sizem. In the
worst case,K is a clique complex, i.e., any subset ofV belongs toK .
In this case, the number of simplices to examine in Algorithm 1 is
equal to the number of proper subsets ofV with size greater than 1,
which is 2m −m−2. Then, each q-simplex shares q−1 vertices with
every other q-simplex, and therefore Algorithm 2 has complexity

O
©«
m−1∑
q=2

(
m

q

)
·

(
m

q

)ª®¬ ≤ O
(
4m

)
and the total cost of Algorithm 1 is upper-bounded by O (4m ).

When the input contains only binary relationships (i.e. it is a graph),
the parameter q takes only value 2, and therefore the summation
becomes

(m
2
)
∗
(m
2
)
. In this case, the complexity is upper bounded

by O
(
m4) . Let n be the number of binary relationships in the input,

then the complexity can be expressed asO
(
n2

)
, because the number

of binary relationships in a clique complex is n =m(m − 1)/2.

4 EXPERIMENTAL RESULTS

In this section we (1) show the significance of simplicial truss de-
composition when compared to classic graph decomposition, (2)
evaluate the performance and scalability of our algorithm STruD,
(3) study the persistent homology of a dataset by using its simpli-
cial truss decomposition as filtration, (4) show how the simplicial
trussness can be used to measure the manifoldness of a dataset, (5)
compare the simplicial truss decomposition of real datasets with
that of random complexes, and (6) present and discuss particular
findings in one of the real datasets.

We implemented STruD in Python 3.6 and Networkx v2.4. We
used Dionysus v2.0.7 to compute persistent homology. The code is
available on GitHub.2 We ran the experiments on a 80-Core (2.00
GHz) Intel(R) Xeon(R) Gold 6138 with 126GB of RAM, Ubuntu 18.04,
limiting the available memory to 70GB, and using a single core.

We considered four real-world and two synthetic datasets. Their
characteristics are reported in Table 2 and Table 3.
DBLP is the coauth-DBLP simplicial complex provided by Ben-
son et al. [3], where each simplex represents a publication and its
vertices are the corresponding authors.

2https://github.com/lady-bluecopper/STruD
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Table 3: Characteristics of the synthetic datasets.

RFC SCM

Vertices 1000 360
Edges 69274 2324
Triangles 443033 21023
Maximal Simplices 254820 191
Max Dimension 6 50
Min/Max Jaccard 9.11e − 3/0.64 0.23/0.6
Avg/Median Jaccard 0.35/0.30 0.46/0.57
Connected Components 23 3

Enron contains emails sent from roughly 150 employees of the
Enron corporation.3 We obtain a simplicial complex by representing
senders and recipients as vertices, and each email as a simplex.
Zebra is a simplicial complex constructed from the genetic data of
zebrafishes provided by COXPRESdb [26]. Starting from the gene
correlation table generated using the method RC-PS4, we extract,
for each gene, the genes with mutual rank value lower than one
tenth of the average value in its neighborhood, and then created
a simplicial complex containing the extracted genes. Finally, we
retain the simplices with size in the 99th percentile.
ETFs (Exchange-Traded Funds)5 contains general aspects, portfolio
indicators, returns, and financial ratios of 2353 ETFs, scraped from
the Yahoo Finance website.6 We use this information as features
of the ETFs, compute the Kendall correlation between each pair of
ETFs, and found the 99.9-th percentile for each row of the correla-
tion matrix. Then, for each ETF, we create a simplex containing all
the ETFs with correlation above the 99.9-th percentile. Finally, we
retain the simplices with size in the 99.9-th percentile.
RFC is a random flag complex [19], i.e., a simplicial complex whose
q-simplices correspond to the (q + 1)-cliques of a random graph. It
is constructed by first generating an Erdös-Rényi random graph
on n vertices and edge probability p, and then creating a q-simplex
for each (q + 1)-clique in the graph. We use n = 1000 and p =
20 · log(n)/n.
SCM is a null model for comparison with empirical simplicial com-
plexes [42]. Let the degree of a vertex in a complex be the number
of maximal simplices that contain it, and the size of a simplex be
the number of vertices it contains. Then, SCM is the uniform dis-
tribution over all the complexes with degree sequence d and size
sequence s . We sample a complex from this distribution by using
the uniform Markov chain Monte Carlo sampler (MCMC),7 which
takes in input only a list of maximal simplices from a real complex
(we use the Enron complex for this).

4.1 Comparison with graph trusses

Figure 2 proves the richness of the simplicial truss decomposition,
when compared to the standard truss decomposition. As we can
see, the size of the graph trusses is a convex function, whereas the
size of the simplicial trusses is concave. This difference is due to the
presence of the higher-order structures that exist in the complex,
but are lost when adopting a graph representation of the data.

3https://www.cs.cmu.edu/~enron
4https://coxpresdb.jp/download
5https://www.kaggle.com/stefanoleone992/mutual-funds-and-etfs
6https://finance.yahoo.com
7https://github.com/jg-you/scm
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Figure 2: Size of the trusses found in the 1-skeleton of ETFs

(left) and size of the simplicial trusses found in ETFs (right).

4.2 Scalability

We evaluate the impact of the dataset characteristics on the per-
formance of STruD. Figure 3 (left) shows the total time required
to compute the simplicial truss decomposition of the real datasets,
varying the maximum size of the simplices to explore. For these
experiments, we terminate the computation when the memory size
limit is reached, and therefore the running times are not determined
by I/O operations. As expected, the time grows exponentially with
the maximum size, although more steeply for the Enron and Zebra
datasets than for DBLP and ETFs. Even though the size of Enron
is smaller than that of DBLP, Enron contains simplices with larger
dimension and lower overlap of their vertices, which results in a
number of candidate simplices to examine that grows exponentially
with the max size. Recall that the number of candidate simplices
at each iteration q is upper-bounded by the number of possible
subsets of size q of the simplices in the complex. Figure 4 illustrates
how the actual number of candidates grows for the DBLP and En-
ron dataset, together with the running time required to complete
each step of the computation. At iteration q = 5, the number of
candidates in Enron is almost 3 times the number of candidates in
DBLP, and hence at iteration q = 6, the memory limit is reached. A
similar situation happens in the Zebra dataset, where the number
of distinct triangles to examine is 3 times the one in Enron.

Instead, Figure 3 (right) shows the time required to find the top-
50 simplices of size Size with highest simplicial trussness, compared
with the running time of the brute force approach (denoted with -B),
which first compute the simplicial trussness of the simplices and
then retains the top-50. We report only the time required to com-
plete the first step. The chart indicates that the difference between
the two approaches is not significant. As illustrated in Figure 4, this
is due to the fact that the time required to find (candidates) and
validate (validation) the neighbors dominates the computation, and
the two algorithms differ only in how the perform the trussness step,
i.e., in how they compute the simplicial trussness of the simplices.

These results show that the combinatorial explosion caused by
the downward closure property severely affects the performance of
any approach that needs to operate on the simplices in a complex.

4.3 Persistent homology

Persistent homology [14] is a mathematical tool used in topological
data analysis (TDA) to identify the qualitative features of a sim-
plicial complex, and quantify the shape of the underlying data in
terms of those features. This is achieved by measuring the lifetime
of the topological features through a filtration, which is a sequence

3413

https://www.cs.cmu.edu/~enron
https://coxpresdb.jp/download
https://www.kaggle.com/stefanoleone992/mutual-funds-and-etfs
https://finance.yahoo.com
https://github.com/jg-you/scm


STruD: Truss Decomposition of Simplicial Complexes WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

0.1

1

10

100

1000

10000

100000

2 3 4 5 6 7 8 9 10 MAX

Ti
m

e 
(s

)

Max Size

DBLP
ENRON
ETFs
ZEBRA

0.1

1

10

100

1000

10000

100000

2 3 4 5 6 7 8 9 10

Ti
m

e 
(s

)

Size

DBLP DBLP-B
ENRON ENRON-B
ETFs ETFs-B
ZEBRA ZEBRA-B

Figure 3: Running time of STruD to find the simplicial truss

decomposition of all the datasets, varying max size of the

simplices considered (left); and to find the top-50 simplices

with highest simplicial trussness and given size (right).

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

7.E+07

1

10

100

1000

10000

2 3 4 5 6 7 8 9 10

Ti
m

e 
(s

)

Size

simplices extension validation
candidates trussness

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

7.E+07

1

10

100

1000

10000

100000

2 3 4 5

Ti
m

e 
(s

)

Size

simplices extension validation
candidates trussness

Figure 4: Running time required by the various steps of

STruD in DBLP (left) and Enron (right). The bars indicate

the number of simplices of size Size that must be examined.

2 4 6 8 10 12 14 16
Birth

2

4

6

8

10

12

14

16

D
ea

th

Machine Learning H0

2 4 6 8 10 12 14 16
Birth

2

4

6

8

10

12

14

16

D
ea

th

Machine Learning H1

4 6 8 10 12 14 16
Birth

4

6

8

10

12

14

16

D
ea

th

Machine Learning H2

2 4 6 8 10 12 14 16
Birth

2

4

6

8

10

12

14

16

D
ea

th

Physics H0

2 4 6 8 10 12 14 16
Birth

2

4

6

8

10

12

14

16

D
ea

th

Physics H1

4 6 8 10 12 14 16
Birth

4

6

8

10

12

14

16

D
ea

th

Physics H2

Figure 5: Persistence diagrams of H0, H1, and H2, for two dif-

ferent subsets of the DBLP dataset.

of nested subcomplexes of the simplicial complex constructed by
iteratively adding simplices to an initially empty set, under the con-
dition that a simplex is added only after all its faces. The qualitative
features are the topological features with long persistence through
the filtration. As such, persistent homology provides a measure
of robustness of the features emerging across different scales, and
generates an accurate approximation of the underlying data space.

Given that the definition of simplicial truss satisfies the con-
tainment property, we can use the reverse of the simplicial truss
decomposition as a filtration. The persistence homology of a filtra-
tion can be visualized via a persistence diagram, which represent
each topological feature in the filtration as a point. Each point
is called a persistence pair, and its coordinates indicate the birth
and death time of the feature in the filtration sequence. Roughly
speaking, a 0-dimensional feature is a connected component, a
1-dimensional feature is a hole, and a 2-dimensional feature is a

void. Figure 5 shows the result of the truss-based persistence ho-
mology on different clusters of co-authors in DBLP via persistence
diagrams. The left diagrams indicate the 0-dimensional features,
the middle ones indicate the 1-dimensional features, while the right
ones the 2-dimensional features. Points close to the diagonal are
features which are born and immediately die, and thus represent
features created by simplices that are not maximal, but contained in
a larger simplex. These simplices have trivial simplicial trussness,
i.e., simplicial trussness equal to the lower bound. The middle and
right parts of Figure 5 (middle and right) show that many of the
higher-order simplices in DBLP have trivial simplicial trussness.

Differently, points in the upper-left corner indicate features orig-
inated early in the filtration and died at the end of the filtration
(or never died). Alive features can correspond to joists of simplices
that do not exist in the complex, and can be surrounded by sim-
plices with both high and low simplicial trussness values. The case
of high simplicial trussness is particularly interesting, because it
corresponds to a dense region of the complex with a hole, i.e., to a
group of researchers that frequently collaborated in subgroups but
never together. Dead features, instead, can correspond to simplices
whose cofaces have simplicial trussness much higher than that of
the simplex, meaning that the neighborhood of the simplex is much
less dense than those of its cofaces. When looking, for example, for
strong collaborations or central vertices in DBLP, one may want to
concentrate on these particular cofaces. In contrast, points in the
upper-right corner indicate features originated towards the end of
the filtration. Since the simplicial trussness is inversely proportional
to the time of birth, these points can indicate papers written mostly
by small group of authors which do not often cross-collaborate.

Another interesting case is illustrated in the upper-left corner of
Figure 5. Given that the simplicial trussness of a simplex is lower
bounded by the size of the largest simplex containing it, when the
complex contains simplices with heterogeneous sizes, persistence
pairs can be found all over the persistence diagram.

Finally, by looking at the persistence diagrams of different datasets,
we can compare the dynamics that characterize them. In the case
presented in Figure 5, similar diagrams indicate that authors in dif-
ferent fields of research collaborate in a similar way, while different
diagrams suggest different underlying mechanisms. The structure
and patterns of scientific collaboration have been an object of study
for many research communities [13]. Among them, Patania et al.
[27] use persistence homology to characterize the patterns of col-
laboration in the arXiv data.

4.4 Manifoldness

It has been shown that the topology and the geometry of a net-
work affect its dynamics [4], and hence play an important role in
understanding the organization of the brain [5], and in defining
routing protocols [20], among others. A well-studied topological
object is the manifold. A simplicial manifold is a simplicial complex
for which the geometric realization is homeomorphic to a topolog-
ical manifold, i.e., a space where the neighborhood of each point
is homeomorphic to Rn for some integer n. A simplicial manifold
M of dimension d is a growing simplicial complex generated by
gluing d-simplices along their cofaces [24]. Let nδ be the number of
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Figure 6: Simplicial Trussness of ETFs.
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Figure 7: Simplicial Trussness of DBLP.

d-simplices of which δ is a coface minus 1. In the first step,M con-
sists in a single d-simplex. At any subsequent step t , an additional
d-simplex is attached to a coface δ inM with probability:

Pδ =
1 − nδ∑

δ ′∈M 1 − nδ ′
.

It follows that the number of vertices inM grows at each step
by one, and hence the total number of vertices N is equal to N =
s +d , where s is the number of d-simplices inM. Given parameters
d and s , we generated several manifolds of dimension d and size s
and performed their simplicial truss decomposition. Experimental
results showed that in a manifold of dimension d , each q-simplex
has simplicial trussness equal to d − q. This behavior arises from
how the simplicial manifolds are generated. By construction, a new
vertex is added at each step, meaning that the new vertex v in the
last d-simplex added is included in d different joists, and therefore
its simplicial trussness is equal to d . For the same reason, all the
1-simplices incident to v have simplicial trussness d − 1, and so on.
By cascade, all the neighbors ofv have simplicial trussness d , all the
neighbors of its incident 1-simplices have trussness d − 1, and so
on. As a consequence, simplicial trussness can quantify how much
a dataset deviates from a manifold: the more diverse the simplicial
trussness values of simplices of the same size are, the more the
simplicial complex is different from a manifold. For example, by
looking at Figure 6 and Figure 7 we can conclude that ETFs is more
similar to a manifold than DBLP, because most of the simplices of
the same size have the same simplicial trussness value.

4.5 Truss decomposition of random complexes

Randommodels are a useful tool to prove the statistical significance
of the findings of some analysis on real data. We show that our
definition of simplicial trussness is informative and non-trivial by
comparing the simplicial truss decomposition of a real complex
with that of random complexes.

We generate two random complexes, RFC and SCM, and compute
their simplicial truss decomposition. Figure 8 illustrates the size of
the simplicial trusses found in Enron (a), RFC (b), and SCM (c), while
the simplicial trussness of their simplices is reported in Figure 9 (in
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d-simplices of which δ is a coface minus 1. In the first step,M con-
sists in a single d-simplex. At any subsequent step t , an additional
d-simplex is attached to a coface δ inM with probability:

Pδ =
1 − nδ∑

δ ′∈M 1 − nδ ′
.

It follows that the number of vertices inM grows at each step
by one, and hence the total number of vertices N is equal to N =
s +d , where s is the number of d-simplices inM. Given parameters
d and s , we generated several manifolds of dimension d and size s
and performed their simplicial truss decomposition. Experimental
results showed that in a manifold of dimension d , each q-simplex
has simplicial trussness equal to d − q. This behavior arises from
how the simplicial manifolds are generated. By construction, a new
vertex is added at each step, meaning that the new vertex v in the
last d-simplex added is included in d different joists, and therefore
its simplicial trussness is equal to d . For the same reason, all the
1-simplices incident to v have simplicial trussness d − 1, and so on.
By cascade, all the neighbors ofv have simplicial trussness d , all the
neighbors of its incident 1-simplices have trussness d − 1, and so
on. As a consequence, simplicial trussness can quantify how much
a dataset deviates from a manifold: the more diverse the simplicial
trussness values of simplices of the same size are, the more the
simplicial complex is different from a manifold. For example, by
looking at Figure 6 and Figure 7 we can conclude that ETFs is more
similar to a manifold than DBLP, because most of the simplices of
the same size have the same simplicial trussness value.

4.5 Truss decomposition of random complexes

Randommodels are a useful tool to prove the statistical significance
of the findings of some analysis on real data. We show that our
definition of simplicial trussness is informative and non-trivial by
comparing the simplicial truss decomposition of a real complex
with that of random complexes.

We generate two random complexes, RFC and SCM, and compute
their simplicial truss decomposition. Figure 8 illustrates the size of
the simplicial trusses found in Enron (a), RFC (b), and SCM (c), while
the simplicial trussness of their simplices is reported in Figure 9 (in
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Figure 8: Simplicial trusses of Enron, RFC, and SCM.

Appendix). As the majority of the simplices in SCM have simplicial
trussness 45, in Figure 8 (c) we can see that the size of the k-trusses
with k ≤ 45 is almost the same. This behavior is due to the presence
of a large simplex of size 50 that contains a large portion of the
vertices, and thus determines the simplicial trussness of most of
the simplices in the complex. In contrast, social networks such
as Enron usually follow power-law degree distributions, so that
most of the vertices have few connections, and few vertices are
highly-connected. As a consequence, the simplicial trussness values
of the simplices in Enron are more heterogeneous (Figure 8 (a))
and the convexity of the function in the chart more pronounced.
Similarly, RFC does not follow a power-law distribution, having
mainly size-5 and size-3 simplices, and therefore, the simplicial
trussness values of its simplices are smaller than those of the Enron
simplices (Figure 8 (b)). Additionally, Figure 9 (b) shows that most of
the higher-order structures have simplicial trussness 1 or 2, hence
leading to a k-truss size chart that resembles those obtained in
the standard truss decomposition. This situation happens when
the larger simplices do not participate in many joists, and can
be explained by the simplicial closure phenomenon [27]: in social
networks, three vertices connected in pairs are more likely to form
a triangle. Since this principle does not generally hold for random
networks, most of the joists are joists of simplices that do not exist
in the complex, and thus the simplicial trussness values are low.

The same conclusions can be drawn by looking at Table 4, which
summarizes the topological features of Enron, RFC, and SCM, in
terms of Betti numbers βi (i.e., structural holes of dimension i),
percentage of open joists to total joists, percentage of open triangles
to total open joists, and percentage of simplices with non-trivial
simplicial trussness. Here, we use the term open to indicate joists
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Table 4: Betti numbers βi of Enron, RFC, and SCM; percent-

age of open joists; percentage of open triangles; and percent-

age of simplices with non-trivial simplicial trussness.

β0 β1 β2 Open Open Non-trivial
Joists (%) Triangles (%) tr (%)

Enron 215 34685 28725 0.46 89.2 0.12
RFC 1 8 275213 33.5 11.9 12.2
SCM 1 151 79 50 0.89 5e-5

of simplices that do not exist in the complex. As we can see, in RFC
33.5% of the joists are open (the number grows to 50% for SCM)
compared to the 0.46% of Enron.

Finally, we note that most of the simplices in SCM have trivial
simplicial trussness (99.99%), which means that their simplicial
trussness value is only determined by the largest simplex that con-
tains them. This number is quite similar to that of Enron (99.87%)
due to the simplicial closure phenomenon, but goes down to 87.72
for RFC. Arguably, the simplicial truss decomposition of SCM be-
haves similarly to that of Enron is because the SCM random complex
is generated by using Enron as input.

4.6 Analysis of the top simplices

By analyzing the experimental results, it turns out that a simplex
σ achieves a high simplicial trussness in one of the following two
cases: (i) σ belongs to many overlapping joists, or (ii) σ is contained
in a very large simplex τ . In a collaboration network such as DBLP,
these two cases can correspond, respectively, to authors that have
often collaborated with each others, and to a paper written by a
large group of researchers. When looking for interesting structures
in the network, the first situation may be of greater interest than
the second one, as it indicates that stronger and more persistent re-
lationships exist between the authors. By storing only the simplices
with non-trivial simplicial trussness, we can immediately detect the
most interesting simplices in the dataset. Indeed, we note that in
the second case the simplicial trussness of σ is determined by the
size of τ , i.e., it is equal to the lower bound. On the contrary, in the
first case, the simplicial trussness of σ is non-trivial, and moreover,
it is more likely to be much larger than that of the larger simplices τ
containing it. As an example, by looking at the simplices with non-
trivial simplicial trussness in DBLP, we can identify the triangle
(Marek Tutaj, Howard J. Jacob, Weisong Liu) with simplicial truss-
ness 11, determined by several papers co-written by them. On the
other hand, by looking at the top simplices with maximal simplicial
trussness, we find that the triangle (Pablo Losada, Charo Gil, Maria
C. Viegas) has simplicial trussness 14. However, the latter simplex
may be less interesting than the first one, because its simplicial
trussness is completely determined by a single paper published in
2011 co-written by 17 authors.

Finally, other interesting structures to analyze are the structural
holes, i.e., joists of simplices that do not exist in the complex, sur-
rounded by dense structures, because, due to the simplicial closure
phenomenon, they indicate structures that could be filled in the
future. This kind of joists is characterized by the presence of higher-
order structures with high simplicial trussness around. For example,
let consider the joist of the triangle (Liwei Wang, Harold R. Solbrig,
Cui Tao). Liwei Wang wrote 3 papers together with Cui Tao, one of
which has many authors and thus contributes significantly to the

simplicial trussness of the edge (Liwei Wang, Cui Tao). On the other
hand, 15 papers contribute to the simplicial trussness of the edge
(Cui Tao, Harold R. Solbrig). Finally, one paper with many authors
determines the simplicial trussness of the edge (Liwei Wang, Harold
R. Solbrig). Even though, Liwei Wang and Harold R. Solbrig work
in the same research center and Harold R. Solbrig has an extensive
collaboration with Cui Tao, the three of them never collaborated
together. However, the high values of simplicial trussness of the
edges may be a sign of future collaboration.

5 RELATEDWORK

Truss Decomposition. Truss mining has garnered attention in the
data mining community as it represents a cohesive, relaxed version
of clique mining that can be computed very efficiently [40]. Its defi-
nition is based on the notion of triangles, which have always been
considered fundamental building blocks of a network, especially so-
cial ones [36]. For this reason, k-trusses have been successfully used
to detect communities in social networks [21] and to identify target
vertices for viral marketing [23], among other applications. Truss
decomposition, which is the task of detecting all the non-empty
k-trusses of a graph, has been studied for probabilistic graphs [15],
large graphs [6, 18], bipartite graphs [32] and dynamic graphs [29].
In addition, Sariyuce et al. [33] have proposed a generalization of
the k-truss decomposition that finds a hierarchy of dense structures
in a simple graph. However, computing the truss decomposition of
a simplicial complex has not been considered thus far.
Frequent Itemset Mining. If we represent a simplicial complex
and its simplices as a family of sets, then the simplicial complex can
be seen as a transactional database, and the simplices as transac-
tions. This way, the task of finding the top-n simplices with largest
trussness resembles that of frequent itemset mining, which requires
finding all the subsets of items that appear frequently in a trans-
actional database [1, 17, 25]. Here, the support of an itemset is the
number of transaction in the database that contain all the elements
in the itemset. Similarly to our case, this definition satisfies the
a-priori property, and thus the search space can be efficiently ex-
plored in the same bottom-up fashion used in our work. However,
an algorithm designed to solve frequent itemset mining cannot be
directly applied to solve simplicial truss decomposition: the truss-
ness of a simplex depends on the size of the simplices that contain
it and the trussness of the simplices whose vertex set intersect with
that of the simplex. Conversely, the support of an itemset depends
on the number of transaction that contain it, rather than their size.
Simplicial Complex Analysis. Graphs are not always the most
suitable data structure to encode relationships between real-world
actors. For example, in an email network we cannot distinguish
a message with multiple recipients from several messages with a
single recipient. Similarly, in a co-authorship network, we cannot
distinguish a paper written by a group of authors from several
papers written pairs of authors. Simplicial complexes have been
used by the data mining community to better capture these higher-
order relationships and solve several interesting problems [31]. By
observing that the interactions between subsets of a group of users
in a social network increase the likelihood that the members of the
group will be pairwise connected in the future, Benson et al. [3]
tackled link prediction via simplicial closure. Similarly, Eswaran
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et al. [12] addressed the semi-supervised learning task of label
propagation in partially-labeled graphs. Iacopini et al. [16] adopted
simplicial complexes to describe social contagion and diffusion
phenomena, Horak et al. [14] to characterize networks by means
of their topological features, Serrano and Gómez [34] to define
centrality measures, and finally substantial work has been devoted
to study the brain’s functional and structural organization [22, 28].

6 CONCLUSIONS

We introduced the problem of truss decomposition in simplicial
complexes, which generalizes the standard truss decomposition
on graphs. We showed that our definition of k-truss in a com-
plex satisfies the uniqueness, containment, and a-priori property,
which allows the development of bottom-up solutions that exam-
ine simplices of increasing dimension. Moreover, we identified a
convenient lower bound to the simplicial trussness of the simplices
that let us reduce the size of the output significantly; and an up-
per bound that gives an ordering of the simplices to use for the
computation of the real values of simplicial trussness. Borrowing
ideas from similarity search, we designed STruD, a memory-aware
algorithm that can efficiently compute the simplicial truss decom-
position of a complex. In addition, we presented a version of STruD
that extract the top-n simplices with maximum trussness and given
size. Our experimental evaluation has proven (i) the richness of the
simplicial trusses when compared to the standard ones, and (ii) the
scalability of STruD; and has shown (iii) a topological and (iv) a
geometrical interpretations of the simplicial trussness (as filtration
and as a measure of manifoldness).
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A TOP-N SIMPLICES OF SIZE Q

Algorithm 3 reports the pseudocode of the method for finding
the top-n simplices with size q and maximal simplicial trussness,
discussed in Section 3.2.

Algorithm 3 Top-n Simplices of size q
Require: Simplicial complex K ; Num simplices n; Size q
Ensure: Top-n simplices of size q with maximum trussness
1: T ← priority queue of (t, φ) pairs sorted on t
2: while Q , � do

3: M ← simplices with max trussness upper bound trM in Q
4: if |T | ≥ n and trM ≤ T .min_key() then
5: break

6: for σ ∈ M do

7: for v ∈ C J [σ ] do
8: if |T | ≥ n and tr [σ ] ≤ T .min_key() then
9: break

10: for subset ξ of σ of size |σ | − 1 do
11: τ ← ξ ∪ {v }
12: if tr [τ ] < tr [σ ] then
13: C J [σ ] ← C J [σ ] \ {v }
14: tr [σ ] ← |C J [σ ] |
15: break

16: remove σ from Q
17: insert (tr [σ ], σ ) in T
18: return T .top(n)

B PROOFS

We next report the proof of Property 1 (uniqueness): i.e., the k-truss
of a simplicial complex K is unique.

Proof. Assume, by absurd, that T 1
k and T 2

k are two distinct k-
trusses ofK . LetT 3

k = T
1
k ∪T

2
k . For each σ ∈ T

3
k , trK (σ ) ≥ k because

each σ in either T 1
k or T 2

k has trussness ≥ k by definition. Since the
size of T 3

k is not lower than that of T 1
k and T 2

k , each q-simplex in
T 3
k is involved in not less than k (q + 1)-ary relationships, meaning
that the number of joists to which σ (q) belongs is not lower than
k . Therefore T 3

k is a k-truss of K larger than T 1
k and T 2

k , which is a
contraction as T 1

k and T 2
k are maximal. □

We next report the proof of Property 2 (containment): i.e., the
(k + 1)-truss of a simplicial complex K is a subset of its k-truss.

Proof. Each σ ∈ Tk+1 has trussness trK (σ ) ≥ k + 1, meaning
that it belongs to at least k + 1 joists. Therefore, it satisfies the
condition to belong to Tk . As a result, it holds that Tk+1 ⊂ Tk . □

We next report the proof of Property 3 (a-priori property): i.e., a
q-simplex σ (q) that is a face of a (q+1)-simplex σ (q+1) has trussness
trK (σ

(q)) ≥ trK (σ
(q+1)).

Proof. Let assume there exists a (q + 1)-simplex σ (q+1) that
contains σ (q) and has trussnessk+1withk = trK (σ

(q)). Then,Tk+1
contains k +1 joists Ji , i = 1, . . . ,k +1 of (q+2)-simplices σ (q+2)i ,
each of which contains (q+ 3) (q+ 1)-simplices with trussness k + 1.
Each σ (q+2)i contains the same vertices of σ (q+1) plus an additional
vertex vi . Since each pair of cofaces of a q-simplex share exactly
q − 1 vertices, for each Ji there exists a pair of simplices that share
the coface σ (q), for a total of k + 2 (q + 1)-simplices. Similarly, there
exist a set of k + 2 (q + 1)-simplices that contain each other coface
of σ (q+1), meaning that σ (q) and all the other q-simplices in σ (q+1)

appear in k + 2 joists. Therefore, the simplicial trussness of σ (q) is
k+2. We reached a contradiction, as we assumed k = trK (σ

(q)). □

C ADDITIONAL EXPERIMENTS

Figure 9 illustrates the number of simplices per simplicial trussness
value, for Enron (a), RFC (b), and SCM (c). These charts supplement
those presented in Section 4.5.
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