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Statistical inference of assortative community structures
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We develop a principled methodology to infer assortative communities in networks based on a nonparametric
Bayesian formulation of the planted partition model. We show that this approach succeeds in finding statisti-
cally significant assortative modules in networks, unlike alternatives such as modularity maximization, which
systematically overfits both in artificial as well as in empirical examples. In addition, we show that our method
is not subject to an appreciable resolution limit, and can uncover an arbitrarily large number of communities,
as long as there is statistical evidence for them. Our formulation is amenable to model selection procedures,
which allow us to compare it to more general approaches based on the stochastic block model, and in this way
reveal whether assortativity is in fact the dominating large-scale mixing pattern. We perform this comparison
with several empirical networks and identify numerous cases where the network’s assortativity is exaggerated
by traditional community detection methods, and we show how a more faithful degree of assortativity can be
identified.
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I. INTRODUCTION

Community detection is one of the most central methods in
network science [1,2], and it consists in the algorithmic parti-
tion of the nodes of a network into cohesive groups, according
to a mathematical definition of this concept (for which there
are many). Historically, most community detection methods
proposed have focused on the detection of assortative com-
munities, i.e., groups of nodes that tend to be more connected
to themselves than to other nodes in the network. However,
there are also community detection methods that are more
general, and attempt to cluster together nodes that have sim-
ilar patterns of connection, regardless if they are assortative
or not [3–5]. The widespread use of assortative community
detection methods has lead to the belief that the presence of
communities is a pervasive feature of many different kinds
of real networks [6]. Although the concept of assortativity
is a central one in the study of social networks (known as
“homophily” in that context) [7], and is also an appealing
construct in biology [8–10], it is to some extent unclear if the
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perceived assortativity of many networks is a byproduct of
using algorithms that can only find this kind of structure. This
is particularly problematic since many popular methods do
not take into account the statistical significance of the patterns
they uncover, and find seemingly strong community structure
in completely random graphs [11,12], as well as in trees [13]
and other manifestly non-modular networks [14]. More re-
cently, these shortcomings have been addressed by employing
Bayesian inference of generative network models [15], which
accounts for statistical significance with a built-in Occam’s
razor, that decides to partition the network into groups only if
this is necessary to explain its structure, beyond what can be
done by a uniformly random placement of the edges. These
approaches, however, are based on general mixing patterns,
which include assortativity only as a special case. In many
ways this is useful, and in fact arguably advantageous, since
if assortativity happens to be the dominating pattern, then the
general approach will capture it, otherwise it will reveal a dif-
ferent structure. However, having only a more general method
at our disposal also has its shortcomings. First, if it is true
that assortativity is the main pattern for a class of networks,
then the more general representation is needlessly wasteful
for them, as it forces us to represent this simple pattern as a
special case of a more complex one. In so doing, we run the
risk of marginally overfitting the data, and not focusing on the
more central features, at the cost of algorithmic precision. Sec-
ond, with a more general method alone, it can be difficult to
quantify precisely how much has been wasted in the represen-
tation, and what is indeed the simpler pattern hiding inside it.
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In this work we develop a Bayesian inference approach
designed to uncover assortative communities in networks,
based on the planted partition (PP) model [16–18], which
is itself a special case of the more general stochastic block
model (SBM) [3,5]. Our approach is nonparametric, and can
uncover communities even when their number is unknown,
without overfitting. Furthermore we show that it does not suf-
fer from the resolution limit present in other approaches, such
as modularity maximization [19], and it can find an arbitrarily
large number of communities, provided they are statistically
significantly. We also revisit an existing equivalence between
the inference of the PP model and modularity maximization
[20,21], and dispel the notion that both methods are inter-
changeable in practice, by showing that the equivalence is
in general inconsistent with maximum likelihood estimation,
and discuss the fact that even if this were not the case, the
parametric nature of that approach would not address the
overfitting problem. Our approach is not more complicated
to employ than modularity maximization, and can be used
as a drop-in replacement for it and other quality functions in
popular community detection heuristics [22], and we describe
how it can be used with an unbiased merge-split MCMC
algorithm [23] that can explore the entire posterior distribution
of partitions.

Furthermore, we perform a comparison of the PP model
with the more general SBM for a variety of empirical net-
works, allowing us to determine if and to what extent is
assortativity the most salient characteristic of the large-scale
network structure. We find a variety of outcomes, ranging
from very similar to very different results obtained with both
models, demonstrating that there are indeed many cases where
searching exclusively for assortative structures can give a very
misleading representation of the network.

This work is organized as follows. In Sec. II we present the
planted partition model, and we revisit its equivalence with
modularity. In Sec. III we describe our Bayesian approach at
inferring the PP model, and introduce a more realistic nonuni-
form version of the model. In Sec. IV we analyze the method
when applied to artificial networks with known community
structures, and compare it to variations of modularity-based
approaches, demonstrating that our method prevents overfit-
ting. We also show that the Bayesian method does not suffer
from the resolution limit of modularity maximization, and
hence it does not generically underfit as well. In Sec. V we
employ our method in a variety of empirical networks, and we
compare the results with those obtained by the more general
SBM, as well as modularity maximization. We demonstrate
once more that modularity tends to either massively overfit or
underfit, and when comparing to the SBM we can determine
the true nature of the assortativity of empirical networks. We
finalize in Sec. VI with a conclusion.

II. THE PLANTED PARTITION (PP) MODEL

The statistical inference approach to community detection
is based on the definition of generative models that contain
communities as part of the their parameters. Before we con-
sider the particular case of inferring assortative communities,
it is useful at first to review the more general case of arbi-
trary mixing patterns between groups, as characterized by the

Poisson degree-corrected stochastic block model (DC-SBM)
[5]. This formulation describes a network of N nodes that
are divided into B groups, amounting to a partition b = {bi},
where bi ∈ [1, B] is the group membership of node i, and a
specific multigraph A is generated with probability

P(A|λ, θ, b) =
∏
i< j

e−θiθ jλbib j
(θiθ jλbib j )

Ai j

Ai j!

×
∏

i

e−θ2
i λbibi /2

(
θ2

i λbibi/2
)Aii/2

(Aii/2)!!
, (1)

where Ai j determines the number of edges between nodes i
and j, and by convention Aii corresponds to twice the number
of self-loops incident on node i. Note that the parameters λ

and θ always appear multiplying each other in the likelihood,
so they are not uniquely identifiable, i.e., there are many
choices that yield the same model. To uniquely specify the
model, it is useful to introduce the quantity

θ̂r =
∑

i

θiδbir, (2)

which in the model above can be set to arbitrary values, with-
out sacrificing its generality. For example, if we set θ̂r = 1,
then we can interpret λrs as determining the expected number
of edges between groups r and s (or twice this value for r = s),
and θi is the relative probability with which a node i is selected
to form an edge among those that belong to the same group.
However, any other choice for θ̂r would be equally valid, with
the only immaterial consequence being a different interpreta-
tion of the parameters. The maximum likelihood estimate of
the above parameters is given by

λ∗
rs = ers

θ̂r θ̂s
, θ∗

i = ki

ebi

θ̂bi , (3)

where ers is the number of edges that go between groups r
and s (or twice that for r = s), and er = ∑

s ers = ∑
i kiδbi,r

is the sum of degrees in group r. Indeed, the values of θ̂r

cannot be uniquely obtained from these equations, since any
value θ̂r > 0 offers a valid solution, and more importantly,
any choice disappears when we compute the probabilities
λ∗

bib j
θ∗

i θ∗
j . This means we can choose these values indepen-

dently of the inference procedure, with any particular choice
functioning as a mere technical convention.1

The degree-corrected planted partition (PP) model corre-
sponds to the special case of the DC-SBM given by

λrs = λinδrs + λout(1 − δrs). (4)

In this situation there are only two parameters that determine
the placement of edges between groups, λin and λout, that set
the expected number of edges inside and outside groups. A
choice λin

∑
r θ̂2

r /2 > λout
∑

r<s θ̂r θ̂s corresponds to the assor-
tative case, where edges connect mostly nodes of the same

1Strictly speaking, this is no longer true in a Bayesian setting,
where we are required to integrate the likelihood over the set of
parameters. As shown in Ref. [24], choosing θ̂r has an effect on
the parameter space and choice of priors, and ultimately changes the
integrated marginal likelihood.
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group. Therefore, this model captures what is more typically
known as community structure in the proper sense, at least if
the condition just mentioned is met. With this parametrization,
the model likelihood of Eq. (1) becomes

P(A|λin, λout, θ, b)

= e−λout
∑

r<s θ̂r θ̂sλ
eout
out e

−λin
∑

r θ̂2
r /2λ

ein
in

∏
i θ

ki
i∏

i< j Ai j!
∏

i Aii!!
, (5)

where,

ein = 1

2

∑
i j

Ai jδbi,b j , eout =
∑
i< j

Ai j (1 − δbi,b j ), (6)

are the number of edges inside and outside groups, respec-
tively. The maximum likelihood estimate of the parameters of
the PP model are then given by

λ∗
in = 2ein∑

r θ̂2
r

, (7)

λ∗
out = eout∑

r<s θ̂r θ̂s
, (8)

θ∗
i = ki

[
2einθ̂bi∑

r θ̂2
r

+ eout
∑

r �=bi
θ̂r∑

r<s θ̂r θ̂s

]−1

. (9)

Looking at this result, we see that, unlike in the general DC-
SBM, we no longer have full freedom to choose θ̂r , since its
maximum likelihood value must be a solution of the following
system of nonlinear equations:

θ̂∗
r = er

[
2einθ̂

∗
r∑

s θ̂∗
s

2 + eout
∑

s �=r θ̂∗
s∑

s<t θ̂∗
s θ̂∗

t

]−1

. (10)

We recover partial freedom to choose θ̂r in the special situa-
tion where all groups are uniform, with er = 2E/B, in which
case θ̂r can take any value, as long as it is the same for every
group, i.e., θ̂r = θ̂ . Note that we are, in fact, allowed to make
an arbitrary prior assumption for the values of θ̂r before doing
inference, making them imposed constraints that are part of
our model specification. In this case Eq. (9) becomes simply

θ∗
i = kiθ̂r

ebi

. (11)

We emphasize, however, that imposing this sort of constraint
does jeopardize the degree correction of the model, since the
expected degree of node i is given by

〈ki〉 =
∑

j

θiθ j[λinδbi,b j + λout(1 − δbi,b j )] (12)

= θi

[
θ̂biλin + λout

∑
r �=bi

θ̂r

]
. (13)

If we now substitute the maximum likelihood estimates of
Eqs. (11), (7), and (8) in the above, then we obtain

〈ki〉 = kiθ̂bi

er

[
2einθ̂bi∑

r θ̂2
r

+ eout
∑

r �=bi
θ̂r∑

r<s θ̂r θ̂s

]
. (14)

Therefore, the inferred model generates the observed degrees
in expectation, i.e., 〈ki〉 = ki, only if all groups have the

same sum of degrees er = 2E/B and all imposed θ̂r are the
same, or if we do not impose any constraints on θ̂r , and use
Eq. (9) instead. This means that we face a trade-off between
consistent degree correction and ease of inference with the
planted partition model, which is important to keep in mind as
we consider the connection between statistical inference and
modularity maximization, which we address in the following.

On the consistency between statistical inference and modularity
maximization

As was shown in Refs. [20,21], it is possible to manipulate
the likelihood of the PP model to expose a connection with
modularity maximization [25]. We can rewrite the likelihood
of Eq. (5) as

ln P(A|λin, λout, θ, b)

= μ

2

∑
i j

(Ai j − γ θiθ j )δbib j + E ln λout

− λout

2

(∑
i

θi

)2

+
∑

i

ki ln θi, (15)

up to unimportant additive constants, and where

μ = ln λin − ln λout, γ = λin − λout

ln λin − ln λout
. (16)

If we now enforce the following constraint as part of our
model specification,

θ̂r = er√
2E

, (17)

and replace the maximum likelihood estimate for θ∗
i =

ki/
√

2E obtained from Eq. (11) in the above, then we obtain

ln P(A|λin, λout, θ = θ∗, b)

= μ

2

∑
i j

(
Ai j − γ

kik j

2E

)
δbib j + E (ln λout − λout), (18)

again up to unimportant additive constants. Therefore, max-
imizing the above likelihood with respect to the partition b
alone, while keeping λin and λout constant, is equivalent to
maximizing the generalized modularity [26],

Q(A, b) = 1

2E

∑
i j

(
Ai j − γ

kik j

2E

)
, (19)

with γ playing the role of the resolution parameter. However,
before concluding that modularity maximization and the in-
ference of the PP model amount to the same task, we need to
make the following crucial observations:

(1) The imposed constraint of Eq. (17) involves the knowl-
edge of the sum of all observed degrees in each group er =∑

i kiδbi,r , which cannot be known before doing inference,
and thus cannot be part of our model specification.2 However,

2The same is true for the total number of edges E , but to a
lesser degree since this is a global value that does not depend on
the network partition (and hence amounts to a more innocuous
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any other choice of θ̂r will not yield θ∗
i = ki/

√
2E via maxi-

mum likelihood, which is required to recover modularity. Not
imposing any prior constraint on θ̂r also does not yield the
appropriate value via Eq. (9) in general, and will result in the
necessary value of θ∗

i only for a particular uniform partition of
the network where er = 2E/B [in which case Eq. (17) holds
without being imposed]. Therefore, the modularity of Eq. (19)
is consistent with maximum likelihood of the PP model only
in the very narrow case where all groups have the same sum
of degrees.

(2) In addition, we must keep in mind that the values of
λin and λout are never known a priori in empirically relevant
settings. Therefore, we are required to infer them as well, to-
gether with the network partition. When employing maximum
likelihood, the resulting values of μ and γ , as well as the
second term of Eq. (18) all depend on the network partition,
and are no longer just constants. In this situation, the partial
equivalence with modularity maximization breaks down (even
if er = 2E/B as per point 1 above), as the functional form
resulting from substituting Eqs. (7)–(9) and Eq. (16) into
Eq. (18) makes the latter very different from Eq. (19). We
emphasize that the scheme suggested in Ref. [21] of updating
the value of γ according to Eq. (16) is insufficient to restore
consistency since the contribution of the nonnegligible terms
μ and E (ln λout − λout) remain unaccounted for.

Based on the above, we see that the overall connection
between the inference of the PP model and modularity max-
imization is in fact rather tenuous, and we should not expect
in general to obtain the same results with both approaches. As
explained in Ref. [20], the only statement that can be made
is that there exists a particular choice of parameters λin, λout

and θ such that maximizing modularity with the appropriate
choice of γ and the PP likelihood conditioned on these param-
eters will yield the same partition. But since these parameters
are unknown in practice, and are in general inconsistent with
maximum likelihood estimation, the relevance of this equiva-
lence is arguably limited.

Furthermore, as we discuss in Appendix B, it is easy to
establish a formal equivalence between any community detec-
tion method and the statistical inference of a suitably chosen
generative model. Therefore, the central issue is not whether
this mapping exists, but if the procedure itself is consistent and
behaves well. In fact, neither approach considered above, i.e.,
maximum likelihood inference of the PP model and modular-
ity maximization, actually offers a robust method to uncover
community structure in networks. As is well known, modular-
ity maximization suffers from severe shortcomings, such as
a strong tendency to identify spurious communities in fully
random [11] and nonmodular [12–14] networks, a systematic
failure to identify relatively small communities in large net-
works [19], it exhibits extreme degeneracy in key empirically
relevant cases [27], and has been recently shown to system-
atically overfit on a broad range of empirical networks [28].
Any equivalence with the statistical inference of a parametric
model would just mean that the latter also inherits these same

inconsistency), and replacing it by any other constant would only
amount to a different effective value of γ in Eq. (19).

limitations. However, the full maximum likelihood inference
approach of the PP model outlined above (which is not equiv-
alent to modularity optimization) is not substantially superior.
Even though it has a better justification, it does not really
address any of the core problems of modularity. Most promi-
nently, the inference approach is still prone to overfitting, with
the uncontrolled detection of an ever increasing number of
meaningless communities in fully random networks, as long
as those increase the likelihood of the model. This happens in
the same manner as fitting a polynomial to a set of points will
also overfit, even if we use maximum likelihood, as long as we
are allowed to increase the polynomial order without any con-
straint. We will demonstrate this problem with some simple
examples, but before we do so we turn instead to a Bayesian
approach, which includes the correct penalization of model
complexity, and hence addresses the overfitting problem at its
root, in a manner analogous to what has been done for the
general SBM [15], as we describe in the next session.

III. BAYESIAN INFERENCE OF THE PLANTED
PARTITION MODEL

Instead of maximum likelihood, a more formally correct
approach to statistical inference is to sample or maximize
from the posterior distribution of partitions [15],

P(b|A) = P(A|b)P(b)

P(A)
, (20)

where

P(A|b) =
∫

P(A|λin, λout, θ, b)

× P(λin)P(λout)P(θ|b) dλindλoutdθ (21)

is the marginal likelihood integrated over all model parame-
ters, weighted according to their prior probabilities, and

P(b) =
∏

r nr!

N!

(
N − 1

B(b) − 1

)−1 1

N
(22)

is the prior probability for partition b, with B(b) denoting the
number of groups of b (see Ref. [24] for a derivation). The re-
maining term P(A) = ∑

b P(A|b)P(b) is called the
evidence, and it has the role of a normalization constant, and
therefore will not play an important role in our calculations.
To compute the integral of Eq. (21), we must specify our
priors, which involves us also dealing with the model
specification problem exposed earlier, with respect to the
parameters θ. Here we will make the simple choice

θ̂r = 1, (23)

which allows the model parameters to have a straightforward
interpretation, namely, the θi are the relative probabilities of
selecting a node randomly from the group it belongs, and
Bλin will determine twice the expected total number of edges
inside communities, and

(B
2

)
λin the number of edges outside

communities. (Remember that we are allowed to make any
choice of θ̂r as part of our model specification, as long as
the choice is made a priori, and does not depend on the
data being modelled. As discussed previously, this choice
does limit the accuracy of degree correction of the PP model
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when performing maximum likelihood estimation. However,
as we will see in a moment, this will not be a problem in the
Bayesian formulation.) Now we can proceed in a manner that
reflects our a priori indifference to any kind of model pattern,
namely, we select a uniform prior for θ,

P(θ|b) =
∏

r

(nr − 1)!δ(
∑

i θiδbi,r − 1), (24)

and we choose maximum-entropy priors for the remaining
parameters,

P(λin|λ̄) = e−λin/(2λ̄)/(2λ̄), (25)

P(λout|λ̄) = e−λout/λ̄/λ̄, (26)

where λ̄ is a hyperparameter that determines the expected total
number of edges, with λ̄ = 2〈E〉/B2. Performing the integral
of Eq. (21), we obtain

P(A|λ̄, b) = ein!eout!

2λ̄2
[

B
2 + 1

2λ̄

]ein+1[(B
2

) + 1
λ̄

]eout+1

×
∏

r

(nr − 1)!

(er + nr − 1)!
×

∏
i ki!∏

i< j Ai j!
∏

i Aii!!
.

(27)

This marginal likelihood still depends on global hyperparam-
eter λ̄, which we can infer together with the other model
parameters. However, there is an alternative that allows us to
remove it altogether. We can reinterpret this marginal likeli-
hood as an entirely equivalent model formulation given by

P(A|λ̄, b) = P(A|e, k, b)P(k|e, b)P(e|ein, eout, b)

× P(ein|λ̄)P(eout|λ̄), (28)

where

P(A|e, k, b) =
∏

r<s ers!
∏

r err!!
∏

i ki!∏
r er!!

∏
i< j Ai j!

∏
i Aii!

(29)

is the likelihood of the microcanonical DC-SBM [24], where
ers specifies the exact number of edges between groups r and
s (or twice that for r = s) and ki is the exact degree of node
i. We can recover Eq. (27) by making the following choice of
priors,

P(e|ein, eout, b) = ein!

Bein
∏

r (err/2)!
× eout!(B

2

)eout ∏
r<s ers!

, (30)

which is a product of uniform multinomial distributions for
the diagonal and off-diagonal entries of the matrix ers, condi-
tioned on the total sums ein and eout, respectively. For ein and
eout themselves we use geometric distributions,

P(ein|λ̄, b) = (Bλ̄)ein

(Bλ̄ + 1)ein+1 , (31)

P(eout|λ̄, b) =
((B

2

)
λ̄
)eout

((B
2

)
λ̄ + 1

)eout+1 , (32)

and finally for the degrees we choose uniform distributions
inside each group [24],

P(k|e, b) =
∏

r

er!(nr − 1)!

(er + nr − 1)!
. (33)

Inserting these priors in Eq. (28) and rearranging leads to
Eq. (27). Interestingly, and somewhat surprisingly, since this
microcanonical model generates the exact degrees k that are
observed, we no longer have the same inconsistency as in
the “canonical” model under maximum likelihood that we
discussed earlier, where the inferred degrees were different
from the observed, even though we have made use of the con-
straint θ̂r = 1 in its derivation. We can therefore rest assured
this model can accommodate arbitrary degree sequences. This
equivalence also allows us to replace some of the priors of the
microcanonical formulation by more convenient choices that
make the approach fully nonparametric. In particular, for ein

and eout we can use instead the following:

P(ein, eout|b) = P(ein, eout|E , b)P(E ), (34)

where

P(ein, eout|E , b) =
( 1

E + 1

)1−δB,1

(35)

is a uniform distribution of the E edges into two values (unless
B = 1, where we must have ein = E ). The prior for the total
number of edges P(E ) can now be chosen arbitrarily, as it
will only amount to a unimportant constant in the marginal
distribution, and hence vanish from the posterior. With this,
we have a fully nonparametric marginal distribution

P(A|b) = P(A|e, k, b)P(k|e, b)

× P(e|ein, eout|b)P(ein, eout|E , b)P(E ) (36)

that reads

P(A|b) = ein!eout!(
B
2

)ein
(B

2

)eout (E + 1)1−δB,1

×
∏

r

(nr − 1)!

(er + nr − 1)!
×

∏
i ki!∏

i< j Ai j!
∏

i Aii!!
. (37)

This expression, together with the partition prior P(b) of
Eq. (22), are not much more difficult to compute than the
modularity of Eq. (19). In fact, it is easy to see that if we
consider the change in the posterior probability that is in-
curred if we move a node i from group r to group s, we
need to compute only a few terms that depend on ein, eout,
er , es, nr , ns, and B. To compute the change, we need only
to inspect the neighborhood of the node, which takes time
O(ki ), independently of any other quantity, such as the number
of groups. This is the same algorithmic complexity of com-
puting changes in modularity, so the quantity ln P(A, b) can
be used as a drop-in replacement of the quality function in
any modularity maximization algorithm,3 thereby addressing
many existing fundamental limitations. In fact, we can under-
stand in more detail why this approach prevents overfitting
by exploiting a direct connection between Bayesian inference

3For reasons of numerical stability, it is better to work with the
log-probability ln P(A, b), such that products become sums, and we
can also use tables of pre-computed log-factorial values to improve
the speed of the computation.
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and information theory. Namely we can write the negative
joint log-likelihood as follows:

� = − ln P(A, b) = − ln P(A, k, e, b) (38)

= − ln P(A|e, k, b) − ln P(e, k, b). (39)

The quantity � is called the description length of the data [29],
as it measures the amount of information required to describe
the network A when the parameters e, k, and b are known,
together with the information necessary to describe the pa-
rameters themselves. Therefore, the most likely partition of
the network is the one that allow us to compress it the most.
This means that this approach amounts to a formal implemen-
tation of Occam’s razor, that favors the most parsimonious
explanation for the data: As we increase the complexity of
the model, by considering a larger number of communities,
the first term − ln P(A|e, k, b) will tend to decrease, as the
model becomes more constrained; however, the second term
− ln P(e, k, b) will tend to increase, functioning as a penalty
for more complex models. Since it is not possible to compress
fully random data using any method, this approach cannot
find communities in fully random networks. (This also ex-
plains why maximum likelihood overfits, since it omits the
contribution of the second term of the description length, and
hence there is no penalization for model complexity.) We will
also show in Sec. IV A that this approach also does not suffer
from the “resolution limit” underfitting problem present with
modularity maximization. However, before we do so, we will
first consider a small variation of the PP model that is slightly
more realistic, and allows for a larger amount of heterogeneity
in the community structure.

A. The nonuniform PP model

Even if we commit ourselves to search exclusively for
assortative community structures, the particular formulation
of the PP model considered previously seems needlessly re-
strictive. This is because it assumes that, if all θi are the
same, then the expected number of edges inside communities
is the same for every community, which is likely to be an
inadequate assumption in a variety of empirical scenarios. We
can relax this constraint by formulating instead a nonuniform
version of the PP model, with

λrs = λrδrs + ω(1 − δrs). (40)

This parametrization allows for the expected number of edges
inside communities to vary arbitrarily, via the parameters
λ = {λr} that can be different for every community. Given this
formulation, we can essentially repeat the same calculations
as before, as we show in Appendix A. In the end, we obtain a
marginal likelihood given by

P(A|b) = eout!
∏

r err!!(B
2

)eout (E + 1)1−δB,1
×

(
B + ein − 1

ein

)−1

×
∏

r

(nr − 1)!

(er + nr − 1)!
×

∏
i ki!∏

i< j Ai j!
∏

i Aii!!
. (41)

This likelihood is very similar to the uniform planted partition
model and is just as easy to compute, but it should work better
when the communities are sufficiently heterogeneous.

B. Inference algorithm

The posterior distribution of Eq. (20) is not simple enough
to allow us to sample directly from it, so we have to perform
this indirectly using Markov chain Monte Carlo (MCMC).
This is done by defining move proposals that are conditioned
on the current partition b,

P(b′|b), (42)

and accepting a new partition b′ sampled from this distribution
according to the Metropolis-Hastings probability [30,31]

min

[
1,

P(b′|A)P(b|b′)
P(b|A)P(b′|b)

]
, (43)

otherwise we reject the move and remain at the previous
partition b. Note that the computation of the above ratio does
not depend on the intractable normalization constant P(A) of
Eq. (20), since it cancels out in the computation. By iterating
the above procedure sufficiently often, we are guaranteed to
sample from the target distribution P(b|A) asymptotically,
provided our proposals P(b′|b) are ergodic and aperiodic.
However, the time required to reach the target distribution will
depend on the quality of our proposals, which will determine
the practical feasibility of the algorithm. In this work we use
the merge-split proposals described in Ref. [23], which have
been shown to work well in many cases, in particular when
the number of groups tends to vary. The only modification we
make of that algorithm is that when proposing the move of
a single node i from its current group to group r, we do it
according to the following probability,

P(r|i, ε) = (1 − ε)

∑
j Ai jδb j ,r

ki
+ ε

B
, (44)

where B is the number of occupied groups. The parameter ε

determines the probability with which we look at a random
neighbor of node i to copy its group membership, otherwise
we select a group at random. We require a value ε > 0 to
guarantee ergodicity, but otherwise any other value yields a
valid algorithm (we have used ε = 1/2 in our analysis, which
provided good acceptance rates).

As we mentioned before, when using our model formu-
lation, the likelihood ratio when changing the membership
of node i, as well as the move proposal probability, can be
computed in time O(ki ), where ki is its degree. This means
that a single MCMC “sweep,” where every node had a chance
to be moved once, takes a time O(N + E ), where E is the
number of edges, which is the best we can hope for this kind
of problem. Therefore, we can use this algorithm to approach
networks with a very large size. A reference implementation
of this algorithm is freely available as part of the graph-tool
library [32].

In some cases, we may seek to maximize from the posterior
distributions instead of sampling from it. This is achieved
via a simple modification of the above algorithm, where we
replace the target distribution with P(b|A) → P(b|A)β , where
β is an inverse temperature parameter. If we increase β → ∞
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(preferably slowly, to avoid getting trapped in local optima),
then we obtain a maximization algorithm. The merge-split
MCMC often shows a good behavior when employed in this
manner, as it can more easily escape local maxima that would
trap alternative schemes, such as those based on the change of
a single node at a time.

IV. ARTIFICIAL NETWORKS

Here we show how our approach behaves for artificial net-
works that have imposed community structure. We compare
the inference of the PP model with the DC-SBM [24], as
well as with variations of modularity. We focus on the over-
fitting problem, and the potential identification of nonexisting
communities. We do so by sampling networks with N = 105

nodes and average degree 〈k〉 = 5, and a specific number of
equal-sized groups B, from the PP model defined above, with
a choice of parameters given by θi = 1/B, λin = c〈k〉N/B, and
λout = (1 − c)〈k〉N/[B(B − 1)], with c = 1/B + (1 − 1/B)ε,
such that if ε = 0 we have fully random networks, and ε = 1
we have perfectly assortative communities. For the inference
of the PP model and the DC-SBM, we sample from the poste-
rior distribution of Eq. (20), using the algorithm above. When
using the modularity function, we sample from the target
distribution

P(b|A) = eβQ(b,A)

Z (A)
, (45)

where Z (A) = ∑
b eβQ(b,A), and Q(b, A) is given by Eq. (19).

We choose β = 2Eμ = 2E ln(λin/λout), such that if

γ = γtrue = λin − λout

ln λin − ln λout
, (46)

then the posterior will be proportional to the likelihood of
the true underlying model, i.e., P(b|A) ∝ P(A|λin, λout, θ

∗, b).
We also compare with the results obtained with the maximum
likelihood choice for γ ,

γ = γfit = λ∗
in − λ∗

out

ln λ∗
in − ln λ∗

out
, (47)

where λ∗
in = Bein/E and λ∗

out = Beout/[E (B − 1)] [assuming
Eq. (17) holds]. Finally, we also compare with γ = 1, which
corresponds to the original definition of modularity, still
widely used in practice.

The results for the inferred number of groups can be seen
in Fig. 1. The Bayesian inference of both versions of the PP
model (uniform and nonuniform) as well as the DC-SBM
yield identical results, always returning the true number of
groups. All versions of the modularity-based approach overfit
systematically, often finding a number of groups which is
orders of magnitude wrong. The bad behavior of the case
γ = γtrue may seem surprising, since it corresponds to the
true likelihood of the model, which one could expect to be
“Bayes optimal,” in the sense that since it already includes
the correct model parameters other than the partition itself,
then any other approach would need to yield a strictly worse
performance. However, this would only be true if the number
of groups would also be set to its true value (rendering its
inference moot), otherwise this choice of parameter is no
longer optimal. The behavior with γ = γfit is considerably

FIG. 1. Inferred number of groups B∗, averaged from the pos-
terior distribution, as a function of the true number of groups B,
according to the procedures shown in the legend, for networks sam-
pled from the PP model with N = 105 nodes and average degree
〈k〉 = 5, and mixing ε = 0.8, as described in the text. The error bars
show the standard deviation of the distribution (not its mean). The
solid line shows the identity curve B∗ = B. All results for the PP
models (uniform and not) and DC-SBM are identical.

worse than all others, showing how maximum likelihood is
inadequate for models with unconstrained degrees of freedom,
as it trivially overfits. Interestingly, the choice γ = 1 seem
to yield a better regularization than the alternatives, although
the approach still systematically overfits, specially for a small
number of planted communities. Results like this should give
us pause when employing modularity to uncover communi-
ties in networks. Our Bayesian approach, on the other hand,
behaves robustly, without requiring us to tune any parameter.

Bayesian inference of the PP model has no resolution limit

As was shown by Fortunato and Barthélemy [19], the
method of modularity maximization possesses an intrin-
sic preferred scale for the size of the communities, which
results in the so-called “resolution limit” that prevents
relatively small modules to be uncovered, even if they have a
very clear structure. Here we show that our Bayesian method
does not suffer from the same problem.

We begin by briefly revisiting the result of Ref. [19],
and we consider the structure of a maximally modular net-
work, i.e., one that is constructed to maximize modularity.
Following Ref. [19] we consider, without loss of generality,
a network of N nodes and E edges that are divided into
B equal-sized groups, each with (E − B)/B internal edges,
connecting nodes of the same group, and in total B edges
connecting nodes of different communities, forming a circu-
lar ring between communities (the ring construction simply
enforces that the network can in principle be connected, but
plays no other role in the results). With this parametrization
we have er = 2E/B, ein = E − B, eout = B. The number of
groups itself is a free parameter, and it determines the overall
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modularity, which from Eq. (19) we obtain

Q(A, b) = 1 − B

2E
− γ

B
. (48)

We now seek to find the value B = B∗ that maximizes the
above equation. Treating B as a continuous value for this
purpose, and taking the derivative and setting it to zero,
dQ/dB = 0, we obtain

B∗ =
√

2γ E . (49)

This result tells us that if we construct a network in the above
way but with B > B∗, even if the groups themselves happen
to be obvious assortative communities, e.g., large cliques
connected by single edges, then these communities will be
unintuitively merged together to achieve a larger modularity.
The above result also reveals the role of the resolution param-
eter γ , which serves as the base of methods that attempt to
determine its most appropriate value to counteract the limit in
resolution [26,33–36].

We now turn to the PP model, to determine if the same
natural scale emerges. We need to consider the value of
ln P(A, b) for the same construction above, and determine the
value of B = B∗ that maximizes it. We will use the nonuni-
form PP model with Eqs. (41) and (22), although the final
result is the same with the uniform version. We can obtain a
simpler expression for the joint log-likelihood by assuming
a large network with N � 1 and B � 1 (although we make
no assumption on the value of B relative to N or E ), so that
we can use Stirling’s formula ln x! = x ln x − x + O(log x),
which yields

ln P(A, b) = (E − N ) ln B + 2(E − B) ln(E − B)

+ 2B ln B + 2(N − B) ln(N − B) + B

− (2E + N − B) ln(2E + N − B) + O(ln B),
(50)

up to unimportant additive constants. Taking the derivative
and setting it to zero, we obtain the equation

d

dB
ln P(A, b) = E − N

B
+ ln

(N + 2E − B)B2

(E − B)2(N − B)2
= 0.

(51)

If we now assume we have a sparse graph with E = 〈k〉N/2,
with 〈k〉 > 2 being the average degree independent of N , then
for N � 〈k〉 the solution of the above equation is

B∗ = 〈k〉 − 2

2

N

ln N
. (52)

This means that the Bayesian approach has a natural scale
which prefers group sizes N/B∗ = O(ln N ), which is signif-
icantly smaller than the modularity scale N/B∗ = O(

√
N ).

The scale of the Bayesian approach arises mostly due to the
requirements of statistical evidence—we should partition a
network only if its structure cannot be explained by a uni-
formly random placement of the edges. This explains also
why for 〈k〉 < 2 we obtain a value B∗ = 1, since sparser net-
works inherently contain less information about the existing

community structure.4 As the size of the network increases,
so does the possible ways of partitioning it and the number
of parameters involved in the inference of the model, and as a
consequence the required statistical evidence to support it also
increases, and hence it becomes impossible to uncover groups
smaller than O(ln N ). However, this threshold grows so slowly
that it can barely be compared with what exists for modular-
ity maximization. We emphasize that this approach virtually
eliminates the resolution limit without the introduction of a
single parameter that needs to be tuned.

It is interesting to compare the value of B∗ for the PP model
with the same value obtained for the general SBM. As shown
in Refs. [24,38], when using noninformative priors, the SBM
has a resolution limit B∗ = O(

√
N ), which is similar to mod-

ularity, although it occurs for a completely different reason,
namely the model depends on a matrix of parameters of size
O(B2), which results in a penalty in the joint log-likelihood
in the order of O(B2 ln E ), which becomes comparable to the
likelihood when B ∼ √

N for sparse networks. This limitation
is lifted when the noninformative priors are replaced by a
sequence of nested priors and hyperpriors, resulting in the
nested SBM [24,39], which exhibits the natural scale B∗ =
O(N/ ln N ), similar to the PP model. However, the PP model
achieves this high resolution already with simple noninfor-
mative priors, since it depends on a set of parameters which
has total size O(N + B) in the case of the nonuniform model,
and O(N ) in the case of the uniform variant. This illustrates
the usefulness of simpler models, which can achieve a higher
performance than more general ones, if they happen to be a
good description of the data.

V. EMPIRICAL NETWORKS

The existence of assortative community structure is often
assumed to be a ubiquitous property of many kinds of net-
works across different domains. However, this kind of latent
structure is not something that can be readily obtained from
network data, and most methods that are used to detect it
search exclusively for assortative structure, ignoring other pat-
terns. Therefore, they cannot be used to rule out the existence
of more fundamental nonassortative mixing patterns that are
qualitatively different. A comparison between the assortative
PP models that we consider here, together with more general
SBM formulations allow us to address this comparison in
a principled way, to understand how pervasive assortativity
really is.

Here we compare the results obtained with the inference
of PP model (both uniform and nonuniform versions) for a
variety of empirical networks, together with those obtained
using a Bayesian version of the DC-SBM [24], using both
noninformative priors as well as nested hierarchical priors
[39]. A powerful feature of the Bayesian inference approach
is that it permits principled model selection, in the following
way. Suppose we want to compare the community structure

4This does not mean that if 〈k〉 < 2 the modules are completely
undetectable, only that the posterior distribution has a maximum at
B = 1. The actual detectability threshold is determined by averaging
over the posterior distribution with the true parameters imposed [37].
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FIG. 2. Difference in the description length between the best
fitting and the remaining models, as specified in the legend, for a
selection of networks obtained from the KONECT repository [40].
The best fitting model always appears in the bottom. For reference,
the values ln 10 and ln 100 are shown as dashed lines.

b1 found with model M1 with structure b2 found with model
M2, both for the same network A. We can do this by compar-
ing their posterior probability ratio


 = P(b1,M1|A)

P(b2,M2|A)
(53)

= P(A, b1|M1)P(M1)

P(A, b2|M2)P(M2)
. (54)

Therefore, if we have no prior preference toward any model,
i.e., P(M1) = P(M2), then this ratio will be given by the dif-
ference in the description length obtained with both models,


 = exp(�2 − �1), (55)

where �1 = − ln P(A, b1|M1) and �2 = − ln P(A, b2|M2).
Hence, the most likely model is the one that offers the best
compression for the data, and the difference in the compres-
sion itself yields the statistical significance of the preference
toward the best model.

We performed the inference of the four models on a selec-
tion of 29 networks, representing different scientific domains,
obtained from the KONECT repository [40]. In Fig. 2 we
show the difference in description length obtained from the
best fitting to the other models. Perhaps unsurprisingly, we
find that the general DC-SBM provides a better fit for most
networks, indicating that the strictly assortative structure of
the PP model is insufficient to account for the observed net-
works. However, the PP model is selected as the best fitting
model in a minority of the cases, and it is instructive to
inspect those more closely. In Fig. 3 we show the commu-
nities uncovered using the PP model and the nested DC-SBM,
for a network of games between American college football
teams [41] and a network of co-purchases of books about
American politics [42]. In both cases, PP and the nested DC-
SBM find very similar partitions, but the PP model finds a
slightly larger number of communities. The model selection
criterion outlined above selects the PP model as the more

American football

(a) Nested DC-SBM (b) PP (uniform)
Σ = 1780.58 (nats) Σ = 1761.50 (nats)

Political books

(c) Nested DC-SBM (d) PP (non-uniform)
Σ = 1343.44 (nats) Σ = 1337.69 (nats)

FIG. 3. Inferred community structure of a network of games
between American college football teams [41] and a network of
co-purchases of books about American politics [42], using both the
PP model and the nested DC-SBM, as indicated in the legend, which
also shows the description length of each fit.

plausible alternative due to the strong assortativity observed.
The result found for the football network is particularly in-
teresting, since it is a rare case where the uniform PP model
is the one that gets selected. This is because the number of
edges inside each community is indeed very similar for all
of them, and the connections between the communities seem
fairly random, exactly how the PP model prescribes. This
highlights the robust character of our approach, which will not
favor a more complicated model when it is unnecessary, and
gives us confidence that when the PP model is not selected,
it is indeed because it does not fully account for the actual
structure observed in the network.

For other networks such as the associations between ter-
rorists [45] and the social network between dolphins [46],
even though the DC-SBM is strictly preferred, the differ-
ence between the nonuniform PP model is negligible, and
therefore there is no sufficient evidence in the data to re-
liable distinguish between both models. For all other data,
however, we find substantial evidence in favor of the more
general DC-SBM. What is particularly interesting is that the
DC-SBM is often preferred even when the uncovered struc-
tures are in fact very assortative. We give an example of
this in Fig. 4, which shows the communities found with the
nonuniform PP model and the nested DC-SBM for a social
network of high school students [43]. Even though all commu-
nities found have a larger probability of forming internal than
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FIG. 4. Inferred community structure of a social network of high school students [43], using both the nonuniform PP model and the
nested DC-SBM. The bottom panels show the community-wise modularity values qr = (err − e2

r /2E )/2E , such that Q = ∑
r qr . A value of

qr > 0 indicates that group r has a predominantly assortative contribution. The bottom legend shows the description length obtained with both
models, as well as the value of modularity of the partitions. Both divisions have a normalized maximum overlap distance [44] of d = 0.299.
The group colors are chosen to maximize the matching between both partitions, as described in Ref. [44], and the same colors are used in the
bottom panels.

external connections, the ones found by the DC-SBM yield
a larger plausibility. If we inspect it more closely, then we
see that the divisions found by the DC-SBM amount largely
to subdivisions of the ones found by the PP model. This
can be explained by the DC-SBM using the preference of
connections between the different communities as additional
evidence for their existence, instead of merely their assorta-
tivity strength. This illustrates how a more general model like
the DC-SBM can be more useful even when assortativity is
a dominant but not unique pattern. (We note that the result
found by the PP model has a slightly larger modularity, but
this is not a very significant fact, given that modularity is in
general largely decoupled form statistical significance.)

In Fig. 5 we show more details about the inferences
obtained for all the networks, including the number of com-
munities found, the modularity of the partitions, and the
normalized maximum overlap distance [44] between the best
fitting partition b and the remaining partitions c, defined as

d (b, c) = 1 − 1

N
max

μ

∑
i

δbi,μ(ci ), (56)

where μ(r) is a bijection between the group labels of b and c.

Overall, we observe a fair amount of variability in the
comparisons between models for the different networks. Very
often, the PP models yield a more conservative view of the
networks, uncovering a smaller number of groups when com-
pared to the DC-SBM, but there are also cases where the
opposite is true. We also observe that although there are many
cases where both the DC-SBM and PP models yield parti-
tions with similar modularity, the overlap distance between
partitions is very high, indicating that these networks admit a
variety of divisions that have a similar overall level of assor-
tativity (a good example of this is the high school network
we considered in Fig. 4). Therefore, despite similar values
of modularity found with the DC-SBM, the more general
model rarely yields partitions that are very similar to the ones
returned by any of the PP variants.

The values of modularity obtained with the best fitting
model (which is most often the nested DC-SBM) are in some
situations similar to what is found with the PP models, like for
the high school social networks. However, for networks like
the douban.com online social recommendation network [47],
political blogs [48], Internet at the autonomous system level
[39], and others, the modularity obtained with the best-fitting
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FIG. 5. More details about the results of Fig. 2, including the
number of communities found with each method (top panel), the
normalized maximum overlap distance [44] between the best fitting
and the remaining partitions (middle panel), and the modularity of
the partitions found (bottom panel).

DC-SBM is significantly smaller than with the PP models, in-
dicating that assortativity is not the most fundamental pattern
in these networks, and using a community detection method
that searches exclusively for these patterns gives us a signifi-
cantly biased view.

In Fig. 5 we also include results obtained with the method
of modularity maximization. As it must be the case, this
approach yields the division of the network with the highest
values of modularity among the alternative ones considered.
When we compare the results obtained with more statistically
grounded approaches, we observe a rather erratic behavior.
For some networks, such as word associations [50], modular-
ity maximization yields a seemingly more conservative result
with fewer groups, which could be an underfit potentially
due to the resolution limit [19]. In other instances, like the
E-mail network of an undisclosed European institution [51],
protein-protein interactions [49], and bipartite person-crime
associations [52], modularity maximization finds a number
of communities that is multiple orders of magnitude larger
than what is obtained with the inference methods, strongly
indicating a massive overfit of these datasets. We illustrate
this point in more detail by focusing on the protein-protein
interaction network in Fig. 6. There we see that while mod-

Original network

(a) Modularity maximization (b) PP (non-uniform)
B = 185, Q = 0.84 B = 2, Q = 0.11

Randomized network

(c) Modularity maximization (d) PP (non-uniform)
B = 168, Q = 0.75 B = 1, Q = 0

FIG. 6. Community structures found in a network of protein-
protein interactions [49], using modularity maximization and
Bayesian inference of the PP model, as indicated in the legends. The
top panel shows the results for the original network, and in the bottom
panel the results obtained for a randomized version with the same
degree sequence. The legends show the number of groups and the
value of modularity of the corresponding partitions.

ularity maximization finds over a hundred communities, the
inference of the PP model finds only two, with one of them
being relatively small. If we now consider a fully randomized
version of the network, shown in Fig. 6 as well, then we see
that modularity maximization still finds a very similar number
of communities in it, with a high value of modularity, while
the inference of the PP model finds, correctly, only a single
group. This example clearly shows that while the structure
of the original network is probably not completely random,
most of it (including its disconnectedness) can be explained
by its degree sequence alone, with no convincing evidence
of community structure, and that the results obtained with
modularity maximization are mostly spurious.

Our findings corroborate a recent analysis based on link
prediction, carried over a large corpus of empirical networks,
that showed that modularity maximization tends to system-
atically overfit [28]. Together with our results, this serves to
illustrate that the tenuous connection with maximum likeli-
hood of the PP model should not encourage practitioners to
employ modularity maximization in the analysis of real net-
works, if they expect to be guided by statistical significance, or
have any inherent guarantee against overfitting or underfitting.
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VI. CONCLUSION

We have described how to perform a nonparametric
Bayesian inference of the planted partition generative model,
resulting in a principled community detection algorithm
tailored for assortative structures. Our method separates
structure from randomness, and does not find spurious com-
munities in fully random networks. We also showed that it
does not suffer from the resolution limit present in modularity-
based methods and is capable of uncovering arbitrarily small
communities, provided those are statistically significant, and
without the tuning of any parameter. Our approach is based
on the sampling or a maximization of a posterior probability
function that is not much more complicated to implement
than popular heuristics like modularity, and hence can be used
as a drop-in replacement for it in a variety of algorithms,
intrinsically providing better regularization for them.

We showed how our inference approach is amenable to
statistical model selection, and we have compared our model
variations, together with more general stochastic block mod-
els, on a variety of empirical networks. We discussed how
this comparison allows us to determine the true assortativity
of community structures, by removing a systemic bias that
exists when only constrained methods are employed. We have
shown that in many cases the assortativity of real networks is
exaggerated when viewed through the lenses of community
detection methods that search exclusively for assortative pat-
terns, and how model selection can reveal more fundamental
mixing patterns.

A recent investigation of a variety of community detec-
tion methods on a large corpus of empirical networks found
that most of them tend to yield a number of communities
that seems compatible with an overall O(

√
N ) scaling [28],

indicating that this might be a limitation that is present in a
larger set of community detection algorithms. That analysis
did not include statistical inference methods that are known
not to have this particular limitation, like the nested SBM
[24,39] and our Bayesian PP model, as we have demonstrated.
Incorporating these methods into such large-scale compar-
isons would allow us to better understand what are the true
fundamental limitations of the community detection task.

The inference approach is infinitely extensible, as it admits
any conceivable generative model, and it provides a general
platform for a meaningful comparison between them. It is
easy to envision a more general comparison across network
models that are tailored toward other kinds of specific mix-
ing patterns, such as bipartiteness [53] and core-peripheries
[54,55], as well as different classes of models such as those
based on latent spaces [56,57]. A systematic comparison un-
der such a framework would shed important light on the
inherent trade-offs between more general and specific models,
and how they relate to the various empirical domains.
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APPENDIX A: MARGINAL LIKELIHOOD OF THE
NONUNIFORM PP MODEL

The model likelihood of the nonuniform PP model de-
scribed in the text can be written as

P(A|λ, ω, θ, b)

= e−ω
∑

r<s θ̂r θ̂sωeout
∏

r e−λr θ̂
2
r /2λerr/2

r

∏
i θ

ki
i∏

i< j Ai j!
∏

i Aii!!
. (A1)

Enforcing the constraint θ̂r = 1, and using the noninformative
priors

P(λr |λ̄) = e−λr/(2λ̄)/(2λ̄),

P(ω|λ̄) = e−ω/λ̄/λ̄,

P(θ |b) =
∏

r

(nr − 1)!δ(
∑

r θiδbi,r − 1),

we obtain the following marginal likelihood, after integrating
over all parameters:

P(A|λ, b)

= eout!
∏

r (err/2)!
∏

i ki!(
1
2 + 1

2λ̄

)ein+B[(B
2

) + 1
λ

]eout+1 ∏
i< j Ai j!

∏
i Aii!!

. (A2)

This likelihood is once more identical to a microcanonical
model,

P(A|λ, b) = P(A|e, k, b)P(k|e, b)P(e|{err}, eout, b)

× P({err}|λ̄, b)P(eout|λ̄, b)P(E ), (A3)

where we now have the priors

P(e|{err}, eout, b) = eout!(B
2

)eout ∏
r<s ers!

,

P({err}|λ̄, b) =
∏

r

λ̄err

(λ̄ + 1)err+1
,

P(eout|λ̄, b) =
[
λ̄
(B

2

)]eout

[
λ̄
(B

2

) + 1
]eout+1 .

We can improve this by replacing the last two equations with
the following choice:

P({err}, eout|b, E ) = P({err}|ein, b)P(ein|E , b) (A4)

=
(

B + ein − 1

ein

)−1( 1

E + 1

)1−δB,1

, (A5)

which amounts to first choosing the value of ein uniformly
at random in the range [0, E ], and then likewise for the dis-
tribution of the diagonal values {err}. Multiplying the above
equations as

P(A|b) = P(A|e, k, b)P(k|e, b)P(e|{err}, eout, b)

× P({err}, eout|E , b)P(E ), (A6)

we arrive at Eq. (41) in the main text.
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APPENDIX B: GENERAL EQUIVALENCES WITH
STATISTICAL INFERENCE

Here we show that it is not difficult to establish a formal
connection between any community detection method and sta-
tistical inference. Let us consider an arbitrary quality function,

W (A, b) ∈ R, (B1)

which is used to perform community detection via the opti-
mization

b∗ = argmax
b

W (A, b). (B2)

We can retrofit any such method, and transform it into a statis-
tical inference procedure by using W (A, b) as the Hamiltonian
of an ad hoc generative model given by

P(A|b) = eW (A,b)

Z (b)
, (B3)

with normalization given by

Z (b) =
∑

A

eW (A,b). (B4)

In general, performing a maximum likelihood estimation of
this model will not be equivalent to the original optimization
problem, due to the role of the normalization constant Z (b).
However, we can cast it as a Bayesian procedure to achieve a
trivial equivalence, via the posterior distribution

P(b|A) = P(A|b)P(b)

P(A)
, (B5)

and by choosing the prior

P(b) = Z (b)

�
, (B6)

with � = ∑
b Z (b), and P(A) = ∑

b eW (A,b)/�. Based on this,
we recover easily the original optimization by maximizing
from the posterior distribution,

b∗ = argmax
b

ln P(b|A) (B7)

= argmax
b

W (A, b). (B8)

Therefore, finding a mere equivalence between any given
community detection method and statistical inference, by it-
self, is not a very insightful exercise, as it can amount to
little more than tautology. This also shows that not every
inference procedure is any more meaningful or principled than
using an arbitrary quality function. Instead, these features are
contingent on the actual generative models used, which need
to be properly justified, together with the choice of priors, and
care should be taken to verify the consistency of the whole
approach, which is not granted automatically in every case.

Despite the above, it should be mentioned that constructing
a posterior distribution in the ad hoc way described above does
have its uses. In particular, it allows us to formally define a
distribution over all possible divisions of the network accord-
ing to any given community detection method. As shown in
Ref. [20], by characterizing this entire distribution, we have, to
some extent, a mechanism to detect degeneracy and evaluate
the statistical significance of the results, by seeking the con-
sensus of a large fraction of the solutions. Nonetheless, this
does not address the arbitrariness of the Hamiltonian chosen,
and the ultimate interpretation of the results.
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