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ABSTRACT

We introduce a new mathematical framework for the qualitative analysis of dynamical stability, designed particularly for finite-time processes
subject to slow-timescale external influences. In particular, our approach is to treat finite-time dynamical systems in terms of a slow–fast for-
malism in which the slow time only exists in a bounded interval, and consider stability in the singular limit. Applying this to one-dimensional
phase dynamics, we provide stability definitions somewhat analogous to the classical infinite-time definitions associated with Aleksandr Lya-
punov. With this, we mathematically formalize and generalize a phase-stabilization phenomenon previously described in the physics literature
for which the classical stability definitions are inapplicable and instead our new framework is required.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0066641

An important phenomenon in nonlinear science is the stabi-
lization of processes by external forces. This phenomenon can
manifest as the mutual synchronization of an array of processes
evolving under the same law but starting at different initial states,
where the synchronization is due to the processes being subject
to a common external forcing. Such stabilization is tradition-
ally analyzed in terms of Lyapunov exponents and other related
long-time-asymptotic conceptions of dynamical stability; these
can be applied to both deterministic and stochastic dynamical sys-
tems that are well-defined over infinite time. References 1 and 2
present a stabilization phenomenon in which the kind of exter-
nal forcing considered is a slow-timescale process; our present
paper concerns mathematically rigorous formulation, proof, and
generalization of this stabilization phenomenon. We will see that
the traditional approaches to theoretical stability analysis such
as Lyapunov exponents and other infinite-time approaches can-
not generally be applied to describe the stabilization phenomenon
of Refs. 1 and 2. In fact, the critical forcing strength required to
induce stability is generally dependent on the time-interval over

which the system is being considered. This means that the phe-
nomenon should be understood in terms of finite-time stability,
in contrast to other stabilization phenomena such as the well-
known case of stabilization by stationary noise. Our work rep-
resents a significant contribution to the important and growing
field of finite-time dynamical systems (FTDSs) and finite-time
stability, whose necessity in the study of various nonlinear sys-
tems, such as climate and biological systems, is increasingly being
recognized.

I. INTRODUCTION

For either an autonomous dynamical system

ẋ(t) = F(x(t)), t ∈ R, (1)

with a time-independent vector field F : X → TX, or a nonau-
tonomous3–5 dynamical system

ẋ(t) = F(x(t), t), t ∈ R,
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with a time-dependent vector field F : X × R → TX, dynamics is
traditionally analyzed in terms of behavior as t → ±∞. For exam-
ple, attractors, repellers, asymptotic stability, and Lyapunov expo-
nents are typically defined in terms of such long-time-asymptotic
behavior. From a practical perspective, this approach is based on the
assumption that one is interested in the system’s behavior after a
sufficiently long time that “transients have decayed.”

However, in more recent decades, the study of “finite-time
dynamical systems” (FTDSs) has grown in popularity;6–14 these
are dynamical systems in which time is constrained to a compact
interval, i.e.,

ẋ(t) = F(x(t), t), t ∈ [0, T]

for some time-dependent vector field F : X × [0, T] → TX. As
described in Secs. 1.1 and 6 of Ref. 11, situations where the FTDS
framework is appropriate include

(i) when one is interested in behavior on a shorter timescale than
that required for a given model’s long-time-asymptotic dynam-
ical picture to emerge, or

(ii) when the temporal variations of the external forcing over finite
timescales of interest are “unextendible,” meaning that they do
not (or are not know to) follow any particular indefinite-time
deterministic or stochastic model, and so there is no such thing
as “long-time-asymptotic” behavior.

Now sometimes, the temporal variations of the external forcing
may be relatively slow, and this slowness may play an important role
in shaping the consequent dynamical behavior.15 In this paper:

• We will introduce (immediately below, and further in Sec. III) a
framework for investigating the role of slow variation of exter-
nal forcing on the consequent dynamical behavior, specifically
designed to be applicable to “unextendible” temporal variations
defined over compact time-intervals. (The need for such a frame-
work will be further illustrated in Sec. II B.)

• We will apply this framework to provide a rigorous mathemat-
ical description of a certain one-dimensional phase-stabilization
phenomenon described in the physics literature, in Refs. 1 and 2.

The framework we introduce is a slow–fast setup in which
the slow time is constrained to a compact interval (without loss of
generality, the unit interval). That is, we consider systems of the
form

ẋ(t) = F(x(t), εt), t ∈ [0, 1
ε
] (2)

for some [0, 1]-parameterized vector field,

F : X × [0, 1] → TX.

While traditional mathematical definitions of stability and Lya-
punov exponents are formulated in terms of the t → ∞ behav-
ior, we will formulate analogous definitions in terms of the
ε → 0 behavior of (2). While a classical t → ∞ limit represents
“non-transient dynamical phenomena,” the ε → 0 limit represents
“non-rate-induced16 dynamical phenomena.” Here, ε represents the
“timescale separation” between the slower timescale of the external
forcing and the faster timescale of the internal dynamics; this setup

can equivalently take the form

ẋ(t) = 1
ε
F(x(t), t), t ∈ [0, 1]. (3)

Now, in investigating the stability properties of (2) and (3), this
paper focuses on the natural “starting case” to consider, namely,
dynamics on a one-dimensional phase space (specifically, the cir-
cle X = S

1). This already provides significant non-trivialities to deal
with (see Sec. II C), especially the canard phenomenon17 of multiple-
timescale dynamics where solutions spend a long time traveling
along an unstable portion of the slow manifold. Our results in this
paper will both formalize and considerably generalize the core find-
ings of Refs. 1 and 2 regarding stabilization of the one-dimensional
Adler equation by slow-timescale additive forcing. The two main
steps that will be involved are

(a) showing that “generic” time-dependent vector fields F : S
1

× [0, 1] → TS
1 admit an adiabatically traceable moving sink

analogous to the moving sink of the slowly varying Adler
equation (Theorem 14); and

(b) making mathematically rigorous the heuristic stability argu-
ments used in Refs. 1 and 2 for the Adler equation (Theorem
24), which we mainly achieve by adapting methods that were
used in Ref. 17 for investigating periodic orbits of an Adler
equation subject to low-frequency sinusoidal forcing.

We will also analyze the generic behavior of the transition to
stability from neutral stability induced by slow-timescale forcing,
and its contrast to analogous classical saddle-node bifurcations (see
Secs. III G, IV D, and IV E 3). Let us also mention that fast-timescale
forcing of the Adler equation as a FTDS has been considered in
Theorem 6.3 of Ref. 18, as part of a study of phase-synchronization
transitions.

From a physical perspective, dynamical systems on S
1 can be

used to describe the phase of a cyclic process via phase reduction,
which has been established for systems subject to slow-timescale
forcing in Refs. 19–21. The study of one-dimensional phase dynam-
ics has particular relevance for various biological oscillatory pro-
cesses or coupled pairs of oscillatory processes;1,2,18,21–23 and indeed,
in such contexts, it is especially important that temporal variations
in external forcing are “unextendible” in the sense described above,
otherwise, the organism cannot properly interact with the outside
world and will quickly die.

However, we repeat that the rationale behind this paper is not
simply to obtain results about one-dimensional phase dynamics.
We hope through our treatment of the one-dimensional case of
(2) to help lay the foundations for the development of more gen-
eral methodology for treating FTDSs involving multiple timescales.
The need for theory of higher-dimensional dynamics within the
framework of Eqs. (2) and (3) is already evidenced in Sec. III
of Ref. 2, where numerics indicate that the phenomenon of sta-
bilization of solutions by slowly varying forcing can also occur
in higher-dimensional systems, including chaotic systems. Addi-
tionally, Ref. 24 shows that the same mechanism of stabilization
described in Refs. 1 and 2 for one-dimensional dynamics can also
induce local stability of synchronous solutions in a driven Kuramoto
network of arbitrary size.

So, we anticipate that the line of inquiry initiated by this paper
may find utility in the investigation of various complex systems such
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as biological oscillator networks (where our earlier comment about
the necessity of “unextendible” temporal variations still applies) and
climate systems subject to natural or anthropogenic forcing. Fur-
thermore, we believe that mathematical theory of multiple-timescale
FTDSs can provide deeper insight into the nature and application
of time-series analysis tools designed for studying time-localized
dynamics, such as those described in Refs. 5, 25, and 26.

The paper is organized as follows.
In Sec. II, we describe the stabilization of the Adler equation

presented in Refs. 1 and 2, its physical motivations, and its con-
trast to the traditional cases of stabilization by constant forcing
and by noise. We illustrate how the stability and neutral stability
observed in Refs. 1 and 2 cannot generally be formulated in terms
of the traditional definitions and quantification of stability due to
Aleksandr Lyapunov, such as asymptotic stability and asymptotic
Lyapunov exponents. We then outline the primary mathematical
non-trivialities for our main task of providing a mathematically
rigorous formulation and proof of the stabilization phenomenon.

In Sec. III, we first introduce our concepts of stability for sys-
tems of the form (2) defined on the circle X = S

1. Then, we present
other definitions necessary for the formulation of our main results
(such as curves of the stable and unstable slow manifolds and track-
ing of such curves) and present our main results that mathematically
formalize and generalize the basic argument of Refs. 1 and 2. We
also outline our main methods of proof and their relation to the
methods in Ref. 17. Finally, we give a result regarding the generic
scenario of a transition between stability and neutral stability within
our framework, highlighting, in particular, its signature characteris-
tic of approximately linear growth of the stability exponent on the
stable side of the transition (in contrast to the square-root growth in
classical saddle-node bifurcations).

In Sec. IV, we carry out a comparison of our new frame-
work of stability analysis with the classical long-time-asymptotic
framework, particularly through the example of low-frequency-
periodically forced Adler equations.

In Sec. V, we prove the results in Sec. III.
In Sec. VI, we summarize and conclude.
In Appendix A, for the sake of completeness, we obtain a much

more refined version of one of the results (Corollary 45) needed
within the proof of Theorem 24(C).

In Appendix B, we state the numerical procedures used for all
the numerics in this paper.

A. Note

A relatively non-technical presentation of some of the discus-
sions in this paper (in particular, in Secs. II A, II B, IV B 1, IV B 3,
IV C, and IV E 1) has been published in Ref. 27 (which is itself the
sequel to an exposition of phase synchronization by time-dependent
driving given in Ref. 28).

II. STABILIZATION OF ADLER EQUATIONS BY

SLOW-TIMESCALE FORCING

In Sec. II A, we first give preliminaries regarding the general
concept of stabilization by external forcing and two basic mecha-
nisms of stabilization of the Adler equation; then, we describe the

stabilization by slow-timescale forcing studied in Refs. 1 and 2. In
Sec. II B, we will demonstrate an example of this latter mecha-
nism of stabilization, where we use a slow-timescale forcing that
is “unextendible” in the sense described in Sec. I. In Sec. II C, we
will outline the main non-trivialities in obtaining a mathematically
rigorous formulation and proof of this stabilization phenomenon.

A. Stabilization by external forcing

It is well-known that trajectories of an autonomous dynamical
system (1) can often be “stabilized” by the introduction of external
forcing, e.g., an additive forcing ξ(t) giving rise to a nonautonomous
dynamical system of the form

ẋ = F(x)+ ξ(t). (4)

This “stabilization” can be defined in terms of synchronization
between solutions starting at different initial conditions:29 namely,
it refers to the scenario that for an array of distinct initial conditions
x∗

1 , . . . , x∗
n, the solutions of (1) starting at these initial conditions

remain clearly distinct at all times but the solutions of (4) starting at
these same initial conditions become synchronized with each other.
Note that this synchronization is not induced by any “direct” cou-
pling between the solutions but rather by the “indirect coupling” of
being simultaneously subject to the same external driving ξ(t). A
natural question then is what kinds of forcing function ξ(t) will give
rise to such synchronization.

As a prototype: on the circle S
1 = R/(2πZ), all solutions of the

autonomous Adler equation

θ̇ (t) = −a sin(θ(t))+ k, (5)

with constant parameters k > a > 0, move strictly periodically
round the circle with common period 2π√

k2−a2
; and so, in particular,

the solutions of any two distinct initial conditions do not synchro-
nize with each other. We now consider what types of external forcing
can cause the solutions of different initial conditions to become
synchronized with each other.

1. Stabilization by constant forcing

One crude way to stabilize system (5) is to apply a perpetu-
ally constant external forcing ξ such that the “effective new k-value”
knew = k + ξ lies in (−a, a). In this case, all solutions now converge

to the point yknew := arc sin
(

knew
a

)

apart from one single excep-
tional solution that remains fixed at the point π − yknew ; and thus,
the phase differences between these solutions trivially tend to 0 as
t → ∞. This mutual synchronization of solutions takes place at an

exponential rate with exponent −
√

a2 − k2
new, called the Lyapunov

exponent associated with the fixed point yknew . [This exponent is
obtained as the derivative of −a sin(·)+ knew at yknew .]

Note that if one were instead to take the constant ξ sufficiently
close to zero, then the Adler equation would not be stabilized: solu-
tions would move strictly periodically round the circle with common
period 2π√

k2
new−a2

. The bifurcation that takes place as ξ crosses the

critical threshold a − k is a saddle-node bifurcation, namely, the
creation of a stable and an unstable equilibrium point.

Chaos 31, 123129 (2021); doi: 10.1063/5.0066641 31, 123129-3

© Author(s) 2021

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Now, from a practical point of view, this crude approach to
the removal of asynchrony among solutions through simply forc-
ing them perpetually to remain at a fixed point may (depending on
context) be problematic due to the inability of solutions to move
freely throughout the phase space. It may also (again depending on
context) be rather energy-inefficient to keep this forcing perpetually
maintained.

2. Stabilization by noise

One kind of forcing that is often known to induce stability
in dynamical systems is noise.29–31 Noise-induced stability is very
common in general but is especially typical for one-dimensional
phase-oscillator dynamics, where, for example, memoryless sta-
tionary noise is guaranteed to lead to mutual synchronization of
solutions under weak conditions.32,33

As an example, the addition of stationary Gaussian white noise
of intensity A > 0 to the Adler equation (5) will stabilize the Adler
equation, regardless of how small A is.29,34 To be more precise: if we
fix the values of k, a and A, almost every realization W : [0, ∞) →
R of a Wiener process has the property that all solutions of the
corresponding nonautonomous dynamical system

dθ(t) = (−a sin(θ(t))+ k) dt + A dW(t) (6)

synchronize with each other in the limit as t → ∞ (i.e., their phase
differences tend to 0), apart from one solution starting at a sin-
gle exceptional initial condition. Moreover, this synchronization of
solutions comes with a well-defined Lyapunov exponent (i.e., long-
time-asymptotic exponential rate of decay of phase differences),
which is exactly the same value across almost all realizations W of
the Wiener process.

The mechanism behind this exponential synchronization of
solutions is that the infinite time-horizon allows for statistical large-
number laws to come into play, whereby random events in the noise
which bring the different solutions toward those regions on the cir-
cle where they are pushed closer together are guaranteed to occur
with sufficient long-time-asymptotic regularity. Note, in particular,
that if the noise intensity A is very small, then it will take a very
long time for the synchrony among different solutions to begin to
emerge.

3. The stabilization phenomenon of Refs. 1 and 2

In contrast to stationary white noise, a very different type of
forcing that one can consider is deterministic35 slowly varying forc-
ing. In particular, in the physics literature, Refs. 1 and 2 considered
equations of the form

θ̇ (t) = −a sin(θ(t))+ G(t), (7)

with G(t) having slow dependence on t. In both of these papers,
the variable θ(t) in (7) is regarded as representing the phase dif-
ference between a unidirectionally coupled pair of phase oscillators
(where the driving oscillator has time-variable frequency), so that
synchronization between the solutions of (7) starting at different ini-
tial conditions corresponds to stabilization of the driven oscillator
by the driving oscillator. Physical motivations in Ref. 1 include the
van der Pol oscillator subject to aperiodic external driving [where a

phase-reduction approximation brings the system to the form (7)],
as well as neuron voltage spiking dynamics, where stabilization by
external driving is known to occur.36–38 One physical motivation
behind Ref. 2 was to develop upon some of the main findings of
Refs. 22 and 23 for cardiorespiratory phase synchronization.

The foundational point of Refs. 1 and 2 is essentially the
following argument:

• If there are times t at which the slowly varying function G(t) lies
in the interval (−a, a), then during such times, the solutions of (7)
will cluster together into an increasingly tight cluster around the
“slowly moving sink” yG(t) = arc sin

(

G(t)
a

)

.
• By contrast, while G(t) is outside the interval [−a, a], solutions

move unboundedly round the circle without either synchronizing
with each other or becoming desynchronized from each other.

• Thus, overall, we have mutual synchronization of solutions if
there are times when G(t) enters the interval (−a, a), but not
if G(t) stays outside the interval [−a, a]. (We will illustrate this
further in Sec. II B.)

As in Ref. 1, we can derive an approximation 3 of the average
exponential rate of mutual synchronization of solutions, by adia-
batically following the Lyapunov exponent of the stable fixed point
yG(t) of the time-frozen vector field −a sin(·)+ G(t) when it exists.
More precisely, over a time-interval [0, T], the approximate average
exponential rate of synchronization (taken as negative when such
synchronization does occur) is given by

3 = − 1

T

∫

{s∈[0,T]:|G(s)|<a}

√

a2 − G(t)2 dt. (8)

Note that3 is 0 if G(t) never enters the interval (−a, a).
Now, as in Ref. 2, we can consider G(t) of the form G(t) = k +

Ag(t) for some k > a, some function g(t) taking both positive and
negative values, and some parameter A ≥ 0; so (7) becomes

θ̇ (t) = −a sin(θ(t))+ k + Ag(t). (9)

This represents the addition of an external forcing +Ag(t) to the
autonomous system (5). Parameter A is somewhat analogous to the
noise intensity parameter in (6), except that we are now consider-
ing slow-timescale deterministic variation rather than fast-timescale
stochastic variation. Fixing the function g, if A is sufficiently large,
then there will be times t at which k + Ag(t) enters the interval
(−a, a), and so the added forcing +Ag(t) will induce stabilization.

References 1 and 2 also provide strong numerical support for
the above description of the dynamics of (7) and (9). The numerics
in Ref. 2 use low-frequency sinusoidal forcing (see also Secs. IV C
and IV E 2 of this paper), and Ref. 1 considers various other forms
of forcing. In Sec. II B, we will go on to provide further numer-
ical support using a form of forcing deliberately designed to be
“unextendible” in the sense of point (ii) in the Introduction.

B. An illustrative example of stabilization by

“unextendible” slow-timescale forcing

To illustrate the need for a FTDS framework in order to be
able to formulate mathematically the stabilization phenomenon
described in Refs. 1 and 2, we consider Eq. (9) with g(t) being a func-
tion that is only meaningfully defined on a compact time-interval.
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One way in which such a function g(t) could arise is as an
empirically recorded time-series:11 if one defines a nonautonomous
dynamical system with reference to an actual empirically measured
signal for the external forcing, then the finiteness of the signal
duration means that the system is inherently a FTDS, for which tra-
ditional infinite-time dynamical systems theory cannot be used as
a framework for dynamics analysis. Forcing a fast-timescale Adler
equation by a finite-duration empirical signal measured from a rel-
atively slow-timescale physical process will give results in line with
the picture described in Sec. II A 3.

But here, we will construct g(t) numerically. Specifically, we
will generate a sample realization of a Brownian bridge—this is a
finite-time stochastic process, which represents the inhomogeneities
of a large sample of random times selected with uniform probability
from a pre-specified compact time-interval. Then, as in Ref. 1, Sec.
III B, we will pass the result through a low-pass filter to obtain our
slowly time-dependent forcing. Our choice of using a sample realiza-
tion of a Brownian bridge is not motivated by any specific physical
application but is simply for illustrative purposes as a good example
of “unextendible” temporal variations.

1. The forcing and the system parameters

Let us first briefly recall the definition of a Brownian bridge,
and its connection to Brownian motion. A Brownian bridge of
parameter σ > 0 on a time-interval [0, T] is a finite-time stochastic
process (Bt)t∈[0,T] approximated by taking a very large simple ran-
dom sample of times S = {t1, . . . , tN} from the uniform distribution
on [0, T] and then setting

Bt = σ
√

NTE (t),

where E (·) is the “signed deviation from homogeneity” of the
random sample S, that is,

E (t) = #(S ∩ [0, t])

N
− t

T
.

This definition is made rigorous by Donsker’s theorem.39 Now,
although a Brownian motion (Mt)t≥0 is an indefinite-time process,
one can construct up to time T a zero-drift Brownian motion Mt of

diffusion parameter σ by taking a random variable Y ∼ N (0, σ
2

T
)

that is independent of the Brownian bridge (Bt)t∈[0,T] and then
letting

Mt = tY + Bt. (10)

For each t ∈ [0, T], the variance of Bt is given by

var(Bt) = var(Mt)− var(tY) = σ 2t(1 − t
T
).

This quadratic expression with respect to t is non-negative on [0, T]
but becomes negative when t is outside of [0, T]. Thus, there is no
natural way to extend a Brownian bridge on [0, T] beyond time T.
[And indeed, there is no way to extend the construction (10) beyond
time T, as the variance of tY then exceeds the variance of Mt.]

Now, in our case, we define g(t) on a compact interval [0, T]
with T = 2π × 105 s; we constructed g(t) by first generating a
sample realization of a Brownian bridge on [0, T] of parameter

σ = 1√
T

≈ 1.3 × 10−3 s− 1
2 and then passing the result through a

FIG. 1. Graph of g(t) obtained by passing a sample realization of a Brownian
bridge on [0 s, 2π × 105 s] through a low-pass filter of cut-off frequency 1/(2π
× 103)Hz. Reproduced with permission from Newman et al., Physics of Biologi-
cal Oscillators, edited by A. Stefanovska and P. V. E. McClintock (Springer, 2021),
Chap. 7, pp. 111–129. Copyright 2021 Springer Nature Switzerland AG.

fifth order Butterworth low-pass filter with cut-off frequency 1/(2π
× 103) ≈ 1.6 × 10−4 Hz. The resulting function is shown is Fig. 1.
Further details of this construction and of all numerics in this paper
are given in Appendix B. For other parameters in Eq. (9), we take
a = 1

3
rad/s and k = 1 rad/s, and we consider how the dynamics

depends on the parameter A ≥ 0. Due to the low-pass filter, g(t) has
very slow dependence on t compared to the timescale of the “internal
dynamics” of the system as represented by Eq. (5), whose solutions

have a frequency of

√
k2−a2

2π
≈ 0.15 Hz.

2. The stabilization phenomenon

Considering (9) over the whole time-interval [0, T], the argu-
ment described in Sec. II A 3 tells us that if A is less than
A∗ := a−k

mint∈[0,T] g(t)
then the solutions of (9) do not synchronize with

each other, but if A is greater than A∗ then the solutions of (9) do
synchronize with each other. This is exactly what we observe in
numerics: Fig. 2(b) shows a “numerical bifurcation diagram” of (9)
where for each A-value, the trajectories at time T of 50 evenly spaced
initial conditions are shown; and in dashed black is marked the value
of A∗.

• For A < A∗, we see the trajectories distributed fairly evenly dis-
tributed throughout the circle, just as we would have seen for
the unperturbed system (5). We refer to this lack of clear mutual
attraction or mutual repulsion between the trajectories of dif-
ferent initial conditions as “neutral stability.” Now, in the set-
ting of infinite-time dynamical systems, one can give a rigor-
ous definition of “neutral stability” in terms of the traditional
framework of long-time-asymptotic dynamics, such as we do in
Sec. IV A. (The definition there implies, in particular, that all solu-
tions are Lyapunov stable but not asymptotically stable, and have
a Lyapunov exponent of zero.)

• For A > A∗, we see that the trajectories are “stabilized,” i.e., they
have become mutually synchronized with each other, such that
they appear like a single point in Fig. 2(b).

Thus, a clear transition from “neutral stability” to “stability”
takes place at A = A∗. Figure 2(c) shows the “numerical reverse-time
bifurcation diagram,” where 50 evenly spaced initial conditions are
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FIG. 2. Dynamics of (9) with g as in Fig. 1, with varying A, over the time-interval [0 s, 2π × 105 s] of duration T = 2π × 105 s in (a)–(c), and over the shorter time-interval
[0 s,π × 104 s] of duration T′ = π × 104 s in (d)–(f). Other parameters are a = 1

3
rad/s and k = 1 rad/s. In (a), (b), (d), and (e), for each A-value, results for the evolution

θ(t) of 50 equally spaced initial conditions θ(0) = 2π i
50
, i = 0, . . . , 49, are shown: (a) and (d) show the finite-time Lyapunov exponents λT , as defined by (11), for these

trajectories, with T = T in (a) and with T = T′ in (d); (b) and (e) show the positions θ(T) of these trajectories at time T = T in (b) and T = T′ in (e). In (c) and (f), for each
A-value, the positions of θ(0) for the 50 trajectories ending at the points θ(T) = 2π i

50
, i = 0, . . . , 49, are shown, with T = T in (c) and T = T′ in (f). In (a)–(c), the value

A∗ := a−k
mint∈[0,T] g(t)

is marked in dashed black. In (d)–(f), the value A′
∗ := a−k

mint∈[0,T′ ] g(t)
is marked in dashed black. Reproduced (with minor modification) with permission from

Newman et al., Physics of Biological Oscillators, edited by A. Stefanovska and P. V. E. McClintock (Springer, 2021), Chap. 7, pp. 111–129. Copyright 2021 Springer Nature
Switzerland AG.

run in backward time under (9) from time T to time 0; we see from
this that when A rises above A∗, the forward-time solutions of (9)
are being mutually repelled from a very small region [appearing like
a single point in Fig. 2(c)]. So, overall, the picture indicated by plots
(b) and (c) of Fig. 2 is rather resemblant of a saddle-node bifurca-
tion in classical autonomous dynamical systems theory, where a lack
of equilibria bifurcates into a repelling (unstable) and an attracting
(stable) equilibrium. However, the system is a finite-time nonau-
tonomous dynamical system: mathematically rigorous formulation
of the “bifurcation” seen in plots (b) and (c) cannot be in terms
of traditional “t → ∞” considerations by which concepts such as
“stable” and “unstable” equilibria are defined.

3. Analysis via finite-time Lyapunov exponents

Local stability of solutions of a dynamical system can be quan-
tified in terms of Lyapunov exponents. Traditional infinite-time
dynamical systems theory tends to focus on long-time-asymptotic
Lyapunov exponents, simply referred to as “Lyapunov exponents”
without a qualifier. These Lyapunov exponents are defined as
the long-time-asymptotic limit of finite-time Lyapunov exponents
(FTLEs). In some contexts, one can also study other long-time-
asymptotic features of the set of the FTLEs, such as given by
large deviation theory29 or the dichotomy spectrum.40 Now, in our

finite-time system, we cannot apply any long-time-asymptotic con-
cepts; but we can still apply the concept of FTLEs within the
bounded time-interval [0, T].

The finite-time Lyapunov exponent for a solution θ(·) of (9)
over a time-window [0, T] is calculated by averaging over time t
the derivative of the time-frozen vector field θ 7→ −a sin(θ)+ k
+ Ag(t) at θ(t), i.e.,

λT = 1

T

∫ T

0

−a cos(θ(t)) dt. (11)

Working over the whole time-interval [0, T], Fig. 2(a) shows the
values of λT for the trajectories of 50 initial conditions. For each A-
value, we see that the 50 trajectories share indistinguishably the same
FTLE value as each other (appearing like a single point), being indis-
tinguishable from 0 for A < A∗ and clearly negative for A > A∗.
Again, this suggests a transition from neutral stability to stability as
A crosses A∗.

4. Restricting to a time-subinterval

Now, for further illustration, let us consider the dynamics of (9)
not over the whole time-interval, but rather over a subinterval [0, T′]
with T′ = π × 104 s. Figure 2(e) shows the numerical bifurcation
diagram for simulation only up to time T′, and likewise Fig. 2(f)
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shows the numerical reverse-time bifurcation when running initial
conditions backward in time from time T′ to time 0. Here, we see
the saddle-node-like “bifurcation” occurring at A′

∗ := a−k
mint∈[0,T′] g(t)

,

again exactly in accordance with the reasoning of Sec. II A 3. In
Fig. 2(d) are shown FTLEs of trajectories over the time-window
[0, T′], and again we see a transition from 0 to negative at A′

∗.
Note that A′

∗ is larger than A∗—i.e., the critical parameter value
for the saddle-node-like bifurcation changes when we consider the
system over [0, T′] vs when we consider the system over the whole
time-interval [0, T]. This further shows how long-time-asymptotic
approaches to considering stability (such as traditional Lyapunov
exponents as opposed to finite-time Lyapunov exponents) are com-
pletely unsuitable for attempting to analyze the behavior of systems
like the one we have just examined.

C. Our goal and main non-trivialities in achieving it

We seek to obtain a rigorous mathematical description, jus-
tification and generalization for the above-described stabilization
phenomenon exhibited by Eqs. (7) and (9) and the quantification
of stability given by Eq. (8).

In seeking to achieve this, the following three non-trivialities
arise:

• As we have discussed in Sec. II B, the traditional long-time-
asymptotic framework of stability analysis and stability quantifi-
cation via Lyapunov exponents—as used, for example, to describe
the stabilization phenomena in Secs. II A 1 and II A 2—cannot
generally be used to describe the stabilization phenomenon in Eq.
(7) or (9). So, we need to formulate new mathematical definitions
of stability within a suitable finite-time-dynamics framework.

• The reasoning of Refs. 1 and 2 requires that while G(t) /∈ [−a, a],
there is no significant net stabilizing or destabilizing of trajec-
tories. It is clear that this is true over timescales comparable
with the “fast” timescale of the time-frozen vector field: all tra-
jectories move approximately periodically round the circle with
common approximate period 2π√

G(t)2−a2
. However, it is somewhat

less obvious that no significant net stabilizing or destabilizing of
trajectories can eventually build up over the “slow” timescale of
the forcing.

• If G(t) passes in and out of the interval (−a, a) multiple times,
then each new time that G(t) enters the interval (−a, a), the
previously synchronized solutions may experience some level of
desynchronization due to a canard phenomenon17 in which the
synchronized solutions spend a long time following the slow
motion of moving source zG(t) := π − yG(t). This phenomenon
requires extremely fine tuning of parameters but we shall see that
it still makes it impossible for us to take a “true” limit as ε → 0
in our slow–fast analysis. Rather, as we will prove, we will need
that our “limit as ε → 0” is allowed to pass over an exponentially
vanishing set of “bad” ε-intervals.

The way in which we address these issues is essentially by
adapting the methods used in Ref. 17 to investigate periodic orbits of
(9) when g(t) is sinusoidal. However, we will develop a much more
elementary and more explicitly constructive approach to obtaining

the necessary results about behavior while G(t) /∈ [−a, a] than that
used in Ref. 17.

In addition to the above issues, our general results will require
us to take into account another dynamical phenomenon that
cannot occur in the Adler equation, namely, bifurcation-induced
tipping16,41,42 between stable equilibria of the time-frozen vector
fields θ 7→ F(θ , εt). This is not necessary when considering a forced
Adler equation (7) because the time-frozen vector fields θ 7→
−a sin(θ)+ G(t) have at most one stable equilibrium. However, the
presence of such tipping will not add much complication to the
proofs.

III. SETUP, DEFINITIONS, AND RESULTS

Throughout this paper, we identify the circle S
1 with R/(2πZ).

(Hence, each tangent space TxS
1 is naturally identified with R.)

An arc will always mean a connected proper subset of S
1 with

non-empty interior. For any two distinct points a, b ∈ S
1, we define

the “open arc extending anticlockwise from a to b”—written as
(a, b)—to be the arc obtained by projecting an interval (a′, b′) ⊂ R

onto S
1, where a′ ∈ R is any lift of a and b′ is the unique lift

of b in the interval (a′, a′ + 2π). For such an open arc (a, b), we
define length((a, b)) := b′ − a′; and for a non-open arc J, we set
length(J) := length(J◦). Just as (a, b) ⊂ S

1 denotes an open arc, so
likewise we use the analogous notations [a, b), (a, b], and [a, b] for
half-open arcs and closed arcs. For any a ∈ S

1 and x ∈ R, we write
a + x ∈ S

1 for the projection of a′ + x ∈ R, where a′ ∈ R is any lift
of a.

For any points a, b ∈ S
1, we define the unsigned distance

d(a, b) :=
{

min(length((a, b)), length((b, a))), a 6= b,
0, a = b.

For p ∈ S
1 and δ > 0, write Bδ(p) = {θ ∈ S

1 : d(θ , p) < δ}. So, if δ ∈
(0,π), then Bδ(p) = (p − δ, p + δ).

Generally speaking, a variable θ will denote position on the cir-
cle S

1, and a variable τ will denote “slow time,” which in this paper
belongs to the unit interval [0, 1]. Given a function F : S

1 × [0, 1] →
R, we write ∂m+nF

∂θm∂τn (m, n ≥ 0) to denote the nth partial derivative
with respect to the second input of the mth partial derivative with
respect to the first input of F.

Most results in this section will be proved in Sec. V.

A. Notions of stability for slow–fast FTDSs on the circle

We denote by F the set of functions F : S
1 × [0, 1] → R for

which the partial derivatives ∂F
∂θ

, ∂F
∂τ

, ∂2F
∂θ2 , and ∂2F

∂θ∂τ
all exist and are

continuous on the whole of S
1 × [0, 1]. We equip F with its natural

norm,

‖F‖F = max
{

‖F‖∞,
∥

∥

∂F
∂θ

∥

∥

∞ ,
∥

∥

∂F
∂τ

∥

∥

∞ ,
∥

∥

∥

∂2F
∂θ2

∥

∥

∥

∞
,
∥

∥

∥

∂2F
∂θ∂τ

∥

∥

∥

∞

}

,

where ‖ · ‖∞ denotes the supremum norm for continuous functions
on S

1 × [0, 1].
Throughout this paper, we consider the differential equation

θ̇ (t) = F(θ(t), εt), t ∈ [0, 1
ε
], (12)

where F ∈ F .
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Given an arc J0 ⊂ S
1, for any ε > 0 and t ∈

[

0, 1
ε

]

, we define

the arc Jε,Ft to be the image of J0 under the time-0-to-t mapping of
(12), that is,

Jε,Ft := {θ(t) : θ(·) is a solution of (12), θ(0) ∈ J0}.

As in traditional dynamical systems theory, one can formulate local
notions of stability around trajectories starting at individual initial
conditions, as well as global-scale notions of stability that con-
cern the whole ensemble of trajectories of all the initial conditions.
Throughout this paper, we only consider such global-scale concepts
of stability (and, therefore, we do not include the word “global” in
our definitions).

Definition 1. We will say that F is neutrally stable if there
exists c ≥ 1 such that for every ε > 0 and s, t ∈

[

0, 1
ε

]

, for every arc
J0,

1

c
≤ length(Jε,Ft )

length(Jε,Fs )
≤ c. (13)

Definition 2. We will say that F is robustly neutrally stable if
there exists c ≥ 1 and a neighborhood U of F in F such that for
every F̃ ∈ U , for every ε > 0, s, t ∈ [0, 1

ε
] and arc J0,

1

c
≤ length(Jε,F̃t )

length(Jε,F̃s )
≤ c.

Definition 3. We will say that F is exponentially stable with
rate 3 ∈ (−∞, 0) if given any η,1 > 0, for sufficiently small ε,
there is an arc Pε with length(Pε) < 1 such that for every arc J0 not
intersecting Pε ,

e
3−η
ε ≤

length(Jε,F1/ε)

length(J0)
≤ e

3+η
ε . (14)

Due to canard phenomena, the exponential stability formu-
lated in Definition 3 will often be too strong, and so we will need
to exclude a small set of ε-values. In the following, we write Leb(·)
for the Lebesgue measure on (0, ∞).

Definition 4. We will say that a set E ⊂ (0, ∞) is exponen-
tially vanishing if there exists κ ∈ (0, 1) such that for all sufficiently
small h > 0,

Leb((0, h] ∩ Ē ) ≤ κ
1
h .

As an equivalent formulation, E is exponentially vanishing if
and only if there exists κ ∈ (0, 1) such that for all sufficiently large
ξ > 0,

Leb({ζ ∈ [ξ , ∞) : 1
ζ

∈ Ē }) ≤ κξ .

Definition 5. We will say that F is almost exponentially stable
with rate 3 ∈ (−∞, 0) if given any η,1 > 0, there is an exponen-
tially vanishing set E ⊂ (0, ∞) such that for every ε ∈ (0, ∞) \ E ,
there is an arc Pε with length(Pε) < 1 such that for every arc J0 not
intersecting Pε , Eq. (14) holds.

All four stability definitions above can equivalently be formu-
lated in terms of FTLEs. For an initial condition θ0 ∈ S

1, letting

θ(·) be the solution of (12) starting at θ(0) = θ0, we define the
corresponding FTLE over a time-window [s, t] by

λε,Fs,t (θ0) := 1

t − s

∫ t

s

∂F
∂θ
(θ(u), εu) du. (15)

Note that
∫ t

s
∂F
∂θ
(θ(u), εu) du is precisely the logarithm of the deriva-

tive at θ(s) of the time-s-to-t mapping of (12). Hence, by the mean
value theorem, we immediately have the following:

Proposition 6. For any r > 0, ε > 0, s, t ∈ [0, 1
ε
] with s <

t, and any connected subset S of S
1 with non-empty interior, the

following two statements are equivalent:

• for every arc J0 ⊂ S,

length(Jε,Ft )

length(Jε,Fs )
≤ r;

• for every θ0 ∈ S,

λε,Fs,t (θ0) ≤ 1
t−s

log r.

Likewise, the corresponding two statements with ≥ in place of ≤
are equivalent to each other.

Thus, in Definition 1, the statement that Eq. (13) holds for
every arc J0 can be reformulated as saying that for every θ0 ∈ S

1,

|λε,Fs,t (θ0)| ≤ 1
t−s

log c,

and similarly, in Definition 3 or Definition 5, the statement that Eq.
(14) holds for every arc J0 not intersecting Pε can be reformulated as
saying that for every θ0 ∈ S

1 \ Pε ,

|λε,F
0, 1
ε

(θ0)−3| ≤ η.

B. Zeros, curves of the slow manifold, and fast

connections

Throughout the rest of Sec. III, we assume that F ∈ F .
Since we consider small ε, the dynamics of Eq. (12) will be

essentially determined by the zeros of F.
Definition 7. A zero of F is a point (θ , τ) ∈ S

1 × [0, 1] such
that F(θ , τ) = 0. A zero (θ , τ) of F is called

• hyperbolic stable if ∂F
∂θ
(θ , τ) < 0;

• hyperbolic unstable if ∂F
∂θ
(θ , τ) > 0; and

• non-hyperbolic if ∂F
∂θ
(θ , τ) = 0.

A non-hyperbolic zero (θ , τ) is called non-degenerate if
∂2F
∂θ2 (θ , τ) and ∂F

∂τ
(θ , τ) are both non-zero.

Definition 8. A curve of the stable (respectively, unstable)
slow manifold is a pair (U, y) consisting of a set U ⊂ [0, 1] and a
continuous function y : U → S

1 such that for all τ ∈ U, (y(τ ), τ) is a
hyperbolic stable (respectively, unstable) zero of F. We will also refer
to the function y itself as being a curve of the stable (respectively,
unstable) slow manifold over U.

We emphasize that in Definition 8, U is allowed to be the empty
set (in which case y is the “empty function” ∅ → S

1), or a discon-
nected set, and y need not admit a continuous extension to Ū. In
particular, if τ is a shared boundary point of two connected compo-
nents of U and the limits limσ↗τ y(σ ) and limσ↘τ y(σ ) both exist,
these limits do not have to be equal to each other.
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Remark 9. Let us now comment on the behavior of F locally
around its zeros.

(A) Suppose (θ0, τ0) is a hyperbolic stable (respectively, unstable)
zero of F. Then, by the implicit function theorem, there is a
curve y of the stable (respectively, unstable) slow manifold over
a neighborhood U of τ0 such that every zero of F close to (θ0, τ0)

lies on graph y.
(B) Suppose (θ0, τ0) is a non-degenerate non-hyperbolic zero of F

with τ0 ∈ (0, 1). Then, the family of vector fields {F(·, τ)}τ∈[0,1]

undergoes a saddle-node bifurcation near θ0 as τ passes through
τ0 (see also the description at the start of Sec. III G). In partic-
ular, over an interval U ⊂ [0, 1] with τ0 ∈ ∂U, there is both a
curve y of the stable slow manifold and a curve z of the unstable
slow manifold such that every zero of F close to (θ0, τ0) lies on
the curve {(θ0, τ0)} ∪ graph y ∪ graph z.

Definition 10. Suppose we have τ ∈ [0, 1] and θ1, θ2 ∈ S
1

such that (θ1, τ) and (θ2, τ) are zeros of F. We say that there is a
fast connection from (θ1, τ) to (θ2, τ) if at least one of the following
two statements holds:

• F is strictly positive on (θ1, θ2)× {τ };
• F is strictly negative on (θ2, θ1)× {τ }.

C. Complete curves of the stable slow manifold

For a classical infinite-time autonomous differential equation
θ̇ = f(θ) with a stable equilibrium point y, one can consider the set
of solutions that approach y arbitrarily closely as t → ∞, and more-
over, one can quantify the long-time-asymptotic stability of such
solutions using the Lyapunov exponent associated with y, defined

as
df

dθ
(y). [Likewise, for an infinite-time stationary-noise-driven sys-

tem such as our example (6) of noise-induced stabilization, one can
define analogous concepts,43 with the analog of equilibrium points
being invariant random Dirac measures.]

For our system (12), the analogous concept to a stable equilib-
rium point is what we will call a complete curve of the stable slow
manifold.44 Analogous to the arbitrarily close approach of an equi-
librium point as t → ∞ is the arbitrarily close tracking of such a
curve as ε → 0 (see Sec. III D); and in analogy to the Lyapunov
exponent of an equilibrium, we will define the adiabatic Lyapunov
exponent associated with a complete curve of the stable slow mani-
fold, which (by Lemma 46) quantifies the stability of solutions that
track the curve when ε is small.

First, we need to introduce a “genericity” assumption on F that
will be required for us to be able to carry out the above-described
analysis.

Definition 11. We will say that F is generic if

• every non-hyperbolic zero of F is non-degenerate;
• S

1 × {0, 1} contains no non-hyperbolic zeros of F; and
• for each τ ∈ (0, 1), S

1 × {τ } contains at most one non-hyperbolic
zero of F.

The first two points imply that every non-hyperbolic zero of F
is as described in Remark 9(B).

If F is generic, then the number of zeros in S
1 × {0} is even,

with half being hyperbolic stable and half being hyperbolic unstable.

Definition 12. We will say that F is initially multistable if
S

1 × {0} contains at least two hyperbolic stable zeros.
Note, in particular, that if F has no zeros, then F is generic and

not initially multistable.
The main results of this paper concern the stability properties

of (12) when F is generic and not initially multistable. (If F is ini-
tially multistable, then F will generally not exhibit the “global-scale”
stability properties formulated in Sec. III A.)

Definition 13. Suppose F is generic. A curve (U, y) of the sta-
ble slow manifold will be called complete if the following statements
hold:

(a) U is open relative to [0, 1] and has finitely many connected
components;

(b) there are no zeros of F in S
1 × ([0, 1] \ Ū); and

(c) for any τ ∈ (0, 1) \ U that is a shared boundary point of two
connected components of U,
• the limit y(τ−) := limσ↗τ y(σ ) exists and (y(τ−), τ) is a

non-hyperbolic zero of F;
• the limit y(τ+) := limσ↘τ y(σ ) exists and (y(τ+), τ) is a

hyperbolic stable zero of F; and
• there is a fast connection from (y(τ−), τ) to (y(τ+), τ).

Theorem 14. Suppose F is generic.

(A) If S
1 × {0} contains no zeros of F, then there exists a unique com-

plete curve (U, y) of the stable slow manifold. Furthermore, U is
empty if and only if F has no zeros.

(B) For any θ ∈ S
1 with (θ , 0) being a hyperbolic stable zero of F,

there exists a unique complete curve (Uθ , yθ ) of the stable slow
manifold for which yθ (0) = θ .

We have the following immediate corollary:
Corollary 15. If F is generic and not initially multistable, then

there exists a unique complete curve of the stable slow manifold.
The key method in the proof of Theorem 14 is continuation of

a curve of zeros by virtue of Remark 9. The proof is given in Sec. V B.
Remark 16. As we will see from the proof of Theorem 14,

if F is generic and initially multistable, then Ūθ is the same across
all hyperbolic stable zeros (θ , 0) in S

1 × {0}; and letting C1 be the
connected component of Ūθ containing 0, we have that Uθ \ C1

and yθ
∣

∣

Uθ \C1
are the same across all hyperbolic stable zeros (θ , 0) in

S
1 × {0}.

We now define adiabatic Lyapunov exponents, which general-
ize Eq. (8).

Definition 17. Suppose F is generic. Then, for each complete
curve (U, y) of the stable slow manifold, we define the corresponding
adiabatic Lyapunov exponent by

3ad(U, y) :=
∫

U

∂F
∂θ
(y(τ ), τ) dτ . (16)

In the case that F is not initially multistable, we simply write 3ad to
refer to the adiabatic Lyapunov exponent associated with the unique
complete curve of the stable slow manifold.

Note that 3ad(U, y) must be finite and non-positive and that
3ad(U, y) = 0 if and only if U = ∅ (i.e., if and only if F has no zeros).
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D. Tracking

So far, we have formulated various definitions connected with
the zeros of F, but not yet connected with how this relates to the
dynamics of (12). We now introduce notions of tracking, similar to
that of Ref. 41.

In the following definitions, we assume that we have a set
V ⊂ [0, 1] and a function q : V → S

1. Where we will apply these
definitions, (V, q) will always be either a curve of the stable slow
manifold or a curve of the unstable slow manifold.

Definition 18. Fix ε > 0. Given δ > 0, we say that a function
θ :

[

0, 1
ε

]

→ S
1 δ-tracks (V, q) if for every τ ∈ V, d

(

θ
(

τ

ε

)

, q(τ )
)

< δ.
Definition 19. Fix ε > 0. Given 1, δ > 0, we say that

(12) exhibits (1, δ)-tracking of (V, q) if there is an arc P with
length(P) < 1 such that every solution θ(·) of (12) with θ(0) /∈ P
δ-tracks (V, q).

Definition 20. We say that

• F exhibits strict tracking of (V, q) if given any 1, δ > 0, we have
that for sufficiently small ε, (12) exhibits (1, δ)-tracking of (V, q);

• F almost exhibits strict tracking of (V, q) if given any 1, δ > 0,
there is an exponentially vanishing set E ⊂ (0, ∞) such that for
every ε ∈ (0, ∞) \ E , (12) exhibits (1, δ)-tracking of (V, q); and

• F potentially exhibits strict tracking of (V, q) if given any 1,
δ > 0, there is an open set A ⊂ (0, ∞) with inf A = 0 such that
for every ε ∈ A , (12) exhibits (1, δ)-tracking of (V, q).

Definition 21. We say that F admits a global canard phe-
nomenon if there exists an open set U ⊂ (0, 1) and a curve z of the
unstable slow manifold over U such that F potentially exhibits strict
tracking of (U, z).

We now define what it means for F to exhibit “not necessarily
strict” tracking of (V, q).

Definition 22. Assume that V is σ -compact. We say that
F exhibits (respectively, almost exhibits, potentially exhibits) track-
ing of (V, q) if for every compact subset S of V \ {0}, F exhibits
(respectively, almost exhibits, potentially exhibits) strict tracking of
(S, q|S).

Remark 23. Suppose V ⊂ (0, 1], and we have functions
q1, q2 : V → S

1 that disagree on at least one point in the interior of
V; then, we cannot have both that F exhibits tracking of q1 and that
F potentially exhibits tracking of q2. However (as in Sec. III E), we
may have that F almost exhibits tracking of q1 and that F potentially
exhibits tracking of q2.

E. Main results

Standing assumption. Throughout this section, if F is generic
and not initially multistable, then we take (U, y) to be the unique
complete curve of the stable slow manifold, and we take 3ad to be
the corresponding adiabatic Lyapunov exponent.

In our main result (Theorem 24), we consider functions F that
are generic and not initially multistable and split into the follow-
ing three cases: Ū has zero, one, and more than one connected
component.

Theorem 24. (A) Suppose F has no zeros. Then, F is robustly
neutrally stable.

(B) Suppose F is generic and not initially multistable, and Ū is non-
empty and connected. Then, F exhibits tracking of (U, y) and is
exponentially stable with rate3ad.

(C) Suppose F is generic and not initially multistable, and Ū is not
connected. Then, F almost exhibits tracking of (U, y) and is almost
exponentially stable with rate3ad.
Now, in case (C), a natural question is whether we have that F

exhibits tracking of (U, y). In view of Remark 23, a negative answer
is provided by the following result.

Proposition 25. Suppose F is generic and not initially mul-
tistable and Ū is not connected. Then, F admits a global canard
phenomenon.

Specifically, letting τ1 be the lower end point of the second con-
nected component of Ū, we will show that there exists τ ′ > τ1 and
a curve z of the unstable slow manifold over (τ1, τ

′] such that F
potentially exhibits tracking of ((τ1, τ

′], z).
Now, let us consider case (A) further. Define

cF(ε) := sup
arc J0

max

(

length(Jε,F1/ε)

length(J0)
,

length(J0)

length(Jε,F1/ε)

)

(17)

and

rF(ε) := log cF(ε) = max
θ0∈S1

1
ε
|λε,F

0, 1
ε

(θ0)|.

The neutral stability in case (A) obviously implies that cF(ε), and
hence rF(ε), remains bounded as ε → 0. This fact also follows
immediately from Ref. 17, Theorem 2, but the proof of that result
is highly involved and not explicitly constructive, meaning that one
cannot easily write down a bound for these quantities as ε → 0.
However, our analysis of the behavior of (12) when F has no zeros
will be more elementary and explicitly constructive, allowing us to
obtain the following explicit bound.

Proposition 26. Define the function e3 : [0, ∞) →
[

1
6
, ∞

)

by

e3(x) =
{

ex−(1+x+ 1
2 x2)

x3 , x > 0,
1
6
, x = 0.

Suppose F has no zeros. For each τ ∈ [0, 1], define

m1(τ ) = max
θ∈S1

∣

∣

∂F
∂θ
(θ , τ)

∣

∣ ,

m2(τ ) = max
θ∈S1

∣

∣

∂F
∂τ
(θ , τ)

∣

∣ ,

m11(τ ) = max
θ∈S1

∣

∣

∣

∂2F
∂θ2 (θ , τ)

∣

∣

∣
,

m12(τ ) = max
θ∈S1

∣

∣

∣

∂2F
∂θ∂τ

(θ , τ)
∣

∣

∣
,

k(τ ) =
∫

S1

1

|F(θ , τ)| dθ

and let

r(τ ) = m11(τ )m2(τ )k
2(τ )e3(m1(τ )k(τ ))+ 1

2
m12(τ )k(τ ).

Then,

lim sup
ε→0

rF(ε) ≤
∫ 1

0

r(τ ) dτ + min
τ∈[0,1]

m1(τ )k(τ ).
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F. Sketches of the proofs and their relation to Ref. 17

Our results in Sec. III E are, in large part, obtained by adapting
and generalizing methods used in Ref. 17 to study periodic orbits
and their exhibition of the canard phenomenon in the periodic
differential equation

θ̇ (t) = − cos(θ)+ k − cos(εt) (1 < k < 2). (18)

In particular, Theorem 24(B) of this paper is crudely analogous to
Proposition 4(1) of Ref. 17, Theorem 24(C) of this paper is crudely
analogous to Theorem 1(3) of Ref. 17, and Proposition 25 of this
paper is crudely analogous to Theorem 1(4) of Ref. 17.

Let us now outline the basic structure of the set of proofs of
results in Sec. III E.

First, foundational to the proofs are the basic formulas
[Eqs. (33) and (34)] for the differentiable dependence of solutions
on their initial condition and on ε, which we establish [along with
our general notations for the solution mapping of (12)] in Sec. V A.

1. When F has no zeros

When F has no zeros, a kind of neutral stability is obtained
in Ref. 17: namely, as we have already said, Theorem 2 of Ref. 17
immediately implies that cF(ε) [as in Eq. (17)] remains bounded as
ε → 0. However, it would be difficult or impossible to obtain from
this proof an explicit bound on cF(ε), or to deduce from this proof
that F is robustly neutrally stable in the sense of Definition 2.

So, in Sec. V C, we obtain Proposition 26 and Theorem 24(A)
by a different approach. Specifically, our strategy is to approxi-
mate the nonautonomous differential equation (12) by a differential
equation that is piecewise-autonomous on almost the whole time-
interval, where on each “piece” all the solutions move strictly peri-
odically round the circle with common period. The pieces are chosen
to be of duration exactly equal to that common period, so that solu-
tions do not mutually approach or move away from each other.
Since F(·, εt) has slow dependence on t, the piecewise-autonomous
approximation is of high accuracy, and Grönwall’s Lemma is used to
obtain that even over the whole time-interval

[

0, 1
ε

]

, the inaccuracy
of the piecewise-autonomous approximation does not allow mutual
synchronization of trajectories to build up.

Now, in addition to the neutral stability, a further issue that
needs addressing is the dependence of θ( 1

ε
) on ε given the initial

condition θ(0), since this will ultimately play a central role in the
proof of Theorem 24(C). In the proof of Lemma 2 of Ref. 17, this is
addressed by building further upon the abovementioned Theorem
2 of Ref. 17. By contrast, in Corollary 45, we obtain the necessary
result [namely, the existence of a strictly positive lower bound on the
magnitude of the derivative of θ

(

1
ε

)

with respect to 1
ε
] as an imme-

diate consequence of the fact that F is neutrally stable in the sense of
Definition 1.

2. Tracking and stability

In cases (B) and (C) of Theorem 24, we have both a statement
about tracking and a statement about stability. In fact, the statement
about stability follows from the statement about tracking. This is
fairly obvious when Ū is the whole interval [0, 1]; and when Ū is

a proper subset of [0, 1], we apply Theorem 24(A) to the subinter-
vals of [0, 1] over which F has no zeros. Specifically, the statement
linking tracking and stability is provided by Lemma 46 in Sec. V D.

3. Theorem 24(B)

In case (B) of Theorem 24, i.e., when Ū is connected, if 0 /∈ U,
then it is not so obvious that F exhibits tracking of (U, y); specifically,
the question arises of whether, as εt first enters into U, the trajecto-
ries of a significant proportion of initial conditions may exhibit the
canard phenomenon of spending a long time tracking the curve of
hyperbolic unstable zeros of F. So, we first study the case that 0 ∈ U,
in Sec. V E; and then [along somewhat similar lines to the proof of
Proposition 4(1) of Ref. 17] for the case that 0 /∈ U, we apply the
results of this to the time-reversal of F starting at a time slightly after
the first entry into U and going back to time 0.

It is not very hard to show that F exhibits tracking of (U, y)
when Ū is connected and 0 ∈ U. In fact, letting (z0, 0) be the hyper-
bolic unstable zero of F in S

1 × {0}, we have (Proposition 50) that F
exhibits tracking of (U, y) “away from z0”; this is defined in Sec. V D
and essentially means that the arc P in Definition 19 contains z0

regardless of the value of ε. [By contrast, in the general definition
of F exhibiting tracking of (U, y), the arc P is free to move around
as ε → 0.] As a result of this, by Lemma 46, we have (Proposition
51) that F is exponentially stable “away from z0” with rate3ad. More
precisely, this notion is defined as follows:

Definition 27. Fix p ∈ S
1. We say that F is exponentially sta-

ble away from p with rate 3 ∈ (−∞, 0) if given any η,1 > 0, for
sufficiently small ε, for every arc J0 not intersecting B1

2
(p), Eq. (14)

holds.
Remark 28. By Proposition 6, Definition 27 is equivalent to

saying that λε,F
0, 1
ε

(·) converges to 3 uniformly on compact subsets of

S
1 \ {p} as ε → 0.

Section V F then deals with case (B) in the scenario that 0 6∈ U.
To show that F exhibits tracking of (U, y), we apply Proposition 50
to deal with what happens after εt has entered U, and we apply the
exponential stability result of Proposition 51 to the time-reversal of
F as described above, in order to show that problems do not arise as
εt enters into U. Again, Lemma 46 then gives that F is exponentially
stable with rate3ad.

4. Proposition 25

Having dealt with case (B), we next prove Proposition 25 in
Sec. V G. We do this before proving Theorem 24(C), in order to
illustrate the canard phenomenon that will need to be avoided out-
side an exponentially vanishing set of ε-values in Theorem 24(C).
Reference 17 specifically looks for the situation that (18) has an
almost-everywhere-attracting stable periodic orbit exhibiting the
canard phenomenon; the fact that this occurs for intervals of ε-
values arbitrarily close to 0 is proved by analyzing the time- 2π

ε

mapping of (18). In a sense, our task of proving Proposition 25 is
easier, in that we do not require any of the trajectories exhibiting
the canard phenomenon to have any special additional property like
“periodicity.” [For example, the system (18) exhibits the canard phe-
nomenon also for ε-values where there are no periodic orbits.] But,
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on the other hand, we are considering a free form of temporal depen-
dence rather than a periodic dynamical system, and so the approach
of simply analyzing the shape of the graph of a time-t mapping of
the system cannot be applied.

The idea of the proof of Proposition 25 is as follows. Take a
value σ that lies strictly in between the first and the second con-
nected component of Ū. The stability results that we have obtained
so far for when Ū is connected can be applied over [0, σ ] (since
Ū ∩ [0, σ ] is connected) and can also be applied in reverse time over
[σ , τ ′]. This gives us two high-density clusters of trajectories at time
σ

ε
, one of which moves unboundedly anticlockwise round the circle

as ε decreases, while the other moves unboundedly clockwise round
the circle as ε decreases (Proposition 52), such that the clusters cross
each other infinitely many times as ε → 0. [A similar idea is illus-
trated in Fig. 5(c) in Sec. IV E 2.] However, for the desired result, we
need there to be arbitrarily small ε-values for which not only do these
clusters meet each other, but actually the cluster obtained by evolv-
ing (12) forward in time over εt ∈ [0, σ ] is entirely contained in the
cluster obtained by evolving (12) backward in time over εt ∈ [σ , τ ′].
We achieve this by choosing τ ′ sufficiently close to the lower end
point of the second connected component of Ū that the latter cluster
shrinks at a slower rate than the former cluster as ε → 0.

5. Theorem 24(C)

We prove Theorem 24(C) in Sec. V H by a similar approach
to the proof in Ref. 17 that outside small intervals of ε-values sys-
tem (18) has an almost-everywhere-attracting stable periodic orbit
(Theorem 1, parts 1–3). In particular, Proposition 53 at the start of
Sec. V H (which is an almost immediate consequence of Corollary
45 in Sec. V C) plays an analogous role to Lemma 2(1) of Ref. 17.

As before, the main task is to show that F almost exhibits track-
ing of (U, y), since Lemma 46 would then yield that F is almost
exponentially stable with rate 3ad. Essentially, the idea is to show
that in constructions like the one used to prove Proposition 25, the
crossings between the clusters of trajectories only take place dur-
ing an exponentially vanishing set of ε-values. Since the clusters are
themselves shrinking at an exponential rate as ε → 0, it is sufficient
to find both a lower bound on the velocity (with respect to 1

ε
) at

which the clusters move round the circle and an upper bound on
the linear growth (again with respect to 1

ε
) of the cumulative dis-

tance of the circle swept out by the clusters (i.e., an upper bound
on the “average velocity” of the clusters). The latter is fairly trivial
[being essentially given by Eq. (35) in Sec. V A], while the former is
essentially given by Proposition 53.

G. Transition between neutral stability and

exponential stability

We now consider the typical behavior of a transition between
case (A) and case (B) of Theorem 24 as a parameter of F is varied.
First, let us recall the analogous scenario for autonomous dynamical
systems.

Generically, for a (sufficiently smoothly) parameter-dependent
autonomous dynamical system θ̇ = fγ (θ), a transition between the
absence and presence of equilibrium points will take place via
a “non-degenerate saddle-node bifurcation,” where at the critical

bifurcation parameter γ0, letting θ0 be the unique zero of fγ0 , the
following non-degeneracies hold:

• d1 := f′′γ0
(θ0) 6= 0 and

• d2 := dfγ (θ0)

dγ

∣

∣

∣

γ=γ0

6= 0.

The behavior of fγ (θ) locally around (γ = γ0, θ = θ0) is then
similar to that of the normal form

fnormal
γ (x) = 1

2
d1x

2 + d2γ (x ∈ R)

around (γ = 0, x = 0). The zeros of this quadratic expression

are precisely x = ±
√

−2d2γ

d1
wherever this is well-defined, and the

derivative of fnormal
γ at each such zero is given by ±sgn(d1)

√

2d1d2γ .
Accordingly, for the original parameter-dependent system
θ̇ = fγ (θ), sufficiently close to the critical parameter value γ0, we
have the following:

(a) For γ on one side of γ0, there are no equilibria and so all
solutions move periodically round the circle with the same
period.

(b) For γ on the other side of γ0, there is one stable equilibrium yγ
and one unstable equilibrium zγ ; thus, almost all solutions con-
verge to yγ at an exponential rate with exponent λ(γ ) := f′γ (yγ ).
Furthermore,

λ(γ ) ∼ −
√

2|d1d2(γ − γ0)| (19)

as γ → γ0.

Now, for the slow–fast framework (12) with a parameter-
dependent F = Fγ , the analogous scenario is a transition between
the absence and presence of zeros of Fγ . [This is precisely what we
see illustrated numerically in Figs. 2(a)–2(c) for the example

Fγ (θ , τ) = −a sin(θ)+ k + γ g(Tτ),

and in Figs. 2(d)–2(f) for the example

Fγ (θ , τ) = −a sin(θ)+ k + γ g(T′τ),

with g(·) as in Sec. II B.] Assuming sufficient smoothness, generically
a transition between the absence and presence of zeros of Fγ will be
as follows:

At the critical parameter γ0, Fγ0 has a unique zero (θ0, τ0), and
τ0 ∈ (0, 1) and the following non-degeneracies hold:

• the Hessian matrix

D1 =
(

dθθ dθτ
dθτ dττ

)

:= HessFγ0
(θ0, τ0)

is invertible;

• d2 := dFγ (θ0 ,τ0)

dγ

∣

∣

∣

γ=γ0

6= 0.

As we will prove, the behavior locally around (γ = γ0, θ
= θ0, τ = τ0) is then similar to that of the “normal form”

Fnormal
γ (x) = 1

2
xᵀD1x + d2γ (x ∈ R

2)

= 1
2
(dθθx

2
1 + dττx

2
2)+ dθτx1x2 + d2γ (20)

around (γ = 0, x = (0, 0)). We will shortly consider the zeros of
this quadratic expression and then state a corresponding result for
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FIG. 3. Dynamics of (23), with varying A in (a)–(c) and varying k in (d)–(f). In all plots,ω = 10−3 rad/s, T = 2π × 105 s, and a = 1
3
rad/s. For (a)–(c), we have k = 1 rad/s,

and the value k − a = 2
3
rad/s is marked by the black dashed line. For (d)–(f), we have A = 1

3
rad/s, and the value a + A = 2

3
rad/s is marked by the black dashed line.

In (a), (b), (d), and (e), results for the evolution θ(t) of 50 equally spaced initial conditions θ(0) = 2π i
50
, i = 0, . . . , 49, are shown: (a) and (d) show the finite-time Lyapunov

exponents λT , as defined by (11), for these trajectories, and also show3a,k,A [defined in Eq. (31)] in gray; (b) and (e) show the positions θ(T) of these trajectories at time T .

In (c) and (f), the positions of θ(0) for the 50 trajectories of (23) with θ(T) = 2π i
50
, i = 0, . . . , 49, are shown. Plots (a)–(c) reproduced with permission from Newman et al.,

Physics of Biological Oscillators, edited by A. Stefanovska and P. V. E. McClintock (Springer, 2021), Chap. 7, pp. 111–129. Copyright 2021 Springer Nature Switzerland AG.

the original system (12), but first we can automatically say more
about the matrix D1.

Lemma 29. Suppose we have F ∈ C2(S1 × [0, 1], R) with
a zero (θ0, τ0) ∈ S

1 × (0, 1) such that ∇F(θ0, τ0) = (0, 0) and
det(HessF(θ0, τ0)) < 0. Then, F takes positive, negative, and zero
values in an arbitrarily small punctured neighborhood of (θ0, τ0).

Hence, in the above setup, we must have that det(D1) > 0. Note
that for a 2 × 2 real symmetric matrix A with positive determinant,
the diagonal entries are non-zero and have the same sign; so, we will
write diag-sgn(A) ∈ {±1} for the sign of the diagonal entries of A.

Now, returning to consideration of the normal form (20), let us
write

fγ ,x2(x1) = Fnormal
γ (x1, x2).

The discriminant of the quadratic function fγ ,x2(·) is given by

D(fγ ,x2) = −det(D1)x
2
2 − 2 dθθ d2γ .

We have that

• if D(fγ ,x2) > 0, then fγ ,x2 has two zeros, and the derivative of fγ ,x2

at these zeros is ±
√

D(fγ ,x2);
• if D(fγ ,x2) = 0, then fγ ,x2 has one zero, and the derivative of fγ ,x2

at this zero is 0; and
• if D(fγ ,x2) < 0, then fγ ,x2 has no zeros.

Suppose without loss of generality that diag-sgn(D1) = 1 and
d2 > 0. For γ > 0, Fnormal

γ has no zeros. For γ < 0, we have

Ũγ := {x2 : D(fγ ,x2) > 0} =
(

−
√

−2dθθ d2γ

det(D1)
,
√

−2dθθ d2γ

det(D1)

)

6= ∅,

and so Fnormal
γ has zeros as described above. The value of the integral

∫

Ũγ
−
√

D(fγ ,x2) dx2 is the negative of the area of a semi-ellipse with

principal radii
√

−2dθθ d2γ

det(D1)
and

√

−2dθθd2γ , namely,

∫

Ũγ

−
√

D(fγ ,x2) dx2 = πdθθd2γ
√

det(D1)
.

Now, let us make a rigorous statement about the original system (12)
with dependence on a parameter γ .

We equip C2(S1 × [0, 1], R)with the standard C2-topology. Fix
an open interval 0 ⊂ R, and let F2 be the set of all continuous paths
(Fγ )γ∈0 in the space C2(S1 × [0, 1], R) for which the functions

dFγ
dγ

: (γ̃ , θ , τ) 7→ dFγ (θ ,τ)

dγ

∣

∣

∣

γ=γ̃
,

d(∇Fγ )

dγ
: (γ̃ , θ , τ) 7→ d(∇Fγ (θ ,τ))

dγ

∣

∣

∣

γ=γ̃

are well-defined and continuous on 0 × S
1 × [0, 1]. (For each indi-

vidual γ , we apply the same partial derivative notations to the
function Fγ as were introduced at the start of Sec. III.)
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Given (Fγ )γ∈0 ∈ F2, a point (γ0, θ0, τ0) ∈ 0 × S
1 × [0, 1] is

called a critical zero if Fγ0(θ0, τ0) = 0 and ∇Fγ0(θ0, τ0) = (0, 0). [This
implies, in particular, that (θ0, τ0) is a degenerate non-hyperbolic
zero of Fγ0 .] We say that a critical zero (γ0, θ0, τ0) is non-degenerate

if HessFγ0
(θ0, τ0) is invertible and

dFγ
dγ
(γ0, θ0, τ0) is non-zero.

Theorem 30. Suppose we have (Fγ )γ∈0 ∈ F2 with a non-

degenerate critical zero (γ0, θ0, τ0) with τ0 ∈ (0, 1), such that (θ0, τ0)

is the only zero of Fγ0 . Let D1 and d2 be as above. Then, there exists
δ > 0 such that, defining the intervals 0− and 0+ by

0•=
{

(γ0 − δ, γ0) diag-sgn(D1) = •sgn(d2),
(γ0, γ0 + δ) diag-sgn(D1) 6= •sgn(d2),

we have the following:

(a) For all γ ∈ 0−, Fγ has no zeros and thus is neutrally stable.
(b) For all γ ∈ 0+, Fγ is generic with a unique complete curve

(Uγ , yγ ) of the stable slow manifold, and Uγ is non-empty and
connected. Thus, Fγ is exponentially stable with rate equal to the
corresponding adiabatic Lyapunov exponent3(γ ). Furthermore,

3(γ ) ∼ −π |dθθd2(γ − γ0)|
√

det(D1)
(21)

as γ → γ0.

Remark 31. Note that if dθτ = 0, then Eq. (21) simplifies to

3(γ ) ∼ −π
√

dθθ
dττ

|d2(γ − γ0)|. (22)

Let us emphasize a key point of contrast between Eq. (21) and
Eq. (19): namely, the latter has a square-root dependence on γ − γ0

while the former has a linear dependence on γ − γ0. So, although we
said in Sec. II B that the bifurcation portraits in Fig. 2 bear resem-
blance of a classical saddle-node bifurcation, one significant way in
which plots (a) and (d) differ from a generic saddle-node bifurca-
tion is the following: as A rises above A∗ and A′

∗, respectively, the
numerical FTLEs appear to grow in magnitude linearly (as opposed
to the faster-than-linear growth that one would see in a generic
saddle-node bifurcation).

Lemma 29 and Theorem 30 will be proved in Sec. V I.

IV. COMPARISON TO THE TRADITIONAL FRAMEWORK

In this section, we compare the stability formalisms and results
in Sec. III to the traditional long-time-asymptotic framework:

• We will present definitions of neutral stability and exponential
stability for systems on S

1 that are closely analogous to Definitions
1 and 27, except now within the traditional t → ∞ framework
rather than our ε → 0 framework.

• Whereas Secs. II A 1 and II A 2 considered stabilization of the
Adler equation by constant forcing and by noise, and described
the stabilization in terms of traditional t → ∞ concepts, now we
will consider stabilization of the Adler equation by low-frequency
periodic forcing (especially sinusoidal17,45–47 forcing) so that both
the traditional t → ∞ framework and (by restricting to finite
time) the framework of Sec. III can be applied.

Remark 32. In any real-world situation, one will be working
with a finite-duration process (as opposed to taking t → ∞) sub-
ject to “finite-timescale” forcing (as opposed to taking ε → 0). So,
for a model in which both frameworks make sense, such as a low-
frequency-periodically forced system, the question of which of the
two frameworks (if either) provides a suitable approximation would
need to be determined by context.

First, let us note that the discussion of Eq. (9) in Sec. II A 3 can
be applied to the case that g(t) = cos(ωt) for small ω: If k > a, and
if we consider the system

θ̇ (t) = −a sin(θ(t))+ k + A cos(ωt) (23)

over a time-interval of duration greater than π

ω
, then the reasoning

of Refs. 1 and 2 (as formalized by Theorem 24) gives that

• if 0 ≤ A < k − a, then system (23) exhibits neutrally stable
dynamics (i.e., no significant mutual synchronization or repulsion
of trajectories), and

• if A > k − a, then the Adler equation is stabilized: the trajectories
of different initial conditions mutually synchronize into a tight
cluster.

In Sec. IV A, we will define some general dynamical properties,
especially stability properties, for infinite-time dynamical systems
on the circle, within the classical long-time-asymptotic framework.

In Sec. IV B, we will apply these long-time-asymptotic con-
cepts given in Sec. IV A to provide a basic stability analysis of
periodically forced Adler equations. In particular, we will consider
saddle-node bifurcations of periodic orbits and stabilization of the
Adler equation with k > a.

In Sec. IV C, we will use numerical bifurcation diagrams of the
same type as in Sec. II B to look at the parameter-dependence of
the stability properties of low-frequency-sinusoidally forced Adler
equations.

In Sec. IV D, we analyze Eq. (23) over finitely many periods of
the forcing in terms of our new framework of Sec. III (in particular,
applying Theorem 24). We then consider the numerics of Sec. IV C
in the light of this theoretical analysis.

In Sec. IV E, we tie together all the above theoretical and
numerical results to discuss how analysis of dynamics under the
traditional framework and analysis of dynamics under our new
framework relate and compare to each other for periodically forced
Adler equations.

A. General notions of stability in the

long-time-asymptotic framework

We consider systems of the form

θ̇ (t) = F(θ(t), t), t ∈ [0, ∞) (24)

for some continuous function F : S
1 × [0, ∞) → R for which the

partial derivatives ∂F
∂θ

and ∂2F
∂θ2 exist and are continuous on the whole

of S
1 × [0, ∞). The most fundamental examples are the cases that

• (24) is autonomous, meaning that F(θ , t) is independent of t, i.e.,
F(θ , t) = f(θ) for some f : S

1 → R, and
• (24) is 2π

ω
-periodic for some ω > 0, meaning that F(θ , ·) is 2π

ω
-

periodic for all θ ∈ S
1.
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More advanced examples include quasiperiodic systems,
almost-periodic48 systems, systems subject to forcing from a station-
ary stochastic process or measure-preserving dynamical system,43

and asymptotically autonomous41,49 systems. In the periodic case,
we will write 8 : S

1 → S
1 for the time-0-to- 2π

ω
mapping of (24),

i.e., 8
(

θ
(

2πn
ω

))

= θ
(

2π(n+1)
ω

)

for any solution θ(·) of (24) and any
n ∈ N.

Now, given an arc J0 ⊂ S
1, for any t ∈ [0, ∞), we define the arc

JF
t to be the image of J0 under the time-0-to-t mapping of (24), that

is,

JF
t := {θ(t) : θ(·) is a solution of (24), θ(0) ∈ J0}.

For any θ0 ∈ S
1 and t > s ≥ 0, we define the finite-time Lyapunov

exponent

λF
s,t(θ0) := 1

t − s

∫ t

s

∂F
∂θ
(θ(u), u) du, (25)

where θ(·) is the solution of (24) with θ(0) = θ0. We define the
(asymptotic) Lyapunov exponent by

λF
∞(θ0) := lim

t→∞
λF

s,t(θ0), (26)

if this limit exists in R̄; the existence and the value of the limit are
clearly not dependent on s. We also define the (asymptotic) average
angular velocity by

�F = lim
t→∞

θ̂ (t)

t
,

where θ̂ : [0, ∞) → R may be any lift of any solution θ : [0, ∞) →
S

1 of (24), if this limit exists. Note that the existence and the value
of this limit do not depend on the initial condition θ̂ (0): if θ̂1 and

θ̂2 are lifts of solutions of (24), then supt≥0 |θ̂2(t)− θ̂1(t)| cannot be

larger than the smallest multiple of 2π above |θ̂2(0)− θ̂1(0)|. In the
autonomous case F(θ , t) = f(θ), we have

�F =
{

0, f has at least one zero,

2π
(

∫

S1
1

f(θ)
dθ
)−1

, f has no zeros.

It is also well-known that in the periodic case, �F exists and has
continuous dependence (in the C0-topology) on8.

Now, as in Sec. III, although one can formulate notions of
stability and neutral stability locally around individual trajectories,
here, we will just present global-scale notions of stability (and,
therefore, we do not include the word “global” in our definitions).

Definition 33. We say that system (24) is neutrally stable if
there exists c ≥ 1 such that for every s, t ∈ [0, ∞), for every arc J0,

1

c
≤ length(JF

t )

length(JF
s )

≤ c. (27)

Note that if system (24) is neutrally stable, then the Lyapunov
exponent λF

∞(θ0) associated with every initial condition θ0 ∈ S
1 is 0.

Remark 34. Suppose (24) is 2π
ω

-periodic for some ω > 0, and
�F is an irrational multiple of ω. Then, by Denjoy’s theorem applied
to8, (24) is neutrally stable.

Definition 35. Fix p ∈ S
1. We say that the system (24) is

exponentially stable away from p with rate3 ∈ [−∞, 0) if given any

η,1 > 0, for sufficiently large t > 0, for every arc J0 not intersecting
B1

2
(p), we have







e(3−η)t ≤ length(JFt )

length(J0)
≤ e(3+η)t, 3 6= −∞,

length(JFt )

length(J0)
≤ e−ηt, 3 = −∞.

This is equivalent to saying that λF
0,t(·) → 3 uniformly on

compact subsets of S
1 \ {p} as t → ∞. Hence, in particular, the

Lyapunov exponent λF
∞(θ0) associated with each θ0 ∈ S

1 \ {p} is3.
Remark 36. Suppose (24) is 2π

ω
-periodic for some ω > 0 and

that (24) is exponentially stable away from a point p with rate 3.
Then, considering the graph of 8 yields the following: the solution
θ(·) starting at θ(0) = p is 2π

ω
-periodic; there is exactly one other

2π
ω

-periodic solution; letting q be the initial condition of this lat-
ter periodic solution, we have 3 = λF

0, 2π
ω

(q); and �F is an integer

multiple of ω.
Typically, if (24) is 2π

ω
-periodic and�F is a non-integer rational

multiple ofω, then (24) will admit multiple locally exponentially sta-
ble periodic solutions. (However, as we will soon see, this does not
have to be the case.)

We have formulated the above definitions for differential equa-
tions but the same definitions also apply to infinite-time dynamical
systems with non-differentiable solutions. For example, for sys-
tem (6) presented in Sec. II A, there exists p ∈ S

1 (dependent on
W) such that (6) is exponentially stable away from p with some
W-independent rate λa,k,A < 0.

B. A basic classical stability analysis of periodically

forced Adler equations

We now apply the concepts of Sec. IV A to Adler equations with
periodic additive forcing.

1. The possible behaviors

The following known result is essentially the main result of
Ref. 45 (Theorems 1 and 4).

Proposition 37. Take F in (24) of the form

F(θ , t) = −a sin(θ)+ G(t),

where a ∈ R is constant and G is 2π
ω

-periodic for some ω > 0. Exactly
one of the following three statements holds:

(i) System (24) is neutrally stable.
(ii) For some p ∈ S

1 and 3 ∈ (−∞, 0), system (24) is exponentially
stable away from p with rate3.

(iii) System (24) has exactly one 2π
ω

-periodic solution p(t); every solu-
tion θ(·) of (24) has d(θ(t), p(t)) → 0 as t → ∞; and λF

∞(θ0)

= 0 for all θ0 ∈ S
1.

Cases (ii) and (iii) can only occur if �F is an integer multiple
of ω; i.e., if �F is not an integer multiple of ω, then system (24) is
neutrally stable.

Case (iii) is a kind of “boundary case” between neutral stability
and exponential stability; we expect that for “typical” a and G(·), if
�F is an integer multiple of ω then the system will be in case (ii).
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2. Periodic saddle-node bifurcations

A transition between case (i) and case (ii) via case (iii) as some
parameter is varied corresponds precisely to a saddle-node bifurca-
tion of the time-0-to- 2π

ω
mapping 8. Let us now describe one such

scenario.
Proposition 38. In Proposition 37, consider G(t) of the form

G(t) = k + H(t), where we fix the function H(·) while considering
varying values of k ∈ R. Suppose we have k0 ∈ R such that for k = k0,
system (24) is in case (iii) of Proposition 37. Then, sufficiently close to
k0, we have the following:

• for k on one side of k0, system (24) is in case (i) of Proposition 37,
i.e., is neutrally stable; and

• for k on the other side of k0, system (24) is in case (ii) of Proposition
37, with

3 ∼ −C
√

|k − k0| (28)

as k → k0 for some C > 0.

Note that the autonomous system (5) is precisely the case where
H ≡ 0, and that the system (23) (for fixed A and ω) is precisely the
case where H(t) = A cos(ωt).

Recall that the autonomous case with a > 0 is as in Sec. II A 1:
if |k| > a, then the system is neutrally stable, but if |k| < a, then the
system is exponentially stable with exponent

λk := −
√

a2 − k2 = −
√

(a + k)(a − k),

which approximates to −
√

2a|k − a| for k near ±a. This is precisely
in accordance with the general description of saddle-node bifurca-
tions of autonomous systems given at the start of Sec. III G. So,
what Proposition 38 essentially says is that as we now go from the
autonomous case to the periodic case, all k-parameterized transi-
tions between neutral stability and exponential stability must still
likewise take place via a “saddle-node bifurcation of 2π

ω
-periodic

orbits” exhibiting the same square-root dependence (28).
Proof of Proposition 38. Let p(t) be as in Proposition 37 for

k = k0. By Ref. 45, Theorem 4, stereographic projection conjugates
8(k=k0) to an orientation-preserving linear fractional transformation

8̃ of R̂ with a unique fixed point p̃; without loss of generality, we can
take p̃ ∈ R, since otherwise we can first rotate the circle by angle π to
get p̃ = 0. The second derivative of any linear fractional transforma-
tion other than the identity function is non-zero throughout R; and
since smooth conjugation simply divides the second derivative at a
fixed point by the derivative of the conjugacy at that point, it follows
that d1 := 8′′

(k=k0)
(p(0)) is non-zero. Also, the derivative d2 of the

map k 7→ 8(p(0)) at k = k0 is given by d2 =
∫ 2π

ω
0

e
∫

2π
ω

t
∂F
∂θ
(p(u),u) du dt,

which is clearly strictly positive. Hence (similarly to the description
at the start of Sec. III G), the map 8 undergoes a non-degenerate
saddle-node bifurcation as k crosses k0; and by Proposition 37, the
two sides of the bifurcation correspond to cases (i) and (ii) of Propo-
sition 37. Furthermore, in case (ii), we have that3 = log D, where D
is the derivative of8 at its unique stable fixed point, which [similarly
to Eq. (19)] takes the form

D = 1 −
√

2|d1d2(k − k0)| + o(
√

|k − k0|).

So,

3 = −
√

2|d1d2(k − k0)| + o(
√

|k − k0|).

�

3. Stabilization of the neutrally stable Adler equation

Let us now consider the question of stabilization of the Adler
equation. Specifically, we consider the addition of zero-mean peri-
odic forcing to the autonomous system θ̇ = −a sin(θ)+ k, where
k > a > 0. Obviously, without the addition of any forcing [i.e.,
G(t) = k in Proposition 37], the system belongs to case (i) of Propo-
sition 37. The question is then whether, with the added zero-mean
periodic forcing, the forced system now belongs to case (ii) of
Proposition 37.

Let us first note that for the forced system, the average angu-
lar velocity must lie within the compact subinterval [k − a, k + a]
of (0, ∞). This follows immediately from the fact that the term
−a sin(θ(t)) always lies within the range [−a, a]. Since the aver-
age angular velocity has continuous dependence on the time-0-to- 2π

ω

mapping of the system, we immediately obtain from Proposition 37
the following corollary about low-frequency forcing: there is no way
to send ω to 0 without passing through the scenario that the system is
neutrally stable. Let us phrase this more precisely.

Corollary 39. Fix k > a > 0. Consider the ε-parameterized
periodic differential equation

θ̇ (t) = −a sin(θ(t))+ k + g̃(ε, t), t ≥ 0, (29)

where g̃ : (0, ∞)× R → R is any continuous function with the fol-
lowing properties:

(a) g̃(ε, ·) is 2π
ω(ε)

-periodic for some ω(ε) > 0 with ω(ε) → 0 as ε →
0, and

(b)
∫

2π
ω(ε)

0 g̃(ε, t) dt = 0.

System (29) is neutrally stable for an open set of ε-values
arbitrarily close to 0.

Let us exemplify this with the prototypical case of sinusoidal
forcing. Taking

g̃(ε, t) = A(ε) cos(ω(ε)t)

gives the following.
Corollary 40. Fix k > a > 0. In the (A,ω)-parameter space

of Eq. (23), it is not possible to plot a continuous path that tends
toward the ω = 0 axis without traveling through a region of the
(A,ω)-parameter space where the system (23) is neutrally stable.

In the most basic case, let us simply fix any value A ∈ R: then,
there is an open set ofω-values arbitrarily close to 0 for which system
(23) is neutrally stable, i.e., for which the forcing +A cos(ωt) “fails to
stabilize the Adler equation.”

C. Numerics for the sinusoidally forced Adler

equation (23)

Having investigated periodically forced Adler equations such as
(23) theoretically, we now plot numerical bifurcation diagrams for
(23). We cannot “plot the long-time-asymptotic dynamics” simply
through numerical simulation of trajectories since the simulations

Chaos 31, 123129 (2021); doi: 10.1063/5.0066641 31, 123129-16

© Author(s) 2021

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

are themselves only of finite duration. However, as is typically done
in numerical bifurcation diagrams, we can still plot “long-but-finite-
time” results obtained from the finite-time simulations. (So, for
example, we cannot calculate asymptotic Lyapunov exponents sim-
ply from numerically simulated trajectories, but we can calculate
finite-time Lyapunov exponents taken over the entire duration of
the simulation.)

Specifically, we will construct the same kind of plots as in
Sec. II B. Fix a = 1

3
rad/s (as in Sec. II B) and ω = 10−3 rad/s (which

is the same as the cut-off angular frequency of the low-pass filter in
Sec. II B). We will consider both

• varying A with fixed k = 1 rad/s > a (as in Sec. II B) and
• varying k with fixed A = 1

3
rad/s.

Note thatω is very small, i.e., we are considering low-frequency
forcing; however, we still make sure that the duration of the numer-
ical simulations is long enough to include many complete cycles of
the low-frequency forcing. Specifically, we will work with 100 peri-
ods of the forcing [which is the same duration as the duration T of
the simulations represented in Figs. 2(a)–2(c) in Sec. II B]. In other
words, we can think of the results as being for the 100th iterate of
the circle map8. Results are shown in Fig. 3.

In Figs. 3(b) and 3(e), for the various combinations of A and
k, the trajectories at time T = 200π

ω
of 50 evenly spaced initial condi-

tions are shown. Figures 3(c) and 3(f) show the analogous results
for the reverse-time system; due to the symmetries of (23), plots
(c) and (f) turn out to be the reflection of plots (b) and (e) about
π

2
. Figures 3(a) and 3(d) show FTLEs for the trajectories shown in

Figs. 3(b) and 3(e), respectively. These FTLEs are computed accord-
ing to Eq. (11), which is precisely the same as Eq. (25) with F(θ , t)
= −a sin(θ)+ k + A cos(ωt).

Plots (a)–(c) show a picture somewhat resemblant of a saddle-
node bifurcation: recalling that the system is neutrally stable for

A = 0, we see the persistence of this exhibition of neutrally sta-
ble behavior for A going up to about A = 2

3
rad/s, after which the

system appears to be clearly stabilized.
Plots (d)–(f) likewise show a picture somewhat resemblant of

a saddle-node bifurcation: we see stability for k going up to about
k = 2

3
rad/s, after which we see neutrally stable behavior. This is

similar to the autonomous case A = 0, except with a higher critical
k-threshold for the transition from stability to neutral stability.

However, plot (d) also reveals a feature distinctly different from
a saddle-node bifurcation: as k approaches the critical threshold
from below, the dependence of the finite-time Lyapunov exponents
on k appears to be linear (with a gradient of about 1

2
) rather than of

square-root form. [Plot (a) likewise appears potentially to indicate
a linear dependence on A as the critical A-threshold is approached
from above, but this is less clear.]

D. Stability analysis of finite-time

low-frequency-sinusoidally forced Adler equations

within the framework of Sec. III

Standing assumption. In all subsequent discussion of Eq. (23),
we take a > 0 and k, A ≥ 0.

We now consider Eq. (23) on finite time-intervals, within the
slow–fast framework (12). Specifically, we will consider (23) over
time-intervals

[

0, nπ
ω

]

, i.e., over n
2

cycles of the periodic forcing, for
positive integers n. This can be expressed in the form of (12) by
taking

F(θ , τ) = −a sin(θ)+ k + A cos(nπτ), (30)

with ε = ω

nπ
. Obviously, F is not initially multistable. We have that F

is generic if and only if A /∈ {k + a, k − a, a − k}; in this case, we will
denote the adiabatic Lyapunov exponent by3a,k,A ≤ 0, which clearly
does not depend on n. We extend3a,k,A continuously to cover those
(a, k, A)-values for which F is not generic. Explicitly,

3a,k,A =



































0, k ≥ a and A ≤ k − a,

− 1
π

∫ π

0

√

a2 − (k + A cos(t))2 dt, k < a and A ≤ a − k,

− 1
π

∫ π

arc cos
(

a−k
A

)

√

a2 − (k + A cos(t))2 dt, |a − k| < A ≤ a + k,

− 1
π

∫ arc cos
(

− a+k
A

)

arc cos
(

a−k
A

)

√

a2 − (k + A cos(t))2 dt, A > a + k.

(31)

Applying Theorem 24 gives the following.
Proposition 41. For F as in Eq. (30):

(A) If k > a and A < k − a, then F is neutrally stable.
(B) If

• k < a and A < a − k, or
• |a − k| < A < a + k and n ∈ {1, 2}, or
• A > a + k and n = 1,
then F is exponentially stable with rate3a,k,A.

(C) If
• |a − k| < A < a + k and n ≥ 3, or

• A > a + k and n ≥ 2,
then F is almost exponentially stable with rate3a,k,A.

Let us mention, in particular, the following cases:
Corollary 42. Suppose n ≥ 3.

(A) Fixing k > a and letting A∗ := k − a, we have
• if A < A∗ then F is neutrally stable, but
• if A ∈ (A∗, ∞) \ {k + a} then F is almost exponentially stable

with rate3a,k,A.
(B) Fixing a > 0 and A ≥ 0 and letting k∗ := a + A, we have
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FIG. 4. Graph of3a,k,A [as defined in Eq. (31)] against k for different values of A,

with a = 1
3
rad/s. The blue curve 3a,k,0 = −

√

max(0, a2 − k2) for A = 0 has
infinite gradient on the left at k = a where the curve transitions from negative to
zero; the orange, gray, and green curves, respectively, have finite gradient 1√

2
, 1
2
,

and 1

2
√
2
on the left, where they transition from negative to zero (see Proposition

43).

• if k > k∗, then F is neutrally stable, but
• if k ∈ [0, k∗) \ {|a − A|}, then F is almost exponentially stable

with rate 3a,k,A (with the “almost” not being necessary in the
case that A < a and k < a − A).

We illustrate case (B) of Corollary 42 with a graph of 3a,k,A

against k for different values of A, in Fig. 4. One immediate observa-
tion from this figure is the following:

• for A = 0, i.e., the autonomous case (where a saddle-node bifur-
cation takes place as k crosses a), we see an infinite gradient in
the graph as k ↗ a, corresponding to the square-root dependence

3a,k,0 ≈ −
√

2a|k − a| exactly as described just after the statement
of Proposition 38; but

• when we now go to the nonautonomous periodic case A > 0, the
graph has a finite gradient as k ↗ a + A.

These finite gradients can be calculated using Theorem 30, as
follows.

Proposition 43. (A) Fixing k > a and letting A∗ := k − a, the
map A 7→ 3a,k,A is right-sided-differentiable at A∗ with deriva-

tive − 1
2

√

a
A∗

.

(B) Fixing a, A > 0 and letting k∗ := a + A, the map k 7→ 3a,k,A is
left-sided-differentiable at k∗ with derivative 1

2

√

a
A

.
Proof. In case (A), take Fγ to be the function F in Eq. (30) with

n = 2 and A = γ . Then, taking (γ0, θ0, τ0) =
(

A∗,
π

4
, 1

2

)

, we have

FIG. 5. Dynamics of (23) with varying ω. Other parameters are a = 1
3
rad/s

and A = k = 1 rad/s. (a) For each ω-value, taking T = 200π
ω

(i.e., 100 periods),
the finite-time Lyapunov exponents λT as defined by (11) are shown for the tra-
jectories of 50 equally spaced initial conditions θ(0) = 2π i

50
, i = 0, . . . , 49. The

horizontal gray line marks the value of 3a,k,A defined in (31). (b) Zoomed-in ver-
sion of (a); the red points indicate the location of the small intervals ofω-values for
which all initial conditions have zero asymptotic Lyapunov exponent. (c) Forward-
and backward-time dynamics over the time-interval

[

0, 2π
ω

]

; for each ω-value,

hollow circles show the positions of θ
(

2π
ω

)

for the 50 trajectories of (23) with

θ(0) = 2π i
50
, i = 0, . . . , 49, while solid circles show the positions of θ(0) for the

50 trajectories of (23) with θ
(

2π
ω

)

= 2π i
50
, i = 0, . . . , 49. In both cases, the 50

points are clustered together; the values of ω where the two curves of clustered
points cross correspond to where the red points are marked in (b); see Appendix
B for further explanation.

that (θ0, τ0) is the only zero of Fγ0 , and

dθθ = a,

dττ = 4π 2A∗,

dθτ = 0,

d2 = −1.

Thus, the conditions of Theorem 30 are satisfied, and applying
Eq. (22) gives the result. Case (B) is proved the same way, with k = γ

and γ0 = k∗. �

Now, just as one can seek numerical help in investigating the
long-time-asymptotic behavior of an infinite-time dynamical system
through long-but-finite-time simulations, so likewise one can seek
numerical help in investigating the ε → 0 behavior of a dynamical
system of form (2) through small-but-positive-ε simulations. Now,
combining the two: suppose we have a finite-time numerical simu-
lation of an infinite-time system subject to external forcing, where
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the timescale of the forcing in the simulation is much slower than
the timescale of the system’s internal dynamics, and the duration of
the simulation is very large compared to the timescale of the forc-
ing. Then, exactly the same comment that we made in Remark 32
regarding real-world processes also applies to the simulation: one
can interpret it as either an approximation of the t → ∞ behavior
or an approximation of the ε → 0 behavior. Note that Fig. 3 comes
under exactly this category: ω is very small, but at the same time, n
is very large.

Accordingly, let us now reconsider Fig. 3 in the light of
Corollary 42. In all six plots, we have indicated the value of A∗
= k − a or k∗ = a + A as appropriate by a dashed black line. Addi-
tionally, in plots (a) and (d), we have shown in gray the value of
3a,k,A as given in Eq. (31); so, the gray curve in plot (d) is the same as
the gray curve in Fig. 4. The numerical results in Fig. 3 show perfect
agreement with the theoretical predictions of Corollary 42 regard-
ing stability, neutral stability, and quantification of stability, just as
the numerics in Sec. II B for “unextendible” finite-time forcing like-
wise showed perfect agreement with the theoretical predictions of
Theorem 24 regarding stability and neutral stability. (Recall that all
these theoretical predictions are simply the mathematically precise
description of what one would heuristically expect to see by applying
the reasoning of Refs. 1 and 2.)

E. Commentary on the above results

So far, we have presented theoretical results within the long-
time-asymptotic framework, numerical results, and theoretical
results within the finite-time slow–fast framework. Let us now tie
these together and draw conclusions.

1. Stable vs neutrally stable dynamics for A>k−a

At the end of Sec. IV B 3, we saw that when k > a, for any
fixed value of A there are robust ω-values arbitrarily close to 0 for
which the system (23) is neutrally stable in the sense of Sec. IV A.
(Recall that this implies, in particular, that all trajectories have an
asymptotic Lyapunov exponent of zero.) The proof of this result
made no recognition whatsoever of a distinction between A < k − a
and A > k − a. Yet, Figs. 3(a)–3(c) show a very clear distinction
between neutrally stable behavior for A < k − a and stable behavior
A > k − a exactly as in Corollary 42. The fact that these ω-values of
neutral stability exist arbitrarily close to zero even when A > k − a
indicates that, at such ω-values, the heuristic reasoning described in
Sec. II A 3 must break down.

The cause of this breakdown is precisely the canard phe-
nomenon where solutions spend a long time tracking the motion
of the slowly moving source and thus experience mutual desyn-
chronization. It is well-known that the canard phenomenon is an
extremely fine-tuned phenomenon; in other words, the open set
of ω-values described at the end of Sec. IV B 3 must consist of
extremely narrow ω-intervals if A > k − a. Indeed, for the range of
parameter-values considered in Ref. 17, it was proved that this set
of ω-values is exponentially vanishing; and similarly in this present
paper, we have shown [Theorem 24(B)–(C)] that for any fixed
finite-length shape of slow-timescale variation, the set of timescale-
separation values for which the canard phenomenon causes the
reasoning in Sec. II A 3 to break down is likewise exponentially

vanishing. However, the fact that the A > k − a case requires this
fine-tuned canard mechanism of desynchronization in order for
the neutral stability (in the sense of Sec. IV A) to be achieved is
altogether missed by the bifurcation and stability analysis given in
Sec. IV B.

2. Illustration through further numerics

Let us now consider through further numerics how the dynam-
ics of Eq. (23) depends on ω when A > k − a. Figures 5(a)–5(b) are
FTLE plots similar to those in plots (a) and (d) of Figs. 2 and 3,
except that the varied parameter is nowω rather than A or k. We take
a = 1

3
rad/s and A = k = 1 rad/s, so k − a < A < k + a, implying

that F is exponentially stable for n ∈ {1, 2} and almost exponentially
stable for n ≥ 3; here, as in Fig. 3, we take 100 cycles of the forcing,
i.e., the results are shown over a duration of 200π

ω
. In gray is shown

the value of 3a,k,A. For ω sufficiently small, we see a close match of
the FTLEs to 3a,k,A. In plot (b) are also indicated the approximate
locations of the narrow ω-intervals for which system (23) is neu-
trally stable in the sense of Sec. IV A. (The procedure by which this
is achieved is described in Appendix B.) Despite the high density of
ω-values for which FTLEs are plotted in plot (b), all the results are
close to3a,k,A and none are close to 0.

For further illustration, we now zoom in around one of the
points marked in Fig. 5(b) as being the approximate location of an
ω-interval of neutral stability. In Fig. 6, FTLE results are shown for
both 100 cycles and 1000 cycles of the periodic forcing. Despite the
extremely high density of ω-values for which results are shown, all
the shown FTLEs approximate the value 3a,k,A < 0 to an accuracy
of at least about 97%.

3. Dependence of Lyapunov exponents on k

The apparently linear dependence of the FTLEs in Fig. 3(d) to
the left of k = 2

3
rad/s is perfectly explained by Corollary 42 and

Proposition 43: the left-sided derivative of k 7→ 3a,k,A at k = a + A
is equal to 1

2
. This is in contrast to Proposition 38, which gives us the

following:

• for any transition between stability and neutral stability (under-
stood within the framework of Sec. IV A) that arises from keeping
the parameters a, A, and ω fixed while varying k past a criti-
cal value k0, the Lyapunov exponent on the stable side of the
transition must have square-root dependence on |k − k0| as k
approaches k0.

One question that then naturally arises is the following: if we
fix ω, A, and a as in Figs. 3(d)–3(f), then over an interval of k-
values such as, say, [0.65, 1] rad/s, which k-values correspond to
neutral stability and which k-values correspond to exponential sta-
bility with small Lyapunov exponent? Nonetheless, the fundamental
mechanism of stabilization (as described in Sec. II A 3 and for-
malized by Theorem 24) that gives rise to what we see in Fig. 3
is essentially blind to the distinction between these two scenarios;
indeed, it is exactly this same mechanism of stabilization that also
gave rise to the equally clear pictures seen in Fig. 2, where questions
of long-time-asymptotic dynamics do not make sense.
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FIG. 6. Dynamics of (23) with varyingω near a red-marked point in Fig. 5(b). Parameters a, k, and A are as in Fig. 5. For eachω-value, in hollow blue are shown the finite-time
Lyapunov exponents λT associated with the trajectories of 10 initial conditions θ(0) = 2π i

10
with T = 200π

ω
(i.e., 100 periods), and in solid orange are shown the finite-time

Lyapunov exponents λT associated with the trajectories of three initial conditions θ(0) = 0, 2π
3
, 4π

3
with T = 2000π

ω
(i.e., 1000 periods). The red dashed line indicates the

approximate location of a small interval of ω-values for which all trajectories have zero asymptotic Lyapunov exponent. The horizontal gray line marks the value of 3a,k,A

defined in (31).

V. PROOFS OF RESULTS IN SEC. III

We begin with some further notations.
We will always assume that F ∈ F . Define

M = ‖F‖∞, M1 =
∥

∥

∂F
∂θ

∥

∥

∞ , M2 =
∥

∥

∂F
∂τ

∥

∥

∞ ,

M11 =
∥

∥

∥

∂2F
∂θ2

∥

∥

∥

∞
, M12 =

∥

∥

∥

∂2F
∂θ∂τ

∥

∥

∥

∞
.

Given σ1, σ2 ∈ [0, 1], define Fσ1 ,σ2 ∈ F by

Fσ1 ,σ2(θ , τ) = (σ2 − σ1)F(θ , σ1 + (σ2 − σ1)τ ).

So, for fixed ε, if θ(·) is a solution of Eq. (12), then

t 7→ θ
(

σ1
ε

+ (σ2 − σ1)t
)

is a solution of Eq. (12) with Fσ1 ,σ2 in place of F: denoting this
function by θσ1 ,σ2 , we have

θ̇σ1 ,σ2(t) = (σ2 − σ1)θ̇
(

σ1
ε

+ (σ2 − σ1)t
)

= (σ2 − σ1)F
(

θσ1 ,σ2(t), ε
(

σ1
ε

+ (σ2 − σ1)t
))

= (σ2 − σ1)F(θσ1 ,σ2(t), σ1 + (σ2 − σ1)εt)

= Fσ1 ,σ2(θσ1 ,σ2(t), εt).

Note that if F is generic and σ1 6= σ2, then Fσ1 ,σ2 is also generic.

Recall the finite-time Lyapunov exponents λε,Fs,t (θ0) defined in
Eq. (15); for convenience, also define the notation

λ̄ε,Fs,t (θ0) :=
∫ t

s

∂F
∂θ
(θ(u), εu) du

= (t − s)λε,Fs,t (θ0),

where the first equality is used to define λ̄ε,Fs,t (θ0) even for s ≥ t. Note
that

λ̄ε,Fs,t (θ0) = λ̄
ε,Fεs,εt

0, 1
ε

(θ0).

A. Solution mapping of (12) and its partial derivatives

Define the function

8 : (0, ∞)× S
1 × [0, 1] × [0, 1] → S

1,

such that, given any ε > 0, for any solution θ(·) of (12) and any s, t ∈
[

0, 1
ε

]

, we have

8
(

1
ε
, θ(s), εs, εt

)

= θ(t).

Equivalently, given any ε > 0, for any solution φ : [0, 1] → S
1 of the

differential equation

φ̇(t) = 1
ε
F(φ(t), t) (32)

and any s, t ∈ [0, 1],

8
(

1
ε
,φ(s), s, t

)

= φ(t).

We denote the partial derivative of 8 with respect to its first input
and its second input, respectively, by

∂8

∂(ε−1)
, ∂8
∂θ

: (0, ∞)× S
1 × [0, 1] × [0, 1] → R.

We now give formulas for these partial derivatives.
Proposition 44. Take any ε > 0 and let θ(·) be a solution of

(12) starting at θ(0) = θ0. For all s, t ∈
[

0, 1
ε

]

,

∂8

∂θ

(

1
ε
, θ(s), εs, εt

)

= eλ̄
ε,F
s,t (θ0), (33)

∂8

∂(ε−1)

(

1
ε
, θ(s), εs, εt

)

= ε

∫ t

s

eλ̄
ε,F
u,t (θ0)F(θ(u), εu) du. (34)

Proof. Equation (33) is a standard result about the differen-
tiable dependence of solutions on their initial condition. Now, let
φ(τ) = θ

(

τ

ε

)

for each τ ∈ [0, 1]; so, φ satisfies Eq. (32). The deriva-

tive of the map r 7→ rF(φ(τ), τ) at r = 1
ε

is obviously just F(φ(τ), τ),
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and so we have

∂8

∂(ε−1)

(

1
ε
,φ(εs), εs, εt

)

=
∫ εt

εs

∂8

∂θ

(

1
ε
,φ(τ), τ , εt

)

F(φ(τ), τ) dτ

= ε

∫ t

s

∂8

∂θ

(

1
ε
, θ(u), εu, εt

)

F(θ(u), εu) du

= ε

∫ t

s

eλ̄
ε,F
u,t (θ0)F(θ(u), εu) du.

�

It will also be useful to define the function

18 : (0, ∞)× S
1 → R,

such that, given any ε, for any lift θ̂ :
[

0, 1
ε

]

→ R of a solution

θ :
[

0, 1
ε

]

→ S
1 of (12), we have

18
(

1
ε
, θ(0)

)

= θ̂
(

1
ε

)

− θ̂ (0).

Since solutions θ(·) of (12) have |θ̇ (t)| ≤ M, we have that

|18
(

1
ε
, θ0

)

| ≤ 1
ε
M (35)

for all ε > 0 and θ0 ∈ S
1.

B. Proof of Theorem 14

Assume that F is generic.
If F has no zeros, then it is clear that (∅, ∅ → S

1) is a complete
curve of the stable slow manifold (and obviously there is no other).

Now, suppose that F has zeros, and let C = {τ ∈ [0, 1] : ∃ θ ∈
S

1 s.t. F(θ , τ) = 0}, i.e., C is the image of the set of zeros of F under
(θ , τ) 7→ τ . Since F is continuous, we obviously have that C is closed.
Note that if we have a complete curve (U, y) of the stable slow
manifold, then C = Ū.

By Remark 9(A), if we have τ ∈ [0, 1] such that S
1 × {τ }

includes a hyperbolic stable or unstable zero of F, then τ is in the
interior of C relative to [0, 1]. Hence, for every boundary point τ
of C relative to [0, 1], S

1 × {τ } only contains a non-hyperbolic zero
of F.

Now, if there are infinitely many τ ∈ [0, 1] for which S
1 × {τ }

contains a non-hyperbolic zero, then, in particular, we can find a
convergent sequence of distinct non-hyperbolic zeros (θn, τn) con-
verging to a zero (θ , τ); but by Remark 9, no zero of F can have
non-hyperbolic zeros of F arbitrarily close to it. Hence, there are
only finitely many τ ∈ [0, 1] for which S

1 × {τ } contains a non-
hyperbolic zero. Hence, in particular, C has only finitely many
boundary points, and, therefore, only finitely many connected com-
ponents. Furthermore, by Remark 9, no connected component of C
can be a singleton.

So, let C1, . . . , Cn be the connected components of C arranged
in increasing order. For each connected component Ci = [ai, bi] of
C,

• if ai 6= 0, then since S
1 × {ai} contains exactly one zero of F and

this zero is non-hyperbolic, on the basis of Remark 9(B) there
must exist δ > 0 and a curve y of the stable slow manifold over

(ai, ai + δ) such that for each τ ∈ (ai, ai + δ), (yτ , τ) is the only
hyperbolic stable zero of F in S

1 × {τ }; but
• if ai = 0 (obviously implying, in particular, that i = 1), then for

each hyperbolic stable zero (θ0, 0) of F in S
1 × {0}, on the basis of

Remark 9(A), we have that for some δ > 0, there is a unique curve
y of the stable slow manifold over [0, δ) for which y(0) = θ0.

In either case, let τ (1)i be the supremum of the set of all τ > ai

for which there is a unique curve of the stable slow manifold over

(ai, τ) agreeing with y on (ai, ai + δ); note that if ai = 0, then τ (1)i

will depend on θ0. It is clear that this “supremum” is indeed a max-
imum, i.e., that there is a unique curve of the stable slow manifold

over (ai, τ
(1)
i ) agreeing with y on (ai, ai + δ). So, let us extend the

domain of y to include (ai, τ
(1)
i ). Now, let σn be a strictly increasing

sequence converging to this maximum τ
(1)
i such that y(σn) is con-

vergent to some limit l. We have that (l, τ (1)i ) is a zero of F; and so

by Remark 9 together with the fact that y is continuous on (ai, τ
(1)
i ),

we have that, in fact, y(τ ) → l as τ ↗ τ
(1)
i . If τ (1)i = 1, then (l, τ (1)i )

cannot be non-hyperbolic and so is a hyperbolic stable zero, and,
therefore, the domain of y can be extended to include 1 itself.

Thus, if τ (1)i = bi, then we have already defined y on the whole

of the interior of Ci relative to [0, 1]. So, now suppose that τ (1)i 6= bi.

Note that (l, τ (1)i ) must be non-hyperbolic, otherwise by Remark

9(A), τ (1)i would not be the supremum of the set of times up to

which we can uniquely extend y. Since (l, τ (1)i ) is non-hyperbolic,

Remark 9(B) implies that there are no zeros (θ , τ) close to (l, τ (1)i )

with τ > τ
(1)
i , and, therefore, S

1 × {τ (1)i } must contain zeros other

than just (l, τ (1)i ). So, let (θ1, τ
(1)
i ) be the zero for which there is a fast

connection from (l, τ (1)i ) to (θ1, τ
(1)
i ). Since l is a local extremum of

F(·, τ (1)i ), it is clear that θ1 is unique. Since (l, τ (1)i ) is non-hyperbolic,

(θ1, τ
(1)
i ) cannot also be non-hyperbolic and, therefore, (θ1, τ

(1)
i )

must be hyperbolic stable. Hence, Remark 9(A) gives that for some
δ1 > 0, there is a unique curve of the stable slow manifold over

(τ
(1)
i , τ (1)i + δ1) whose right-sided limit at τ (1)i coincides with θ1. So,

extend the domain of y to include the open interval (τ (1)i , τ (1)i + δ1),
with y

∣

∣

(τ
(1)
i ,τ

(1)
i +δ1)

being the unique curve of the stable slow man-

ifold over (τ (1)i , τ (1)i + δ1) for which y(τ ) → θ1 as τ ↘ τ
(1)
i . Now,

define τ (2)i as the maximum of the set of all τ > τ
(1)
i for which there

is a unique curve of the stable slow manifold over (τ (1)i , τ) agreeing

with y on (τ (1)i , τ (1)i + δ1), and extend y to include (τ (1)i , τ (2)i ). We

can then treat τ (2)i the same way we treated τ (1)i earlier; and con-
tinuing the procedure as necessary, we obtain an increasing list of

terms τ (1)i , τ (2)i , τ (3)i , . . . that terminates at the term τ
(mi)

i for which

τ
(mi)

i = bi. Note that this termination must take place due to the
fact that there are only finitely many τ -values for which S

1 × {τ }
contains a non-hyperbolic zero.

Thus, overall, we have defined y on the set

U = (C ∩ {0, 1}) ∪
n
⋃

i=1

mi−1
⋃

j=0

(τ
(j)
i , τ

(j+1)
i ),

where τ (0)i = ai. By construction, if 0 /∈ C, then (U, y) is the unique
complete curve of the stable slow manifold, and if 0 ∈ C, then for
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our given θ0, (U, y) is the unique complete curve of the stable slow
manifold fulfilling y(0) = θ0.

C. When F has no zeros

In this section, we will prove Proposition 26 and Theorem
24(A) as well as obtaining a corollary of Theorem 24(A) that will
be needed later for the proof of Theorem 24(C).

For each n ≥ 1, let en : R → R be the continuous function for
which en(x)x

n is the remainder in the order-(n − 1) Taylor expan-

sion of ex; in other words, en(x) =
∑∞

i=0
xi

(i+n)!
. Note, in particular,

that en is strictly increasing on [0, ∞). It is easy to check that for any
c, t ∈ R,

∫ t

0

sec(t−s) ds = e2(ct)t
2

and
∫ t

0

en(cs)s
n ds = en+1(ct)t

n+1.

If F has no zeros, then we will work with all the notations introduced
in Proposition 26, and also let

L = min
(θ ,τ)∈S1×[0,1]

|F(θ , τ)|.

Proof of Proposition 26. Let τ ∗ be a global minimizer of τ 7→
m1(τ )k(τ ). Given ε > 0, define an integer n ≥ 1 and times

0 = t1 < · · · < tn

such that

• ti+1 = ti + k(εti) for each 1 ≤ i < n, and
• τ∗

ε
∈ [tn, tn + k(εtn));

and then define an integer ñ ≥ 1 and times

1
ε

= t̃1 > · · · > t̃ñ

such that

• t̃i+1 = t̃i − k(εt̃i) for each 1 ≤ i < ñ, and
• tn ∈ (t̃ñ − k(εt̃ñ), t̃ñ].

We will approximate
∫ 1

0
r(τ ) dτ by Riemann-like sums over the

partition of [0, 1] whose set of end points is given by {εti}1≤i≤n ∪
{εt̃i}1≤i≤ñ. Note that the quantities ti+1 − ti, t̃i − t̃i+1, and t̃ñ − tn are
all bounded by the ε-independent constant K := maxτ∈[0,1] k(τ ), and
hence the mesh size of this partition tends to 0 as ε → 0.

For any continuous function g : [0, 1] → R, define

g∨i = max
τ∈[εti ,εti+1]

g(τ ) for each 1 ≤ i < n,

g∨̃i = max
τ∈[εt̃i+1 ,εt̃i]

g(τ ) for each 1 ≤ i < ñ

g∨̃ñ = max
τ∈[εtn ,εt̃ñ]

g(τ ).

Let

ri = m∨i
11m

∨i
2 k(εti)

2e3(m
∨i
1 k(εti))+ 1

2
m∨i

12k(εti), (36)

r̃i = m∨̃i
11m

∨̃i
2 k(εt̃i)

2
e3(m

∨̃i
1 k(εt̃i))+ 1

2
m∨̃i

12k(εt̃i). (37)

We have that r(εti) ≤ ri ≤ r∨i and r(εt̃i) ≤ r̃i ≤ r∨̃i; hence,

max
(

{ri − r(εti)}1≤i<n ∪ {r̃i − r(εt̃i)}1≤i<ñ

)

→ 0

and, therefore,
(

n−1
∑

i=0

εk(εti)ri

)

+
(

ñ−1
∑

i=0

εk(εt̃i)r̃i

)

→
∫ 1

0

r(τ ) dτ , (38)

as ε → 0. We also have that

| τ∗
ε

− t̃ñ| < max(k(εtn), k(εt̃ñ)) ≤ K

and hence

m∨̃ñ
1 k(εt̃ñ) → m1(τ

∗)k(τ ∗), (39)

as ε → 0. So, to prove the desired result, by Eqs. (38) and (39), it is
sufficient to show that

|λ̄ε,F
0, 1
ε

(θ0)| ≤
(

n−1
∑

i=0

εk(εti)ri

)

+
(

ñ−1
∑

i=0

εk(εt̃i)r̃i

)

+ m∨̃ñ
1 k(εt̃ñ) (40)

for all θ0 ∈ S
1.

Fix θ0 ∈ S
1. Let θ :

[

0, 1
ε

]

→ S
1 be the solution of (12) start-

ing at θ(0) = θ0, and let θ̂ :
[

0, 1
ε

]

→ R be a lift of θ . For each 1 ≤
i < n, letψi : R → S

1 be the solution of the autonomous differential
equation

ψ̇i = F(ψi, εti) (41)

for whichψi(ti) = θ(ti), and let ψ̂i : R → R be a lift ofψi with ψ̂i(ti)

= θ̂ (ti). For all t ∈ [ti, ti+1], we have

|θ̂ (t)− ψ̂i(t)| ≤
∫ t

ti

|θ̇ (s)− ψ̇i(s)| ds

=
∫ t

ti

|F(θ(s), εs)− F(ψi(s), εti)| ds

≤
∫ t

ti

|F(θ(s), εs)− F(ψi(s), εs)|

+ |F(ψi(s), εs)− F(ψi(s), εti)| ds

≤
∫ t

ti

m∨i
1 |θ̂ (s)− ψ̂i(s)| + m∨i

2 ε(s − ti) ds

and so a suitable version of Grönwall’s inequality (Ref. 50, Corollary
2) gives that

|θ̂ (t)− ψ̂i(t)| ≤
∫ t

ti

m∨i
2 ε(s − ti) em∨i

1 (t−s) ds

= εm∨i
2 e2(m

∨i
1 (t − ti))(t − ti)

2.

Now, all solutions of (41) are k(εti)-periodic, and so Eq. (33) applied
to the τ -independent function F(θ , εti) gives

∫ ti+1

ti

∂F
∂θ
(ψi(t), εti) dt = 0.
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Hence,

|λ̄ε,Fti ,ti+1
(θ0)|

=
∣

∣

∣

∣

λ̄ε,Fti ,ti+1
(θ0)−

∫ ti+1

ti

∂F
∂θ
(ψi(t), εti) dt

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ ti+1

ti

∂F
∂θ
(θ(t), εt)− ∂F

∂θ
(ψi(t), εti) dt

∣

∣

∣

∣

≤
∫ ti+1

ti

∣

∣

∂F
∂θ
(θ(t), εt)− ∂F

∂θ
(ψi(t), εt)

∣

∣

+
∣

∣

∂F
∂θ
(ψi(t), εt)− ∂F

∂θ
(ψi(t), εti)

∣

∣ dt

≤
∫ ti+1

ti

m∨i
11|θ̂ (t)− ψ̂(t)| + m∨i

12ε(t − ti) dt

≤
∫ ti+1

ti

m∨i
11εm

∨i
2 e2(m

∨i
1 (t − ti))(t − ti)

2 + m∨i
12ε(t − ti) dt

= ε
(

m∨i
11m

∨i
2 e3(m

∨i
1 k(εti))k(εti)

3 + 1
2
m∨i

12k(εti)
2
)

= εk(εti)ri.

By the same reasoning applied to the time-reversal of (12) (i.e.,
applied to F1,0 in place of F), we likewise have that for all 1 ≤ i < ñ,

|λ̄ε,F
t̃i+1 ,t̃i

(θ0)| ≤ εk(εt̃i)r̃i.

Finally,

|λ̄ε,F
tn ,t̃ñ
(θ0)| ≤

∫ t̃ñ

tn

∣

∣

∂F
∂θ
(θ(t), εt)

∣

∣ ≤ m∨̃ñ
1 k(εt̃ñ).

Combining our bounds on |λ̄ε,Fti ,ti+1
(θ0)|, |λ̄ε,F

t̃i+1 ,t̃i
(θ0)|, and |λ̄ε,F

tn ,t̃ñ
(θ0)|

yields the required Eq. (40). �

Proof of Theorem 24(A). Continuing with the notations in the
proof of Proposition 26, and letting

R = M11M2K
2e3(M1K)+ 1

2
M12K,

we have that ri ≤ R for all 1 ≤ i < n and r̃i ≤ R for all 1 ≤ i < ñ,
and we also have that

(

n−1
∑

i=0

k(εti)

)

+
(

ñ−1
∑

i=0

k(εt̃i)

)

= 1
ε

− (t̃ñ − tn) ≤ 1
ε
.

Hence,
(

n−1
∑

i=0

εk(εti)ri

)

+
(

ñ−1
∑

i=0

εk(εt̃i)r̃i

)

≤ R

and hence, by Eq. (40),

|λ̄ε,F
0, 1
ε

(θ0)| ≤ R + M1K =: C[F]

for all ε > 0 and θ0 ∈ S
1. Now, it is easy to see that C[Fσ1 ,σ2 ] ≤ C[F],

for any σ1, σ2 ∈ [0, 1]. Hence,

|λ̄ε,Fs,t (θ0)| ≤ C[Fεs,εt] ≤ C[F], (42)

for all s, t ∈ [0, 1
ε
]. So, by Proposition 6, F is neutrally stable with

constant c = eC[F]. It is clear that C[·] is locally bounded (in fact,

continuous) with respect to the norm ‖ · ‖F , and hence F is robustly
neutrally stable. �

The following corollary will play a similar role in the proof of
Theorem 24(C) to the role played by Lemma 2 of Ref. 17 in the main
results of Ref. 17.

Corollary 45. Suppose F has no zeros, and let

sgn(F) =
{

1, F > 0 everywhere,
−1, F < 0 everywhere.

Then, for all ε > 0 and θ0 ∈ S
1,

sgn(F) ∂8

∂(ε−1)

(

1
ε
, θ0, 0, 1

)

≥ c−1L,

where c = eC[F] is as in the proof of Theorem 24(A).
Proof. Follows immediately from Eqs. (42) and (34). �

For the sake of completeness, in Appendix A, we give bounds
on the limiting range of ∂8

∂(ε−1)

(

1
ε
, θ0, 0, 1

)

as ε → 0.

Now, as an immediate consequence of Corollary 45, we obtain
that if F has no zeros, then

sgn(F)18
(

1
ε
, θ0

)

≥ 1
ε
c−1L, (43)

for all ε > 0 and θ0 ∈ S
1. [In fact, as one would intuitively expect, it

is not hard to show by elementary means that

ε18
(

1
ε
, θ0

)

→ sgn(F)

∫ 1

0

2π

k(τ )
dτ

uniformly across θ0 ∈ S
1 as ε → 0. Further results on this conver-

gence are given in Ref. 17 between Eqs. (4.20) and (4.22).]

D. More on tracking

We first give the result that provides the connection between
tracking and stability in Theorem 24(B) and (C); it is a conse-
quence of Theorem 24(A) or Proposition 26. In the following, Leb(·)
denotes the Lebesgue measure on [0, 1].

Lemma 46. Suppose F is generic, and let (U, y) be a complete
curve of the stable manifold, with 3ad being the corresponding adi-
abatic Lyapunov exponent. Let S ⊂ U be a Borel set. For all η > 0,
there exist δ0, ε0 > 0 such that for any ε ∈ (0, ε0) and δ ∈ (0, δ0), if
θ(·) is a solution of (12) that δ-tracks (S, y|S) over

[

0, 1
ε

]

, then [writing
θ(0) =: θ0],

|λε,F
0, 1
ε

(θ0)−3ad| ≤ 2M1Leb(U \ S)+ η.

Proof. Essentially by definition,

λ
ε,F

0, 1
ε

(θ0)−3ad = ε

∫ 1
ε

0

∂F
∂θ
(θ(s), εs)− Y(s) ds,

with

Y(s) :=
{

∂F
∂θ
(y(εs), εs), εs ∈ U,

0, εs /∈ U.

Now, first observe that for any solution θ(·) of (12) (with any ε > 0),
we have

ε

∫

{t:εt∈U\S}

∣

∣

∂F
∂θ
(θ(s), εs)− ∂F

∂θ
(y(εs), εs)

∣

∣ ds

≤ 2M1Leb(U \ S). (44)
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Now, fix η > 0. Taking δ0 = η

3M11
, we have that for any ε > 0 and

δ ∈ (0, δ0), if θ(·) is a solution of (12) that δ-tracks (S, y|S) over [0, 1
ε
],

then

ε

∫

{t:εt∈S}

∣

∣

∂F
∂θ
(θ(s), εs)− ∂F

∂θ
(y(εs), εs)

∣

∣ ds

≤ δM11Leb(S) ≤ η

3
Leb(S). (45)

Now, let W ⊂ [0, 1] \ Ū be a disjoint union of finitely many intervals
[w−

i , w+
i ], i = 1, . . . , n, such that

Leb([0, 1] \ (U ∪ W)) <
η

3M1

.

So, for any solution θ(·) of (12) (with any ε > 0), we have

ε

∫

{t:εt∈[0,1]\(U∪W)}

∣

∣

∂F
∂θ
(θ(s), εs)

∣

∣ ds ≤ η

3
. (46)

For each 1 ≤ i ≤ n, Fw−
i ,w+

i
has no zeros; and so on the basis of

Theorem 24(A) or Proposition 26, let ε0 > 0 be such that for all
ε ∈ (0, ε0) and 1 ≤ i ≤ n, every solution θ(·) of (12) has

ε

∣

∣

∣

∣

∣

∣

∫

w+
i
ε

w−
i
ε

∂F
∂θ
(θ(s), εs) ds

∣

∣

∣

∣

∣

∣

≤ η

3n
. (47)

Combining the four Eqs. (44)–(47) yields the desired result. �

Let us now introduce a few further tracking-related definitions.
In the following, we assume that we have a set V ⊂ [0, 1], a function
q : V → S

1, and a point p ∈ S
1.

Definition 47. Fix ε > 0. Given 1, δ > 0, we say that (12)
exhibits (1, δ)-tracking of (V, q) away from p if every solution θ(·)
of (12) with d(θ(0), p) ≥ 1

2
δ-tracks (V, q).

Definition 48. We say that F exhibits strict tracking of (V, q)
away from p if given any 1, δ > 0, for sufficiently small ε, (12)
exhibits (1, δ)-tracking of (V, q) away from p.

Definition 49. Assume that V is σ -compact. We say that F
exhibits tracking of (V, q) away from p if for every compact subset S
of V \ {0}, F exhibits strict tracking of (S, q|S) away from p.

E. When Ū is connected and 0∈U
Proposition 50. Suppose F is generic and not initially multi-

stable, and that Ū is connected and 0 ∈ U. Let (z0, 0) be the unique
hyperbolic unstable zero of F in S

1 × {0}. Then, F exhibits tracking of
(U, y) away from z0.

In other words, the conclusion of Proposition 50 states that by
taking ε sufficiently small, we can guarantee that solutions θ(t) that
do not start too close to z0 will be close to y(εt) at all times t ∈ 1

ε
S,

where S ⊂ U is bounded away from {0} ∪ ∂U.
This is fairly obvious given the definition of (U, y). Unsurpris-

ingly, to write out a rigorous proof would involve no conceptual dif-
ficulties or subtleties but would, nonetheless, be technically tedious.
Therefore, we will omit a proof.

Combining Proposition 50 with Lemma 46 gives the following
immediate consequence:

Proposition 51. In the setting of Proposition 50, F is exponen-
tially stable away from z0 with rate3ad.

Proof. Fix η,1 > 0, let S ⊂ U \ {0} be a compact set with
2M1Leb(U \ S) < η

2
, let δ0, ε0 be the values given by Lemma 46

applied to S with η

2
in place of η, and take any δ ∈ (0, δ0). On the

basis of Proposition 50, suppose ε < ε0 is sufficiently small that
(12) exhibits (1, δ)-tracking of (S, y|S) away from z0. Then, every
solution θ(·) of (12) with θ(0) /∈ B1

2
(z0) has |λε,F

0, 1
ε

(θ(0))−3ad|
≤ η. �

F. Proof of Theorem 24(B) for 0 /∈ U

Assume that F is generic, S
1 × {0} contains no zeros, and Ū is

connected.
To show that F exhibits tracking of (U, y), we need to show that

for any compact S ⊂ U and any 1, δ > 0, if ε is sufficiently small,
then there is an arc Pε of length less of 1 such that every solution
of (12) starting outside of Pε δ-tracks (S, y|S). Fix S, 1 and δ. Let
τ (0) = inf U and let σ0 = min S. We have that S

1 × {τ (0)} contains
exactly one zero of F, namely, a non-hyperbolic zero; so, on the basis
of Remark 9(B), choose a value τ̃ ∈ (τ (0), σ0) such that the only zeros
in S

1 × {τ̃ } are (y(τ̃ ), τ̃ ) and a hyperbolic unstable zero (z(τ̃ ), τ̃ ).
Note that Fτ̃ ,0 is generic and not initially multistable, and the cor-
responding complete curve (Uτ̃ ,0, yτ̃ ,0) of the stable slow manifold
has

Ūτ̃ ,0 =
[

0, τ̃−τ
(0)

τ̃

]

,

yτ̃ ,0(0) = z(τ̃ ).

Take any 1̃ < 2 d(y(τ̃ ), z(τ̃ )) and let P̃ = B 1̃
2
(z(τ̃ )). We have that

(a) by Proposition 50 applied to Fτ̃ ,1, if ε is sufficiently small then
every solution θ(·) of (12) with θ

(

τ̃

ε

)

/∈ P̃ δ-tracks (S, y|S), and
(b) by Proposition 51 applied to Fτ̃ ,0, since y(τ̃ ) has a neighborhood

that does not intersect P̃, the length of the arc

Pε := {θ(0) : θ(·) solves (12), θ
(

τ̃

ε

)

∈ P̃} (48)

tends to 0 exponentially as ε → 0; and so length(Pε) < 1 for
sufficiently small ε.

Combining (a) and (b) gives the desired result.
Having shown that F exhibits tracking of (U, y), combining this

with Lemma 46 gives that F is exponentially stable with rate3ad, by
exactly the same reasoning as in the proof of Proposition 51.

G. Proof of Proposition 25

We start with the following general result.
Proposition 52. Suppose F ∈ F is such that for some

τ∗ ∈ (0, 1),

• F has no zeros in S
1 × (τ∗, 1];

• for all τ ∈ [0, τ∗), S
1 × {τ } contains exactly two zeros of F, namely,

a hyperbolic stable zero (y(τ ), τ) and a hyperbolic unstable zero
(z(τ ), τ); and

• letting

sF =
{

1, F > 0 on S
1 × (τ∗, 1],

−1, F < 0 on S
1 × (τ∗, 1],

we have sF
∂F
∂τ
(y(τ ), τ) > 0 and sF

∂F
∂τ
(z(τ ), τ) > 0 for all

τ ∈ [0, τ∗).
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Then,

min
θ0∈S1

sF18
(

1
ε
, θ0

)

→ ∞ as ε → 0.

Proof. First, take θ0 with sFF(θ0, 0) > 0. Let θ(·) be the solution

of (12) with θ(0) = θ0, and let θ̂ (·) be a lift of θ(·). By the implicit
function theorem, on the whole of [0, τ∗), the derivative of τ 7→ y(τ )
has sign sF and the derivative of τ 7→ z(τ ) has sign −sF. So, it is clear
that θ(t) cannot cross past either y(εt) or z(εt) during t ∈ [0, τ∗

ε
).

Therefore, sFθ̇ (t) = sFF(θ(t), εt) > 0 for all t ∈ [0, τ∗
ε
), and so

sF

(

θ̂
(

τ∗
ε

)

− θ̂ (0)
)

> 0.

It follows that if we now let θ0 be an arbitrary point in S
1, then

sF

(

θ̂
(

τ∗
ε

)

− θ̂ (0)
)

> −2π .

Furthermore, obviously sFF(θ(t), εt) > 0 for all t ∈
(

τ∗
ε

, 1
ε

]

. And,
taking an arbitrary τ∗∗ ∈ (τ∗, 1), we have that µ

:= min(θ ,τ)∈S1×[τ∗∗ ,1] sFF(θ , τ) > 0. Hence,

min
θ0∈S1

sF18
(

1
ε
, θ0

)

> −2π + µ(1−τ∗∗)
ε

.

�

Now, suppose F is generic and not initially multistable, and Ū
is not connected. Let [τ−

0 , τ+
0 ] be the first connected component of

Ū and let τ1 be the lower end point of the second connected compo-
nent of Ū. Fix an arbitrary σ ∈ (τ+

0 , τ1). On the basis of Remark 9(B)
applied to the non-hyperbolic zero in S

1 × {τ+
0 } and in S

1 × {τ1}, we
can find τ̃0 < τ+

0 and τ̃1 > τ1 such that Fτ̃0 ,σ and Fτ̃1 ,σ each fulfill the
conditions of Proposition 52. For each τ ∈ (τ1, τ̃1], let (z(τ ), τ) be
the hyperbolic unstable zero in S

1 × {τ }. Let

30 =
∫ τ+

0

τ−
0

∂F
∂θ
(y(τ ), τ) dτ

and fix τ ′ ∈ (τ1, τ̃1] sufficiently close to τ1 that

3̃ :=
∫ τ ′

τ1

∂F
∂θ
(z(τ ), τ) dτ < −30.

Fix an arbitrary η > 0 sufficiently small that 3̃+ η < −30 − η.
Now, we will show that for every compact S ⊂ (τ1, τ

′] and every
1, δ > 0, there are intervals of ε-values reaching arbitrarily close
to 0 for which one can find an arc Pε of length less than 1 such
that every solution θ(·) of (12) starting outside Pε δ-tracks (S, z|S).
Without loss of generality, take S of the form S = [τ ′′, τ ′] for some
τ ′′ ∈ (τ1, τ

′). Without loss of generality, take δ < d(y(τ ′′), z(τ ′′)),
and let Q = Bδ(z(τ

′)). Since Fτ̃1 ,σ fulfills the conditions of Propo-
sition 52, we have, in particular, that δ < d(y(τ ′), z(τ ′)). Fix any
1 > 0. Also define the positive quantities

υ := min
τ∈S

min(F(z(τ )+ δ, τ), −F(z(τ )− δ, τ)),

ν := max
τ∈S

|z′(τ )|,

where z′ denotes the derivative of z. Using Theorem 24(B) applied
to F0,σ and Proposition 51 applied to Fτ ′ ,σ [where in the latter case,
we note that y(τ ′) has a neighborhood not intersecting the arc Q],

we can find ε0 > 0 such that for all ε < ε0, the following statements
hold:

(1) There is an arc Pε of length less than1 such that, writing

J̃(ε) = {θ
(

σ

ε

)

: θ(·) solves (12), θ(0) /∈ Pε},

we have

length(J̃(ε)) < 2π · e
3̃+η
ε .

(2) Writing

˜̃J(ε) = {θ
(

σ

ε

)

: θ(·) solves (12), θ
(

τ ′
ε

)

∈ Q},

we have

length(˜̃J(ε)) > 2δ · e
−30−η

ε .

(3) We have εν < υ; and therefore, for any solution θ(·) of (12), if

θ( τ
′
ε
) ∈ Q, then d(θ(t), z(εt)) < δ for all t with εt ∈ S.

Note that ˜̃J(ε) depends continuously on ε. One can also take Pε
and hence J̃(ε) to depend continuously on ε: if 0 ∈ U, then by Propo-
sition 51 Pε can be taken independent of ε, and if 0 /∈ U then one can
see from the proof of Theorem 24(B) [see, in particular, Eq. (48)]
that Pε can be taken to depend continuously on ε. By Proposition 52

applied to Fτ ′ ,σ , ˜̃J(ε)moves unboundedly round the circle as ε → 0.
Also, by the tracking statement in Theorem 24(B) applied to F0,τ̃0 , it
is clear that the set

J̃0(ε) := {θ
(

τ̃0
ε

)

: θ(·) solves (12), θ(0) /∈ Pε}

= {θ
(

τ̃0
ε

)

: θ(·) solves (12), θ
(

σ

ε

)

∈ J̃(ε)}

remains within an ε-independent proper subset of S
1 for all suf-

ficiently small ε, and, therefore, applying Proposition 52 to Fτ̃0 ,σ

gives that J̃(ε) moves unboundedly round the circle as ε → 0 in

the opposite direction to ˜̃J(ε). However, by points (1) and (2), we

also have that length(J̃(ε)) < length(˜̃J(ε)) for all sufficiently small ε.
Hence, there are intervals of ε-values arbitrarily close to 0 for which

J̃(ε) ⊂ ˜̃J(ε). For each such ε, every solution θ(·) of (12) starting out-

side Pε has θ( τ
′
ε
) ∈ Q and hence, by point (3), d(θ(t), z(εt)) < δ for

all t with εt ∈ S.

H. Proof of Theorem 24(C)

We start with the following general result, which is a conse-
quence of Corollary 45.

Proposition 53. In the setting of Proposition 52, every θ0 ∈ S
1

with sFF(θ0, 0) > 0 has

inf
ε>0

sF
∂8

∂(ε−1)

(

1
ε
, θ0, 0, 1

)

> 0.

Proof. Take an arbitrary τ∗∗ ∈ (τ∗, 1). By Eq. (34), for any ε > 0
and θ0 ∈ S

1, letting θ(·) be the solution of (12) with θ(0) = θ0, we
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have

∂8

∂(ε−1)

(

1
ε
, θ0, 0, 1

)

= ε

∫ 1
ε

0

e
λ̄
ε,F

u,ε−1 (θ0)F(θ(u), εu) du

= ε

∫
τ∗∗
ε

0

e
λ̄
ε,F

u,ε−1 (θ0)F(θ(u), εu) du + ∂8

∂(ε−1)

(

1
ε
, θ( τ∗∗

ε
), τ∗∗, 1

)

.

By Corollary 45 applied to Fτ∗∗ ,1, we have that

infε>0, θ∗∗∈S1 sF
∂8

∂(ε−1)

(

1
ε
, θ∗∗, τ∗∗, 1

)

> 0;

and as in the proof of Proposition 52, we have that if sFF(θ0, 0) > 0,
then sFF(θ(u), εu) ≥ 0 for all u. Hence, the result. �

Now, suppose F is generic and not initially multistable, and Ū
has n ≥ 2 connected components. Let

τ−
1 <τ

+
1 <τ

−
2 <τ

+
2 < · · · < τ−

n <τ
+
n

be the end points of the connected components of Ū. For each
1 ≤ i < n, take an arbitrary value σ̃i ∈ (τ+

i , τ−
i+1) ⊂ [0, 1] \ Ū.

To show that F exhibits tracking of (U, y), we need to show that
for any compact S ⊂ U \ {0} and any 1, δ > 0, if ε is sufficiently
small, then there is an arc Pε of length less of1 such that every solu-
tion of (12) starting outside of Pε δ-tracks (S, y|S). Fix S, and for each
1 ≤ i ≤ n, let

σ−
i = min(S ∩ [τ−

i , τ+
i ]),

σ+
i = max(S ∩ [τ−

i , τ+
i ]).

Without loss of generality, assume that for all 1 ≤ i < n, σ+
i is suf-

ficiently close to τ+
i that Fσ+

i ,σ̃i
fulfills the conditions of Proposition

52. For each 1 ≤ i < n, let (z(σ+
i ), σ

+
i ) be the hyperbolic unstable

zero in S
1 × {σ+

i }. Without loss of generality, let δ > 0 be such that
for all 1 ≤ i < n, δ < d(y(σ+

i ), z(σ
+
i )). Let Qi = Bδ(y(σ

+
i )) for each

1 ≤ i < n. Fix1 > 0, and on the basis of Theorem 24(B) applied to
F0,σ+

1
, for all sufficiently small ε, let Pε be an arc of length less than

1 such that every solution θ(·) of (12) starting outside Pε δ-tracks
(S ∩ [τ−

1 , τ+
1 ], y|S∩[τ−

1 ,τ+
1 ]).

For each 2 ≤ i ≤ n, pick a value τ ′
i ∈ (τ−

i , σ−
i ) sufficiently close

to τ−
i that Fτ ′

i ,σ̃i−1
fulfills the conditions of Proposition 52. For each

2 ≤ i ≤ n, let (z(τ ′
i ), τ

′
i ) be the hyperbolic unstable zero in S

1 × {τ ′
i },

and let P(i) be a neighborhood of z(τ ′
i ) such y(τ ′

i ) /∈ P̄(i). For each
1 ≤ i < n and each ε > 0, let

J−(i)(ε) =
{

θ
(

σ̃i
ε

)

: θ(·) solves (12), θ
(

σ+
i
ε

)

∈ Qi

}

,

J+(i)(ε) =
{

θ
(

σ̃i
ε

)

: θ(·) solves (12), θ
(

τ ′
i+1
ε

)

∈ P(i+1)

}

.

Using Proposition 50 applied to Fτ ′
i ,σ+

i
for all 2 ≤ i ≤ n, we obtain

that for every sufficiently small ε > 0, if

J−(i)(ε) ∩ J+(i)(ε) = ∅ ∀ 1 ≤ i < n, (49)

then all solutions of (12) starting outside Pε δ-track S. So, it remains
to show that the set of ε-values for which (49) fails is exponentially

vanishing. For each 1 ≤ i < n, let

Ei = {ε > 0 : J−(i)(ε) ∩ J+(i)(ε) 6= ∅}.

It is clear that a finite union of exponentially vanishing sets is expo-
nentially vanishing, so it is sufficient to show that Ei is exponentially
vanishing for each 1 ≤ i < n.

Fix i. By Proposition 51 applied to Fσ+
i ,σ̃i

and Fτ ′
i+1 ,σ̃i

, we can

find λ < 0 such that for all sufficiently small ε, J−(i)(ε) and J+(i)(ε) are

both of length less than e
λ
ε . Let

si =
{

1, F > 0 on S
1 × (τ+

i , τ−
i+1),

−1, F < 0 on S
1 × (τ+

i , τ−
i+1).

Let θ̃−
i ∈ Qi and θ̃+

i ∈ P(i+1) be such that siF(θ̃
−
i , σ+

i ) > 0 and

siF(θ̃
+
i , τ ′

i+1) > 0. Let x1 : (0, ∞) → R be a lift of the function T 7→
8(T, θ̃−

i , σ+
i , σ̃i), and let x2 : (0, ∞) → R be a lift of the function

T 7→ 8(T, θ̃+
i , τ ′

i+1, σ̃i). Define x : (0, ∞) → R by x = si(x1 − x2),

and let dx
d(ε−1)

: (0, ∞) → R denote the derivative of x. For suffi-

ciently small ε, we have

ε ∈ Ēi =⇒ x
(

1
ε

)

∈
{

2π j + h : j ∈ N, |h| < 2 e
λ
ε

}

. (50)

By Eq. (35) applied to Fσ+
i ,σ̃i

and Fτ ′
i+1 ,σ̃i

, we have that

x
(

1
ε

)

− x(0) ≤ (τ ′
i+1−σ+

i )M

ε
=: µ+

ε
(51)

for all ε > 0. By Proposition 53 applied to Fσ+
i ,σ̃i

and Fτ ′
i+1 ,σ̃i

, there

exists µ− > 0 such that

dx
d(ε−1)

≥ µ− on the whole of (0, ∞). (52)

Applying elementary analysis to Eqs. (50)–(52) yields that Ēi is
exponentially vanishing. Specifically, this analysis is as follows:

Given j ∈ N and sufficiently small ε > 0, if

|x
(

1
ε

)

− 2π j| < 2 e
λ
ε ,

then

µ+
ε

≥ x
(

1
ε

)

− x(0) > 2π(j − 1)− x(0)

and so,

|x
(

1
ε

)

− 2π j| < 2 e
λ(2π(j−1)−x(0))

µ+ def= ακ j,

where α > 0 and κ ∈ (0, 1). So, letting

Xi =
{

2π j + h : j ∈ N, |h| < ακ j
}

,

we have that

ε ∈ Ēi =⇒ x
(

1
ε

)

∈ Xi

for all sufficiently small ε. So, it is sufficient to show that the set
{ε > 0 : x

(

1
ε

)

∈ Xi} is exponentially vanishing; this is justified as
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follows: for each ξ > 0,

Leb({ζ ∈ [ξ , ∞) : x(ζ ) ∈ Xi})

≤ 1
µ−

Leb({ζ ∈ [x(ξ), ∞) : ζ ∈ Xi})

≤ 1
µ−

∞
∑

j=bx(ξ)c
2ακ j

= 2ακbx(ξ)c

µ−(1 − κ)

<
2ακx(ξ)−1

µ−(1 − κ)

≤ 2ακx(0)−1

µ−(1 − κ)
κµ−ξ .

Thus, we have shown that F almost exhibits tracking of (U, y).
Combining this with Lemma 46 gives that F is almost exponentially
stable with rate3ad, by exactly the same reasoning as in the proof of
Proposition 51.

I. Transition between neutral stability and

exponential stability

Recall from the discussion of the normal form (20) in Sec. III G
that the graph of the map x2 7→ −

√

D(fγ ,x2)was a semi-ellipse. Since

the quadratic function Fnormal
γ is only an approximation of the behav-

ior of (Fγ )γ∈0 around the critical zero, we will need to consider

perturbation of ellipses. So, before addressing the specific setting of
Sec. III G, let us first give some general notations and a basic fact
regarding ellipses and perturbation of ellipses.

For any τ0 ∈ R and r1, r2 > 0, define the ellipse

Sτ0 ,r1 ,r2 =
{

(x, y) ∈ R
2 :
(

x−τ0
r1

)2

+
(

y

r2

)2

= 1

}

,

i.e., Sτ0 ,r1 ,r2 has center (τ0, 0) and its principal axes are a horizontal
axis of radius r1 and a vertical axis of radius r2. We will use the fol-
lowing notation for perturbation of this ellipse: given h ∈ R

5 with
r1 + h1 > 0 and r2 + h2 > 0, define

S̃τ0 ,r1 ,r2(h)

=
{

(x, y + h4 + h5(x − τ0)) :
(

x−(τ0+h3)

r1+h1

)2

+
(

y

r2+h2

)2

= 1

}

.

Now, for1 ∈ (0, 1), define the solid elliptical annulus

Aτ0 ,r1 ,r2(1) =
⋃

t∈[1−1,1+1]

Sτ0 ,tr1 ,tr2 .

Also, define S −
τ0 ,r1 ,r2

and A −
τ0 ,r1 ,r2

(1) to be the intersection, respec-
tively, of Sτ0 ,r1 ,r2 and Aτ0 ,r1 ,r2(1) with the lower half-plane
R × (−∞, 0).

We now address the question of how strongly one can perturb
the ellipse Sτ0 ,r1 ,r2 in the manner described above while remaining
within Aτ0 ,r1 ,r2(1).

Lemma 54. Given 1 ∈ (0, 1) and h ∈ R
5 with r1 + h1 > 0

and r2 + h2 > 0, if

max

(

|h1|+|h3|
r1

, |h2|+|h4|
r2

+
r1(1+ 1√

2
1)

r2
|h5|

)

≤ 1√
2
1,

then S̃τ0 ,r1 ,r2(h) ⊂ Aτ0 ,r1 ,r2(1).
Proof. First, note that the transformation

(τ0 + x, y) 7→
(

x
r1

,
y

r2

)

sends Sτ0 ,r1 ,r2 and Aτ0 ,r1 ,r2(1) onto S0,1,1 and A0,1,1(1), respectively,

and also sends S̃τ0 ,r1 ,r2(h) onto the set S̃0,1,1(h
′) with

h′ =
(

h1
r1

, h2
r2

, h3
r1

, h4
r2

, r1h5
r2

)

.

So, without loss of generality take τ0 = 0 and r1 = r2 = 1.
Note that the nearest point on ∂A0,1,1(1) to any given point on

S0,1,1 is of distance1 away. Now, S0,1,1 is mapped onto S̃0,1,1(h) by
first applying the transformation

(x, y) 7→ ((1 + h1)x, (1 + h2)y + h4)

and then the transformation

(x, y) 7→ (x, y + h5x).

The first transformation moves points horizontally through a max-
imum distance of |h1| + |h3| and vertically through a maximum
distance of |h2| + |h4|. Since |h1| + |h3| ≤ 1√

2
1, the horizontal coor-

dinate of the resulting points must remain within distance 1 + 1√
2
1

of 0. Therefore, the application of the second transformation moves

points through a maximum vertical distance of
(

1 + 1√
2
1
)

|h5|
while leaving the horizontal coordinate the same. Thus, overall, in

going from S0,1,1 to S̃0,1,1(h), the horizontal and vertical distances
moved by each point are a maximum of 1√

2
1, and, therefore, the

overall distance is a maximum of1. �

Now, given a 2 × 2 real symmetric matrix A and a vector
x ∈ R

2, write

A[x] := xᵀAx = a11x
2
1 + 2a12x1x2 + a22x

2
2.

It is easy to verify the following:

(A) If det(A) < 0, then for all x2 ∈ R \ {0}, the quadratic function
x1 7→ A[x1, x2] takes both positive and negative values.

(B) If det(A) > 0, then sgn(a11) = sgn(a22) 6= 0, i.e., diag-sgn(A) is
well-defined, and furthermore,

sgn(A[x1, x2]) = diag-sgn(A)

for all (x1, x2) ∈ R
2 \ {(0, 0)}.

Now, for F ∈ C2(S1 × [0, 1], R), if we fix (θ , τ) ∈ S
1 × [0, 1]

and v ∈ R
2 and define a function w(·) by

w(t) = F(θ + tv1, τ + tv2),

then the second derivative of w is given by

w′′(t) = HessF(θ + tv1, τ + tv2)[v]. (53)

It is now straightforward to prove Lemma 29.
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Proof of Lemma 29. Let us fix vectors v, ṽ ∈ R
2 such that

HessF(θ0, τ0)[v] > 0 and HessF(θ0, τ0)[ṽ] < 0 and define

w(t) = F(θ + tv1, τ + tv2),

w̃(t) = F(θ + tṽ1, τ + tṽ2)

for t in a neighborhood of 0. Since ∇F(θ0, τ0) = 0, we have that
w′(0) = w̃′(0) = 0, and, therefore, by Eq. (53), w(·) > 0 and w̃(·)
< 0 on a punctured neighborhood of 0. It follows, in particular, that
v and ṽ are linearly independent. Now, for all t in such a punctured
neighborhood, the intermediate value theorem gives a point (θt, τt)

on the line segment joining w(t) and w̃(t) such that F(θt, τt) = 0;
and since v and ṽ are linearly independent, we have that (θt, τt)

6= (θ0, τ0). �

We now prove Theorem 30.
Standing assumption. Without loss of generality, take

diag-sgn(D1) = 1 and d2 > 0.
For convenience, for all small δ > 0, define

0δ = [γ0 − δ, γ0 + δ],

2δ = (θ0 − δ, θ0 + δ),

Tδ = (τ0 − δ, τ0 + δ),

Sδ = 2δ × Tδ 3 (θ0, τ0),

Cδ = 0δ × S̄δ 3 (γ0, θ0, τ0).

Note that Fγ0 is strictly positive on (S1 × [0, 1]) \ {(θ0, τ0)}. There-
fore, by continuity, for all small δ > 0, we can find r(δ) ∈ (0, δ) such
that Fγ (θ , τ) > 0 for all

(γ , θ , τ) ∈ 0r(δ) × ((S1 × [0, 1]) \ Sδ).

Now, take δ1 > 0 sufficiently small that the following statements
hold:

• det(HessFγ (θ , τ)) > 0 for all (γ , θ , τ) ∈ Cδ1 and
• sgn(Fγ (θ0, τ0)) = sgn(γ − γ0) for all γ ∈ 0δ1 .

Define positive finite constants m22, M12, and m0 such that the
following statements hold:

• for all (γ , θ , τ) ∈ Cδ1 and all |v| = 1,

HessFγ (θ , τ)[v] ≥ m22;

• for all γ ∈ 0δ1 ,

|∇Fγ (θ0, τ0)| ≤ M12|γ − γ0|,
sgn(γ − γ0)Fγ (θ0, τ0) ≥ m0|γ − γ0|.

Let δ2 = r(δ1). We will prove Theorem 30 in the following
steps:

• Step 1. There does not exist a sequence (γn, θn, τn) converging to
(γ0, θn, τ0) such that F(γn, θn, τn) = 0 and γn > γ0 for all n.
So, we can define δ3 > 0 sufficiently small that for all γ ∈
(γ0, γ0 + δ3), Fγ has no zeros in Sδ3 ; and hence, for all γ ∈
(γ0, γ0 + r(δ3)), Fγ has no zeros at all. We then take δ in the
statement of Theorem 30 to be min(δ2, r(δ3)).

• Step 2. For all γ ∈ (γ0 − δ2, γ0), Fγ is generic with a unique
complete curve (Uγ , yγ ) of the stable slow manifold, and Uγ is
non-empty and connected. Write

Yγ (τ ) := ∂Fγ
∂θ
(yγ (τ ), τ),

so that

3(γ ) =
∫

Uγ

Yγ (τ ) dτ .

• Step 3. We will propose an approximation (Ũγ , Ỹγ ) of (Uγ , Yγ ),
based on the normal form (20); this gives

3̃(γ ) :=
∫

Ũγ

Ỹγ (τ ) dτ = πdθθd2(γ − γ0)
√

det(D1)
.

• Step 4. For any η > 0, taking γ > γ0 sufficiently close to γ0

guarantees that

|3(γ )− 3̃(γ )| ≤ η|γ − γ0|.

1. Step 1

Suppose for a contradiction that such a sequence (γn, θn, τn)

exists. For all sufficiently large n, we have that γn ∈ 0δ1 , and so
(θn, τn) 6= (θ0, τn). So, let tn > 0 and v(n) with |v(n)| = 1 be such that

(θn, τn) = (θ0 + tnv(n)1 , τ0 + tnv(n)2 ).

By Taylor’s theorem, there exists t̃n ∈ (0, tn) such that, letting

(θ̃n, τ̃n) = (θ0 + t̃nv(n)1 , τ0 + t̃nv(n)2 ),

we have

0 = Fγn(θ0, τ0)+ (∇Fγn(θ0, τ0) · v(n))tn

+ 1
2
HessFγn

(θ̃n, τ̃n)[v
(n)]t2

n

and, therefore,

(∇Fγn(θ0, τ0) · v(n))
2 ≥ 2Fγn(θ0, τ0)HessFγn

(θ̃n, τ̃n)[v
(n)].

For sufficiently large n, we have (γn, θ̃n, τ̃n) ∈ Cδ1 and so it follows
that

M2
12(γn − γ0)

2 ≥ 2m0m22(γn − γ0)

and, therefore,

M2
12(γn − γ0) ≥ 2m0m22.

However, this contradicts the fact that γn → γ0 as n → ∞.

2. Step 2

Fix γ ∈ (γ0 − δ2, γ0). Recall that Fγ is strictly positive outside
Sδ1 and so all zeros of Fγ lie inside Sδ1 . For each τ ∈ Tδ1 , we have that
HessFγ (·)[1, 0] is strictly positive on the whole of 2δ1 × {τ } and so
2δ1 × {τ } contains at most two zeros, and if2δ1 × {τ } contains two
zeros, then one is hyperbolic stable [which we denote (yγ (τ ), τ)],
and the other is hyperbolic unstable [which we denote (zγ (τ ), τ)].
Let

Uγ := {τ ∈ Tδ1 : 2δ1 × {τ } has two zeros}.
By Remark 9(A), Uγ is open and yγ (·) and zγ (·) are continuous on
Uγ . Now, Fγ (τ0, θ0) < 0, and so by the intermediate value theorem,
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2δ1 × {τ0} has at least (and hence exactly) two zeros. In other words,
τ0 ∈ Uγ . So, let (τ−

γ , τ+
γ ) be the connected component of Uγ contain-

ing τ0. Since the set of zeros of F is closed, it is clear that2δ1 × {τ−
γ }

and 2δ1 × {τ+
γ } each contain a zero of F, which we denote (θ−

γ , τ−
γ )

and (θ+
γ , τ+

γ ), and it is clear that both yγ (τ ) and zγ (τ ) converge to
θ±
γ as τ → τ±

γ . Hence, in particular, by Remark 9(A), (θ−
γ , τ−

γ ) and
(θ+
γ , τ+

γ ) are non-hyperbolic zeros.
We next show that (θ−

γ , τ−
γ ) and (θ+

γ , τ+
γ ) are non-degenerate.

By definition of δ1, since (γ , θ±
γ , τ±

γ ) ∈ Cδ1 , we have
∂2Fγ

∂θ2 (θ
±
γ , τ±

γ )

> 0. Now, take v± ∈ R
2 such that

(θ±
γ , τ±

γ ) = (θ0 + v±
1 , τ0 + v±

2 ).

Since Fγ (θ0, τ0) < 0 and HessFγ (·)[v±] is strictly positive through-
out the line segment

{(θ0 + tv±
1 , τ0 + tv±

2 ) : t ∈ [0, 1]},

we have that

∇Fγ (θ
±
γ , τ±

γ ) · v±>0.

Since ∂F
∂θ
(θ±
γ , τ±

γ ) = 0, it follows that ∂F
∂τ
(θ±
γ , τ±

γ ) 6= 0.
Finally, we show that there are no zeros of Fγ other than those

which we have already mentioned, namely, those in the set

{(yγ (τ ), τ), (zγ (τ ), τ)}τ∈(τ−
γ ,τ+

γ )
∪ {(θ±

γ , τ±
γ )}.

By definition, all zeros in 2δ1 × (τ−
γ , τ+

γ ) belong to this set. So, it
remains to show that given any

(θ , τ) ∈ 2δ1 × (Tδ \ (τ−
γ , τ+

γ )),

we have Fγ (θ , τ) > 0. Assume that τ ∈ (τ0 − δ1, τ
−
γ ); the case that

τ ∈ (τ+
γ , τ0 + δ1) proceeds in exactly the same way. Take t′ > 1 and

v ∈ R
2 such that

τ−
γ = τ0 + v2,

(θ , τ) = (θ0 + t′v1, τ0 + t′v2).

Once again, we have that Fγ (θ0, τ0) < 0 and HessFγ (·)[v] is strictly
positive throughout the line segment

{s(t) := (θ0 + tv1, τ0 + tv2) : t ∈ [0, t′]}.

Therefore, splitting into the cases that

(i) θ0 + v1 = θ−
γ ,

(ii) θ0 + v1 ∈ (θ−
γ , θ0 + δ1),

(iii) θ0 + v1 ∈ (θ0 − δ1, θ
−
γ ),

we have the following: In case (i), Fγ (s(1)) = 0 and so Fγ (θ , τ) =
Fγ (s(t

′)) > 0. In case (ii), by the intermediate value theorem, there
exists t′′ ∈ (0, 1) such that, letting τ ′′ = τ0 + t′′v2, we have

θ0 + t′′v1 = zγ (τ
′′),

so Fγ (s(t
′′)) = 0 and hence, again, Fγ (θ , τ) > 0. Case (iii) is the

same, with yγ in place of zγ .

3. Step 3

For convenience, let ρ1 =
√

2dθθ d2
det(D1)

and ρ2 =
√

2dθθd2. For each

γ < γ0, define the set Ũγ and the negative-valued function Ỹγ (·) on

Ũγ such that

graph Ỹγ = S
−
τ0 ,ρ1

√
γ0−γ ,ρ2

√
γ0−γ .

For each τ ∈ Ũγ , we can write Ỹγ (τ )more explicitly as

Ỹγ (τ )
2 = −det(D1)(τ − τ0)

2 + 2dθθd2(γ0 − γ ).

4. Step 4

Fix η > 0, and let 1 ∈ (0, 1) be sufficiently small that the area
of the elliptical semi-annulus A

−
0,ρ1 ,ρ2

(1) is at most η. For each
γ ∈ (γ0 − δ2, γ0), we have that Yγ < 0 on Uγ and Yγ tends to 0 at
the boundary points of Uγ . Therefore, to show the desired result, it
is sufficient to show that for all γ < γ0 sufficiently close to γ we have

graph Yγ ⊂ Aτ0 ,ρ1
√
γ0−γ ,ρ2

√
γ0−γ (1).

For each γ ∈ (γ0 − δ2, γ0), let δ(γ ) > 0 be the smallest value for
which all zeros of Fγ are contained in S̄δ(γ ) . Note that δ(γ ) → 0 as

γ ↗ γ0: for any small η̃ > 0, taking γ ∈ (γ0 − r(η̃), γ0) gives δ(γ )
< η̃.

Now, for each γ ∈ (γ0 − δ2, γ0), for each τ ∈ Uγ , we can apply

Taylor’s theorem to the functions Fγ (θ0, ·), Fγ (·, τ), and
∂Fγ
∂θ
(θ0, ·),

respectively, to obtain expressions

Fγ (θ0, τ) = Fγ (θ0, τ0)+ ∂Fγ
∂τ
(θ0, τ0)(τ − τ0)+ 1

2
d̃γ ,τ
ττ (τ − τ0)

2,

Fγ (θ0, τ) = ∂Fγ
∂θ
(θ0, τ) d(θ0, yγ (τ ))− 1

2
d̃
γ ,τ
θθ d(θ0, yγ (τ ))

2,

∂Fγ
∂θ
(θ0, τ) = ∂Fγ

∂θ
(θ0, τ0)+ d̃

γ ,τ
θτ (τ − τ0),

where d̃γ ,τ
ττ , d̃

γ ,τ
θθ , and d̃

γ ,τ
θτ are, respectively, the values of

∂2Fγ

∂τ2 ,
∂2Fγ

∂θ2 ,

and
∂2Fγ
∂θ∂τ

at certain points in Sδ(γ ) . Since δ(γ ) → 0 as γ ↗ γ0, letting

D̃
γ ,τ
1 :=

(

d̃
γ ,τ
θθ d̃

γ ,τ
θτ

d̃
γ ,τ
θτ d̃γ ,τ

ττ

)

,

we have that D̃
γ ,τ
1 converges to D1 uniformly across τ ∈ Uγ as

γ ↗ γ0. Also, recall that |∇Fγ (θ0, τ0)| is O(γ0 − γ ) as γ ↗ γ0.
Therefore, in the above three equations, if we substitute the expres-

sions for Fγ (θ0, τ) and
∂Fγ
∂θ
(θ0, τ) given by the first and third

equation into the second equation and then rearrange the second
equation to make yγ (τ ) the subject, we obtain an expression of the
form

yγ (τ ) = θ0 −
υγ ,τ +

√

Ỹγ (τ )
2 + Eγ ,τ

d̃
γ ,τ
θθ

, (54)

where υγ ,τ = ∂Fγ
∂θ
(θ0, τ) is as given by the third equation, and Eγ ,τ

takes the form

Eγ ,τ = aγ ,τ (τ − τ0)
2 + bγ ,τ (τ − τ0)+ cγ ,τ ,

where
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• aγ ,τ → 0,
• bγ ,τ is O(γ0 − γ ), and
• cγ ,τ is o(γ0 − γ ),

uniformly across τ ∈ Uγ as γ ↗ γ0. Now, by applying Taylor’s

theorem to
∂Fγ
∂θ
(·, τ), using Eq. (54), we obtain an expression

Yγ (τ ) = υγ ,τ − ˜̃
d
γ ,τ
θθ





υγ ,τ +
√

Ỹγ (τ )
2 + Eγ ,τ

d̃
γ ,τ
θθ



 ,

where
˜̃
d
γ ,τ
θθ is the value of

∂2Fγ

∂θ2 at some point in Sδ(γ ) . Again,
˜̃
d
γ ,τ
θθ

→ dθθ uniformly across τ ∈ Uγ as γ ↗ γ0. Therefore, one obtains
that, after suitable modification of the coefficients aγ ,τ , bγ ,τ , cγ ,τ

(while keeping the same convergence properties as above), we have

Yγ (τ ) = −
√

Ỹγ (τ )
2 + Eγ ,τ + h

γ ,τ
4 + h

γ ,τ
5 (τ − τ0),

where

h
γ ,τ
4 = ∂Fγ

∂θ
(θ0, τ0)

(

1 −
˜̃
d
γ ,τ
θθ

d̃
γ ,τ
θθ

)

,

h
γ ,τ
5 = d̃

γ ,τ
θτ

(

1 −
˜̃
d
γ ,τ
θθ

d̃
γ ,τ
θθ

)

.

Now, for convenience, let us write a := −det(D1) and
cγ := 2dθθd2(γ0 − γ ), so that

Ỹγ (τ )
2 = a(τ − τ0)

2 + cγ .

The point (τ , Yγ (τ )) lies on the curve

S̃τ0 ,ρ1
√
γ0−γ ,ρ2

√
γ0−γ (h

γ ,τ ),

with h
γ ,τ
4 and h

γ ,τ
5 as above and

h
γ ,τ
1 =

√

b2
γ ,τ − 4(a + aγ ,τ )(cγ + cγ ,τ )−

√

−4acγ ,

h
γ ,τ
2 =

√

cγ + cγ ,τ − √
cγ ,

h
γ ,τ
3 = − bγ ,τ

2(a+aγ ,τ )
.

The general inequalities |
√

A −
√

B| ≤
√

|A − B| and
√

A + B
≤

√
|A| +

√
|B| (understood as valid for all A, B ∈ R for which they

are well-defined) give

|hγ ,τ
1 | ≤ |bγ ,τ | + 2

√

|acγ ,τ + aγ ,τ (cγ + cγ ,τ )|,

|hγ ,τ
2 | ≤

√

|cγ ,τ |.
So,

• h
γ ,τ
1 and h

γ ,τ
2 are o(

√
γ0 − γ ),

• h
γ ,τ
3 and h

γ ,τ
4 are, respectively, O(γ0 − γ ) and o(γ0 − γ ), and

hence are both o(
√
γ0 − γ ), and

• h
γ ,τ
5 → 0,

uniformly across τ ∈ Uγ as γ ↗ γ0. Hence, in particular, taking γ
sufficiently close to γ0 will mean that hγ ,τ fulfills the condition in
Lemma 54 (with ri = ρi

√
γ0 − γ ) for all τ ∈ Uγ , and hence

graph Yγ ⊂ Aτ0 ,ρ1
√
γ0−γ ,ρ2

√
γ0−γ (1).

This completes the proof.

VI. CONCLUSION

The modern theory of dynamical systems was introduced
by Henri Poincaré and Aleksandr Lyapunov to provide a rigor-
ous mathematical basis for defining and investigating qualitative
dynamical properties of real-world physical systems—properties
such as synchronization, stability, and neutral stability. Using a
numerically simulated sample realization of a Brownian bridge as
a conceptual representation of inherently finite-time processes, we
have illustrated in Fig. 2 how a finite-time system can exhibit pre-
cisely such properties in a way that cannot be modeled so as to make
the framework of Poincaré and Lyapunov applicable. This is because
this framework is defined in terms of the infinite-time behavior of
dynamical systems.

Therefore, we have introduced an alternative, finite-time
framework for stability analysis by essentially “replacing t → ∞
with ε → 0” in the traditional formalisms of qualitative stability
analysis, where ε represents the timescale separation between a
system’s “internal timescales” and the slower timescale of a finite-
time external forcing process. This non-traditional framework has
enabled us to provide a rigorous mathematical statement (Theorem
24) and proof of the stabilization phenomenon of Refs. 1 and 2
exemplified in Fig. 2.

We have also explored how our new framework of stabil-
ity analysis compares with the traditional framework through the
example of low-frequency-periodically forced systems, where both
frameworks can be applied. In particular, we saw in Sec. IV E how
analysis based on Theorem 24 can more readily yield the basic
description of dynamics than seeking to analyze the system within
the traditional apparatus of stability analysis (such as asymptotic
Lyapunov exponents).

This paper has worked entirely with one-dimensional dynam-
ics but we hope that the work here will also prompt further
research into non-traditional qualitative stability analysis of higher-
dimensional finite-time systems. Whereas the work of Poincaré
was originally motivated by celestial mechanics, we anticipate that
finite-time stability theory will increasingly play a fundamental
and necessary role in the understanding of more complex “ter-
restrial” systems such as biological processes and climate sys-
tems.
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APPENDIX A: LIMITING BEHAVIOR OF ∂8

∂(ε−1)

Proposition 26 can be expressed as a statement about the limit-
ing behavior of ∂8

∂θ

(

1
ε
, θ0, 0, 1

)

as ε → 0. We now give an analogous

statement about the limiting behavior of ∂8

∂(ε−1)

(

1
ε
, θ0, 0, 1

)

as ε → 0.

Let us first make a couple of general remarks regarding ∂8

∂(ε−1)
:

(A) Given t1, . . . , tn ∈
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ε

]

, using Eq. (34), we have

∂8
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(θ0) ∂8
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ε
, θ(ti), εti, εti+1
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. (A1)

(B) Suppose F(·, τ) =: f(·) is independent of τ [meaning that (12)
is just a time-restricted autonomous dynamical system]. Then,
∂8

∂(ε−1)

(

1
ε
, θ(s), εs, εt

)

is, by definition, the derivative of T 7→
θ(s + ε(t − s)T) at T = 1

ε
, which is ε(t − s)θ̇(t). In other words,

we have

∂8

∂(ε−1)

(

1
ε
, θ(s), εs, εt

)

= ε(t − s)f(θ(t)). (A2)

We use the notations present in Proposition 26, as well as the
following:

m(τ ) = max
θ∈S1

|F(θ , τ)|,

l(τ ) = min
θ∈S1

|F(θ , τ)|.

Proposition A.55. Suppose F has no zeros. Then,

lim inf
ε→0
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θ0∈S1

sgn(F) ∂8
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)
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)
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m(τ ) e
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Proof. Given ε > 0, define an integer N ≥ 1 and times

1
ε

= t̃1 > · · · > t̃N+1 = 0,

such that

• t̃i+1 = t̃i − k(εt̃i) for each 1 ≤ i < N and
• 0 ∈ [t̃N − k(εt̃N), t̃N).

For each 1 ≤ i ≤ N, for any continuous function g : [0, 1] → R,
let

g∨̃i = max
τ∈[εt̃i+1 ,εt̃i]

g(τ ),

and let r̃i be as in Eq. (37). Similarly to the proof of Proposition 26,
we have that

max
1≤i<N

(r̃i − r(εt̃i)) → 0

and hence,
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1≤i<N
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→ 0,

as ε → 0. Hence,
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j=1 εk(εt̃j)r̃j →
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and
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j=1 εk(εt̃j)r̃j →
∫ 1

0

m(τ ) e
∫ 1
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as ε → 0. Now, letting θ(·) be a solution of (12) with θ(0) = θ0, as
in the proof of Proposition 26, we have

|λ̄ε,F
t̃i+1 ,t̃i

(θ0)| ≤ εk(εt̃i)r̃i,

and so the left-hand sides of (A3) and (A4) are, respectively, a lower
and an upper bound of the expression

d(θ0, ε) :=
N−1
∑

i=1

εk(εt̃i)|F(θ(t̃i), εt̃i)| e
λ̄
ε,F

t̃i ,
1
ε

(θ0)

.

Therefore, to prove the desired result, we will show that there are
constants ε0 > 0 and E ≥ 0 (dependent only on F) such that for all
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ε ∈ (0, ε0) and θ0 ∈ S
1,

D(θ0, ε) :=
∣

∣

∣
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− d(θ0, ε)
∣

∣
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≤ εE. (A5)

Given ε > 0 and θ0 ∈ S
1, let θ(·) be the solution of (12) with θ(0)

= θ0, and let

di = ∂8

∂(ε−1)

(

1
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)

for each 1 ≤ i ≤ N. By Eq. (A1),
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,

and it is clear from Eq. (34) that sgn(F)di ≥ 0, and so we have
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,

where R is as in the proof of Theorem 24(A). Letting
K = maxτ∈[0,1] k(τ ), Eq. (34) implies

dN ≤ εKM eKM1 ,

and so it remains to find an ε-independent bound on 1
ε
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− εk(εt̃i)F(θ(t̃i), εt̃i)|. For each 1 ≤ i < N, let ψi(·) be the
solution of

ψ̇i(t) = F(ψi(t), εt̃i)

for which ψi(t̃i) = θ(t̃i). Writing Fi for the τ -independent function
Fi(θ , τ) = F(θ , εt̃i), Eqs. (34) and (A2) applied to Fi give
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By the same reasoning as in the proof of Proposition 26, for each
u ∈ [t̃i+1, t̃i], we have
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We also have, again by the same reasoning as in Proposition 26, that
for each u ∈ [t̃i+1, t̃i],
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So,
1
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and hence,

1
ε

N−1
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Thus, overall, Eq. (A5) is satisfied with

E = R(KM eKM1 + E2).

�

Let us note that the bound E obtained in the above proof can
probably be considerably improved through more detailed calcula-
tion and less estimation; but we have obtained a cruder bound for
the sake of a faster proof.

APPENDIX B: NUMERICS

Throughout this paper, additively forced Adler equations
θ̇ (t) = −a sin(θ(t))+ G(t) were simulated by numerical integra-
tion using a fourth order Runge–Kutta scheme, with a time step
of 0.01 s. The FTLEs associated with trajectories θ(t) were calcu-
lated simply by taking the time-averaged value of −a cos(θ(t)) over
the time-interval of interest, as in (11). To obtain the initial condi-
tion θ(0) for a given final state θ(T), the value of θ(T) was used as
the initial condition of a forward-time simulation of the equation
θ̇ (t) = a sin(θ(t))− G(T − t).

In Sec. II B, the function g(t) was constructed as follows. First,
a sample path Wt of a zero-drift Brownian motion on [0, T] of dif-
fusion parameter σ = 1√

T
was constructed by cumulative addition

of Gaussian random increments over a time step of 0.01 s. Then, the
Brownian bridge was constructed as Wt − t

T
WT . Then, the result

was passed through a fifth order Butterworth low-pass filter with
cut-off frequency 1/(2π × 103)Hz, performed via cascaded second-
order sections (in Python, with the function scipy.signal.sosfilt),
and we linearly interpolated the output of the filter.

In Figs. 5 and 6, the ω-values indicated in red were numerically
obtained as follows: For the unwrapped phase x(t) as governed by
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the differential equation

ẋ(t) = −a sin(x(t))+ k + A cos(ωt)

on the real line, setting x(0) = 0, it was observed by simulation that
x
(

2π
ω

)

increased approximately linearly with 1/ω, with increments
across consecutive values in the (1/ω)-discretization being strictly
positive and very small compared to 2π . Hence, it was possible to
carry out linear interpolation of the simulated wrapped phase θ

(

2π
ω

)

as a function of 1/ω [with θ(0) = 0]. Where this linearly interpo-
lated function of 1/ω crossed π

2
and 3π

2
is where the ω-values were

marked; as in Fig. 5(c), the locations of θ
(

2π
ω

)

are indistinguish-

ably the same for the other 49 initial conditions θ(0) = 2π i
50

as for
θ(0) = 0.

The basis for this procedure is as follows: since k > a and
A ∈ (k − a, k + a), Proposition 41(B) can be applied to the time-0-
to- 2π

ω
mapping 8 of (23) to give that for all sufficiently small ω, 8

maps all points starting outside some small arc P into a small arc Q.
By the symmetries of (23), we have that Q is close to P if and only
if Q is close to either π

2
or 3π

2
. Now, on the one hand, when P and

Q are not close to each other, it is clear by considering the graph of
8 that8 has a stable fixed point near Q and an unstable fixed point
near P, and thus system (23) is exponentially stable in the sense of
Definition 35. However, on the other hand, if Q and P cross past each
other (which, again, is equivalent to Q crossing past either π

2
or 3π

2
)

as ω is varied then, again by considering the graph of8, during such
crossing there must occur an interval of ω-values for which 8 has
no fixed points and, therefore, by Proposition 37, the system (23) is
neutrally stable in the sense of Definition 33 (see also Ref. 17).
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