
Chaos, Solitons & Fractals: X 3 (2019) 10 0 021 

Contents lists available at ScienceDirect 

Chaos, Solitons & Fractals: X 

journal homepage: www.elsevier.com/locate/csfx 

Spectral and localization properties of random bipartite graphs 

C.T. Martínez-Martínez 

a , b , J.A. Méndez-Bermúdez 

a , c , ∗, Yamir Moreno 

b , d , e , 
Jair J. Pineda-Pineda 

f , José M. Sigarreta 

g 

a Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico 
b Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain 
c Departamento de Matemática Aplicada e Estatística, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - Campus de São 

Carlos, Caixa Postal 668, São Carlos 13560-970, SP, Brazil 
d Department of Theoretical Physics, University of Zaragoza, 50 0 09 Zaragoza, Spain 
e ISI Foundation, Turin, Italy 
f Ecology and Survival of Microorganisms Research Group (ESMRG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en 

Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México. 
g Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No.54 Col. Garita, Acalpulco Gro. 39650, Mexico 

a r t i c l e i n f o 

Article history: 

Received 30 December 2019 

Accepted 19 January 2020 

Available online 1 February 2020 

PACS: 

64.60.aq 

89.75.Da 

05.45.Mt 

73.20.Jc 

Keywords: 

Bipartite graphs 

Delocalization transition 

Spectral properties 

a b s t r a c t 

Bipartite graphs are often found to represent the connectivity between the components of many systems 

such as ecosystems. A bipartite graph is a set of n nodes that is decomposed into two disjoint subsets, 

having m and n − m vertices each, such that there are no adjacent vertices within the same set. The con- 

nectivity between both sets, which is the relevant quantity in terms of connections, can be quantified by 

a parameter α ∈ [0, 1] that equals the ratio of existent adjacent pairs over the total number of possible 

adjacent pairs. Here, we study the spectral and localization properties of such random bipartite graphs. 

Specifically, within a Random Matrix Theory (RMT) approach, we identify a scaling parameter ξ ≡ ξ ( n, m, 

α) that fixes the localization properties of the eigenvectors of the adjacency matrices of random bipar- 

tite graphs. We also show that, when ξ < 1/10 ( ξ > 10) the eigenvectors are localized (extended), whereas 

the localization–to–delocalization transition occurs in the interval 1/10 < ξ < 10. Finally, given the poten- 

tial applications of our findings, we round off the study by demonstrating that for fixed ξ , the spectral 

properties of our graph model are also universal. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The latest developments in network science have largely con-

ributed to a better understanding of the structure and dynamics

f many real-wold complex systems [1–3] . As a matter of fact, re-

earch done during the last 20 years have allowed to take key steps

n our comprehension of seemingly diverse phenomena such as the

arge-scale spreading of diseases [4,5] , information dissemination

2] , cascading failures [6] , diffusion dynamics [7–9] and more re-

ently, on how multilayer systems work [10–12] . These advances

re not only at a theoretical level. The increasing availability of

ew and rich data as well as our computational capabilities have

ade it possible to move from studying synthetic models, to char-

cterize and model realistic systems. 
∗ Corresponding author at: Instituto de Física, Benemérita Universidad Autónoma 
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During these years, networks have been studied from many dif-

erent angles, ranging from more theoretically-grounded studies (in

he best tradition of graph theory) to fully data-driven models.

ometimes, the architecture of the substrate network is known and

hus, it could be modeled explicitly. However, it is often the case in

hich the networks are synthetic either because we do not know

he real connection patterns or because we need to simplify the

tructure of the system to enable analytical approximations. In the

atter scenario, one reasonable assumption is to generate random

raphs, so that one gets rid of possible correlations and isolates the

mpact of the connectivity among the system’s constituents on its

ynamics. Besides, random versions are often very useful as null

odels, that allow to individuate which properties of the system

re truly unexpected and which are not [13,14] . 

Among the many results that can be highlighted, perhaps the

ost useful ones are those that relate the structure of networks

ith their dynamics through the analysis of the spectral proper-

ies of the adjacency or Laplacian matrices of such networks. For

nstance, it has been shown that it is possible to characterize the
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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critical properties of a disease spreading process in terms of the

largest eigenvalue of the adjacency matrix of the network on top of

which the dynamics takes place [4,5] . Admittedly, the fact that the

epidemic threshold, i.e., the point beyond which the system experi-

ences a macroscopic outbreak, can be expressed in terms of topo-

logical properties makes it possible to study what are the effects

of the topology on the dynamics of complex networked systems.

Another important example of the previous relationship between

structure and dynamics is given by synchronization phenomena,

where one finds that the stability of a fully synchronized system

can be studied in terms of the spectral properties of the substrate

network [1–3] . 

In this paper, we follow the line of research mentioned above

and study a class of networks that is often found in natural and ar-

tificial systems, namely, bipartite graphs. Within the classes of net-

works that have been analyzed in the last two decades, bipartite

graphs have gone unnoticed in many regards, for instance, in rela-

tion to their spectral properties. We intend to fill this gap by study-

ing the localization and spectral properties of random bipartite

graphs within RMT approaches. This viewpoint has been success-

fully used to study some topological [15] , spectral [16–18] , eigen-

vector [16,17] , and transport [19] properties of ER–type random

networks with a special focus on universality. Moreover, we have

also performed scaling studies on other random network models,

such as multilayer and multiplex networks [20,21] and random–

geometric and random–rectangular graphs [22] . 

The rest of the paper is organized as follows. In Section 2 we

define the random bipartite graph model we shall use in our study.

Then, in Section 3 we perform a scaling analysis of the eigenvec-

tor properties (characterized by the Shannon or information en-

tropy) of our bipartite graph model. The scaling analysis allows

to define a universal parameter of the model that we validate in

Section 4 with the scaling of the spectral properties (characterized

by the distribution of ratios of consecutive energy-level spacings).

We summarize our results in Section 5 also discussing possible ap-

plications within the domain of ecosystems and their stability. 

2. Bipartite graph model 

We consider bipartite graphs composed by two disjoint sets

with m and n − m vertices each such that there are no adjacent

vertices within the same set, being n the total number of ver-

tices in the bipartite graph. The connectivity between both sets

is quantified by the parameter α which is the ratio of current

adjacent pairs over the total number of possible adjacent pairs;

that is, vertices are isolated when α = 0 , whereas the bipartite

graph is complete for α = 1 . Vertices are connected randomly. We

add to our bipartite graph model self-edges and further consider

all edges to have random strengths, which allows that our bipar-

tite graph model becomes a RMT model. Therefore, we define the

corresponding adjacency matrices as members of the ensemble

of n × n sparse real symmetric matrices whose non-vanishing ele-

ments are statistically independent random variables drawn from a

normal distribution with zero mean 

〈
A i j 

〉
= 0 and variance 

〈| A i j | 2 
〉
=

(1 + δi j ) / 2 . According to this definition, a diagonal adjacency ran-

dom matrix is obtained for α = 0 , which is known as the Pois-

son ensemble in RMT terms. In Fig. 1 , we show examples of ad-

jacency matrices of random bipartite graphs with n = 100 vertices

and some combinations of m and α. Note that when labeling the

vertices according to the set they belong to, the adjacency matrices

of bipartite graphs have a block structure. 

Here we define m (resp. n − m ) as the number of vertices of the

smaller (bigger) set. In this respect, the case m = n/ 2 is a limiting

case where both sets have the same number of vertices, m = n − m .

Moreover, the case m = 1 is another limiting case in which the

smaller set consists of a single vertex. Thus, in what follows we
ill consider random bipartite graphs characterized by the param-

ter set ( n, m, α) with 1 ≤ m ≤ n /2 and 0 ≤α ≤ 1. Notice that the

ase m > n /2 is redundant because it is equivalent to the inter-

hange of the sets. 

. Eigenvector properties. Scaling and universality 

In this study, we characterize the eigenvectors of random bipar-

ite graphs by using information or Shannon entropy, which for the

igenvector �k is given as 

 

k = −
n ∑ 

j=1 

∣∣�k 
j 

∣∣2 
ln 

∣∣�k 
j 

∣∣2 
. (1)

 

k measures the number of principal components of the eigen-

ector �k in a given basis. Therefore, the latter quantity is a

ood measure of eigenvector localization/delocalization. In fact,

his quantity has already been used to characterize quantitatively

he complexity and localization properties of the eigenvectors of

he adjacency matrices of several random network models (see ex-

mples in [16,17,20–22] and references therein). Below we use ex-

ct numerical diagonalization to compute the eigenvectors �k and

igenvalues λk ( k = 1 . . . n ) of the adjacency matrices of large en-

embles of random bipartite graphs characterized by the parameter

et ( n, m, α). 

In Fig. 2 , we present the Shannon entropies S k of the eigen-

ectors of ten realizations of the adjacency matrices shown in

ig. 1 . Note that for m = n/ 2 all rows of the adjacency matrix have

he same average number of nonzero off-diagonal elements, see

ig. 1 (a), therefore the corresponding eigenvectors are expected to

e equivalent and they should have similar entropies; this can be

erified in Fig. 2 (a). In contrast, for any m < n /2, m rows of the ad-

acency matrix have a larger number of nonzero off-diagonal ele-

ents than the remaining n − m rows, see Fig. 1 (b-d). Hence, as

t can be seen in Fig. 2 (b-d), the entropies of the corresponding

igenvectors can be grouped into two sets characterized by differ-

nt average values 〈 S 〉 (see the dashed lines in these panels, which

eparate the two sets having different averages). Despite these dif-

erences, taking into account that we want to use the average en-

ropy to find scaling properties in random bipartite graphs, and

hat for this purpose we need a single quantity regardless of the

pecific graph, we compute averages over all available eigenvec-

ors, thus taking into account the contribution of both eigenvector

ets. 

From definition (1) , it follows that 〈 S 〉 = 0 when α = 0 , since

he eigenvectors of the (diagonal) adjacency matrices of our ran-

om bipartite graph model have only one non-vanishing compo-

ent with magnitude equal to one. On the other hand, for α = 1

he bipartite graph is complete and 〈 S 〉 gets its maximal value,

 MAX , for a given combination of n and m . Thus, when 0 < α < 1

e should observe 0 < 〈 S 〉 < S MAX . 

In Fig. 3 we present the average Shannon entropy 〈 S 〉 as a

unction of the connectivity parameter α for the eigenvectors of

andom bipartite graphs and for several parameter combinations.

e observe that the curves of 〈 S 〉 , for any combination of n and

 , have a very similar functional form as a function of α: The

urves 〈 S 〉 show a smooth transition from approximately zero to

 MAX when α increases from α ∼ 0 (mostly isolated vertices) to

ne (complete bipartite graphs). Recall that when 〈 S 〉 ≈ 0 the cor-

esponding eigenvectors are localized (i.e., 〈 S 〉 ≈ 0 defines the lo-

alized regime). In contrast, when 〈 S 〉 ≈ S MAX , the corresponding

igenvectors are delocalized. Thus, the curves of 〈 S 〉 versus α in

ig. 3 display the delocalization transition of the eigenvectors of

ur random bipartite model. As a complementary information, in

ig. 4 we report S MAX , i.e., the value of 〈 S 〉 at α = 1 , of random

ipartite graphs for several combinations of n and m . 
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Fig. 1. Nonzero adjacency matrix elements of random bipartite graphs for some combinations of m and α: (a) m = n/ 2 and α = 0 . 2 , (b) m = n/ 4 and α = 0 . 75 , (c) m = n/ 5 

and α = 0 . 5 , (d) m = n/ 10 and α = 0 . 25 . In all cases n = 100 . 

Fig. 2. Shannon entropies S k of the eigenvectors of ten realizations of the adjacency matrices shown in Fig. 1 . Dashed lines in panels (b-d) separate groups of entropies 

characterized by different average values. 

Fig. 3. Average Shannon entropy 〈 S 〉 as a function of the connectivity α for ran- 

dom bipartite graphs (of sizes ranging from n = 10 0 to 80 0) for several values of 

m (as indicated in the panels). Each symbol was computed by averaging over 10 6 

eigenvectors. 
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Fig. 4. Maximum values of the Shannon entropy S MAX as a function of the bipartite 

graph size n for several values of m . The thick black line corresponds to ln ( n /2.07), 

the approximate value of 〈 S 〉 GOE . The arrow indicates decreasing m . 
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It is important to stress that in our graph model with fixed n

he maximal number of nonzero adjacency matrix elements is ob-

ained when α = 1 and m = n/ 2 , but still in this case half of the

ff-diagonal adjacency matrix elements are equal to zero. There-

ore the adjacency matrices of our random bipartite graphs never

eproduce the Gaussian Orthogonal Ensemble (GOE) of RMT - the

OE is a random matrix ensemble formed by real symmetric ran-

om matrices A whose entries are statistically independent ran-

om variables drawn from a normal distribution with zero mean

nd variance 
〈| A i j | 2 

〉
= (1 + δi j ) / 2 , see e.g. [23] . Accordingly, one

hould expect S < 〈 S 〉 , where 〈 S 〉 ≈ ln ( n /2.07) is the av-
MAX GOE GOE 
rage entropy of the (random and delocalized) eigenvectors of the

OE. However, surprisingly, we observe that S MAX ≈〈 S 〉 GOE for m =
/ 2 , while S MAX < 〈 S 〉 GOE indeed occurs for any m < n /2, see Fig. 4 .

lso, from Fig. 4 , we can clearly see that 

 MAX 

∝ ln (n ) . (2) 

Therefore, we can conclude that the maximal entropy setup in

ur random bipartite graph model corresponds to m = n/ 2 and

= 1 for which GOE statistics is observed for 〈 S 〉 and expected for

ther quantities. 

Now, to ease our analysis, in Fig. 5 we plot again 〈 S 〉 but nor-

alized to S MAX . The fact that these curves, plotted in semi-log

cale, are just shifted to the left on the α-axis when increas-

ng n makes it possible to hypothesize the existence of a scal-

ng parameter that depends on n . In order to check this hypoth-

sis and find such a scaling parameter, we first define a quantity

hat allows characterizing the position of the curves 〈 S 〉 / S MAX on

he α-axis: We choose the value of α, that we label as α∗, for
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Fig. 5. Average information entropy 〈 S 〉 normalized to S MAX as a function of the 

connectivity α. Same data of Fig. 3 . 

Fig. 6. Localization–to–delocalization transition point α∗ (defined as the value of α

for which 〈 S 〉 / S MAX ≈ 0.5) as a function of the bipartite graph size n for several val- 

ues of m . Dashed lines are the fittings of the data with Eq. (3) . The arrow indicates 

decreasing m . 

 

 

 

 

 

 

 

 

 

Fig. 7. Average information entropy 〈 S 〉 normalized to S MAX as a function of the 

scaling parameter ξ , see Eq. (4) . Same data of Fig. 3 . Dashed vertical lines indicate 

the width of the transition region � defined as the full width at half maximum of 

the functions d 〈 S 〉 / d ξ vs. ξ . 
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which 〈 S 〉 / S MAX ≈ 0.5. Notice that α∗ characterizes the localization–

to–delocalization transition of the eigenvectors of our graph model.

Fig. 6 shows the localization–to–delocalization transition point

α∗ as a function of n for several values of m . The linear trend of

the data (in log-log scale) in Fig. 6 implies a power-law relation of

the form 

α∗ = Cn 

δ . (3)

In fact, Eq. (3) provides very good fittings to the data. The val-

ues of δ from the fittings are very close to -0.978 for all the val-

ues of m considered here (see thick full lines in Fig. 6 ). From this

observation we can propose the following scaling for the curves
 S 〉 / S MAX vs α: By plotting again the curves of 〈 S 〉 / S MAX now as a

unction of ξ , that we define as the ratio between the connectivity

arameter and the localization–to–delocalization transition point 

= 

α

α∗ ∝ 

α

n 

δ
≈ αn 

0 . 978 , (4)

e observe that curves for different bipartite graph sizes n col-

apse on top of a single curve, see Fig. 7 . That is, we conclude

hat, for a given ratio m / n, ξ fixes the localization properties of

he eigenvectors of the adjacency matrices of the random bipar-

ite graphs, such that, when ξ < 1/10 [10 < ξ ] the eigenvectors are

ocalized [extended], while the localization–to–delocalization tran-

ition occurs in the interval 1/10 < ξ < 10. 

Even though we were able to scale the Shannon entropy curves

or random bipartite graphs, as shown in Fig. 7 , there is still a

ependence of those universal curves on the ratio m / n . To clearly

how this, in Fig. 8 we report scaled curves of the Shannon entropy

or several values of m / n in the localization–to–delocalization tran-

ition region. Here we can observe that the larger the ratio m / n ,

he sharper the localization–to–delocalization transition. Thus, we

haracterize the width of the transition region, that we call �, as

he full width at half maximum of the functions d 〈 S 〉 / d ξ vs. ξ . In

he inset of Fig. 8 we report � as a function of m / n . From this

gure, we observe a clear increase of � when decreasing the ra-

io m / n , an increase that seems to saturate for ratios as small as

 / n ∼ 1/100. 

It is worth stressing that once we have found that ξ exists and

hat this parameter scales the eigenvector properties (characterized

y their Shannon entropy) of the model of random bipartite graphs

ere studied, it is natural to expect that other properties (i.e., spec-

ral properties, dynamical properties, transport properties, etc.) of

he graph model would also scale with the same parameter. This is

hat we explore next, when we validate the previous surmise by

losely inspecting the corresponding eigenvalues. 
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Fig. 8. Scaled curves for the Shannon entropy for random bipartite graphs with 

several values of m / n . Arrows indicate decreasing m / n . All curves correspond to in- 

terpolated data with n = 800 . Inset: Width of the transition region � as a function 

of m / n . 
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. Spectral properties 

In Fig. 9 , we present the spectra of the adjacency matrices of

andom bipartite graphs for several combinations of the parame-

ers m, n , and α. Each panel is characterized by a fixed ratio m / n

nd a fixed scaling parameter ξ . So, from the results in the previ-

us Section, one should expect the four spectra, reported in each

f the panels of Fig. 9 and corresponding to different graph sizes

 , to fall one on top of the other. This is in fact the case, except for

 small-size effect clearly observed in Fig. 9 (d,g) when n = 100 . It

s also interesting to note that the block structure of the adjacency
ig. 9. Eigenvalues λk of the adjacency matrices of random bipartite graphs for several p

 ξ ]. A single graph realization is considered for each curve. Dashed lines in panels (h) and
atrix clearly reveals itself in the spectra, for large ξ and small

atio m / n , see Fig. 9 (h-i). 

To characterize the spectral properties of the random bipartite

raph model, we use the ratios of consecutive energy-level spac-

ngs r , which are defined as follows. Let { λ} be a set of ordered

igenvalues, the corresponding spacings s k are 

 k = 

λk +1 − λk 

〈 λ〉 (5) 

here 〈 λ〉 is the local mean eigenvalue density, while the ratios r k 
re defined as [24] 

 k = 

min (s k , s k −1 ) 

max (s k , s k −1 ) 
(6) 

uch that r k ∈ [0, 1] ∀ k . Moreover, the probability distribution func-

ion of r in the Poisson limit (which is reproduced by our random

ipartite graph model when α = 0 ) is [25] 

 P 

(r) = 

2 

(1 + r) 2 
. (7) 

nother important limit, that we will use as a reference, is the GOE

ase for which P ( r ) gets the form [25] 

 GOE 

(r ) = 

27 

4 

r + r 2 

(1 + r + r 2 ) 5 / 2 
. (8) 

It is important to stress that the nearest-neighbor energy-level

pacing distribution P ( s ) [23] is already a well accepted quantity

o measure the degree of chaos or disorder in complex systems

nd has been extensively used to characterize spectral properties

f complex networks (see examples in [16,21,22] and references

herein). However, the use of P ( r ) is more convenient here since

t does not require the process known in RMT as spectral unfold-

ng [23] , whose implementation for spectra with kinks as those in

ig. 9 (h-i) could be cumbersome. 

Fig. 10 presents histograms of P ( r ) for random bipartite graphs

ith several combinations of parameters ( m, n, α). As well as in
arameter combinations ( m, n, α). Columns [rows] are characterized by a fixed m / n 

 (i) coincide with those in Figs. 2 (b) and 2 (d), respectively. 
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Fig. 10. Distribution of ratios of consecutive energy-level spacings P ( r ) for the eigenvalues of the adjacency matrices of random bipartite graphs with several parameters 

combinations ( m, n, α). Columns [rows] are characterized by a fixed m / n [ ξ ]. Each histogram is constructed with 10 6 ratios. Dashed lines in panels (a-c) [(g-i)] correspond 

to the RMT prediction for P ( r ) in the Poisson [GOE] limit, see Eq. (7) [ Eq. (8) ]. In panels (d-f) both equations, Eqs. (7) and (8) , are shown in dashed lines. Insets are 

enlargements of the main panels for r close to zero. 
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Fig. 9 , each panel is characterized by a fixed ratio m / n and a fixed

scaling parameter ξ . With this figure we verify the invariance of

P ( r ) for fixed ξ , except for a small size effect that is enhanced at

r → 0; see the insets in panels (a-c,g-i) where the convergence to a

steady P ( r ) is obtained for large enough n . Besides, from Fig. 10 , we

observe the Poisson to GOE transition in the shape of P ( r ) when

increasing ξ . Also, at the transition borders, i.e. at ξ = 0 . 1 and

ξ = 10 , the shape of P ( r ) is well described by the corresponding

RMT predictions in the Poisson and GOE limits, respectively. This

confirms our definition of the localization–to–delocalization transi-

tion region: 0.1 < ξ < 10. While, as expected, for intermediate val-

ues of ξ , see e.g., Fig. 10 (d-f), P ( r ) has a shape which is intermedi-

ate between P P ( r ) and P GOE ( r ). 

Finally, we would like to add that it is quite surprising that even

for m/n = 1 / 10 the P ( r ) is very close to P GOE ( r ) when ξ is large,

see Fig. 10 (i). Recall that for any m / n < 2 the corresponding adja-

cency matrices have more null than not null off-diagonal matrix

elements (see Fig. 1 ), therefore, being very different from members

of the GOE. Moreover, we would also like to recall that we found

that S MAX ≈〈 S 〉 GOE only for m/n = 1 / 2 , while S MAX < 〈 S 〉 GOE for any

m / n < 1/2. Therefore, for our random bipartite graph model, we can

claim that P ( r ) is less sensitive to deviations from GOE statistics

than 〈 S 〉 . 

5. Conclusions 

In this paper we have numerically studied the properties re-

lated to the eigenvectors and eigenvalues of the adjacency matri-

ces of random bipartite graphs. Specifically, we have considered

random bipartite graphs with self-loops, where all non-vanishing

adjacency matrix elements are Gaussian random variables. Our

random bipartite graph model depends on three parameters: The
raph size n , the graph connectivity α, and the size of the smaller

et m composing the bipartite graph. 

First, through a proper scaling analysis of the Shannon entropy

f the eigenvectors of the adjacency matrices of such a random bi-

artite graph model, we defined a scaling parameter ξ ≡ ξ ( n, m, α)

hat fixes the localization properties of the eigenvectors for a given

atio m / n . Moreover, our analysis provides a way to predict the lo-

alization properties of the random bipartite graphs: For ξ < 0.1

he eigenvectors are localized, the localization–to–delocalization

ransition occurs for 0.1 < ξ < 10, whereas when 10 < ξ the eigen-

ectors are extended. Next, to broaden the applicability of our find-

ngs, we demonstrated that for a fixed ξ , the spectral properties

characterized by the distribution of ratios of consecutive energy-

evel spacings) of the graph model are also universal, namely, they

o not depend on the specific values of the bipartite graph param-

ters. 

The results here derived are important in at least one applied

eld of research. Admittedly, the study of the stability of ecologi-

al systems makes use of the two main ingredients of our study.

n the one hand, many ecosystems, including prey-predator and

utualistic systems, are faithfully represented by bipartite graphs,

hich are assumed to be random matrices when no information

bout the real structure is known. On the other hand, the anal-

sis of the stability of such systems is often reduced to under-

tand the eigenvalues and eigenvectors structure of the interac-

ion matrices (or their Jacobian). Our results are important in so

ar they show that there are universal properties in such ran-

om bipartite networks, which might help to understand, in its

urn, robust dynamical patterns of such systems regardless of their

pecific details such as size and interaction strengths. We plan

o explore in more detail this potential application in the near

uture. 
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