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Summary
Background The 2014 epidemic of Ebola virus disease in parts of west Africa defi nes an unprecedented health threat. 
We developed a model of Ebola virus transmission that integrates detailed geographical and demographic data from 
Liberia to overcome the limitations of non-spatial approaches in projecting the disease dynamics and assessing non-
pharmaceutical control interventions.

Methods We modelled the movements of individuals, including patients not infected with Ebola virus, seeking 
assistance in health-care facilities, the movements of individuals taking care of patients infected with Ebola virus 
not admitted to hospital, and the attendance of funerals. Individuals were grouped into randomly assigned 
households (size based on Demographic Health Survey data) that were geographically placed to match population 
density estimates on a grid of 3157 cells covering the country. The spatial agent-based model was calibrated with a 
Markov chain Monte Carlo approach. The model was used to estimate Ebola virus transmission parameters and 
investigate the eff ectiveness of interventions such as availability of Ebola treatment units, safe burials procedures, 
and household protection kits.

Findings Up to Aug 16, 2014, we estimated that 38·3% of infections (95% CI 17·4–76·4) were acquired in hospitals, 
30·7% (14·1–46·4) in households, and 8·6% (3·2–11·8) while participating in funerals. We noted that the movement 
and mixing, in hospitals at the early stage of the epidemic, of patients infected with Ebola virus and those not infected 
was a suffi  cient driver of the reported pattern of spatial spread. The subsequent decrease of incidence at country and 
county level is attributable to the increasing availability of Ebola treatment units (which in turn contributed to 
drastically decreased hospital transmission), safe burials, and distribution of household protection kits.

Interpretation The model allows assessment of intervention options and the understanding of their role in the 
decrease in incidence reported since Sept 7, 2014. High-quality data (eg, to estimate household secondary attack rate, 
contact patterns within hospitals, and eff ects of ongoing interventions) are needed to reduce uncertainty in model 
estimates.

Funding US Defense Threat Reduction Agency, US National Institutes of Health.

Introduction
The exponential increase of Ebola virus disease cases in 
Sierra Leone, Liberia, and Guinea during the months of 
August and September, 2014, defi nes an unprecedented 
health threat to west Africa. A massive international 
response necessitating the large-scale deployment of 
human and capital resources is needed to stop the 
epidemic. Such eff orts would benefi t from quantitative 
predictions about the growth of the epidemic and the 
eff ectiveness of potential containment or mitigation 
strategies. According to WHO and the Liberian Ministry 
of Health and Social Welfare reports,1,2 7069 cases and 
2964 deaths were recorded in Liberia by Nov 17, 2014, 
with 341 cases and 170 deaths in health-care workers. 
Since September, 2014, the recorded number of cases 
has not followed the initial exponential growth trend 
reported in the early phase of the outbreak, and the 
epidemic might be waning in parts of Liberia.2 In recent 
years, mathematical modelling at very detailed spatial 

resolutions, sometimes down to the level of single 
individuals, has been tailored to make projections for 
policy makers using population-specifi c socio demo-
graphic features of the population.3–8

Recently published data on Ebola virus transmission9–13 
have been key in motivating and informing the strong 
international response to the epidemic. We propose an 
approach that can overcome some of the limitations of 
those early approaches, namely the homogeneous 
mixing assumption in all settings relevant to Ebola virus 
disease transmission and lack of spatial structure, which 
might result in overestimation of disease incidence. We 
developed a spatial agent-based model that integrates 
socio demographic data for Liberia to estimate the relative 
importance of the main settings for Ebola virus disease 
transmission, which are within households, in the 
general community (mainly corresponding to close 
relatives, in the case of Ebola virus disease), in hospitals, 
and at funerals during burial ceremonies. We simulated 
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the Ebola virus disease epidemic in a synthetic population 
in which every household in Liberia is explicitly 
represented. The model includes hospitals and clinics 
treating patients with Ebola virus disease up to mid-
August, 2014, and Ebola treatment units in the 
subsequent period, and the risk of spread to health-care 
workers working at them. We used the model to project 
the spatiotemporal spreading of the disease and to 
disentangle the eff ect of Ebola treatment unit availability, 
safe burial procedures, and the distribution of household 
protection kits in the aversion of Ebola virus disease 
cases.

Methods
Model structure
The Ebola virus disease natural history model is adopted 
from Legrand and colleagues:14 susceptible individuals 
can acquire infection after contact with an infectious 
individual and become exposed without symptoms; at 
the end of the latent period infectious and symptomatic 
individuals can transmit infection at home to both 
household members and close relatives. Infectious 
individuals at home then might either be admitted to 
hospital, die, or recover. Individuals admitted to hospital 
might also either die or recover. Deceased individuals 
might transmit infection during their funeral (to 
household members and relatives belonging to additional 
households) and are then removed from the model. To 
account for the spatial spread of the epidemic, we 
explicitly modelled the movements of individuals, 
including patients not infected with Ebola virus, seeking 
assistance in health-care facilities, the movements of 
individuals taking care of patients infected with Ebola 
virus not admitted to hospital, and the attendance of 
funerals. Individuals were grouped into randomly 
assigned households whose size was based on 
Demographic Health Survey data and were geographically 
placed to match population density estimates on a grid of 
3157 cells covering the country. A full description of the 
synthetic population and the transmission model is in 
the appendix.

Disease transmission
Most Ebola virus disease transmission parameters used in 
the model were from a study of the present outbreak by 
the WHO-led team15 and are summarised in table 1. The 
model accounts for three routes of transmission: trans-
mission in households and in the general community 
(corresponding to additional households) when the 
infected individuals are at home, transmission in 
hospitals, and transmission during funerals (to household 
and additional household members). In general hospitals 
both health-care workers and patients not infected with 
Ebola virus are exposed to the risk of contracting the 
disease. Beginning in Aug 15, 2014, the model accounted 
for the increasing number of hospital beds specifi c for 
patients infected with Ebola virus in Ebola treatment 

units. The number of available beds in Ebola treatment 
units increases over time according to data reported by the 
WHO (appendix). Importantly, after August, 2014, patients 
with symptomatic Ebola virus disease were no longer 
admitted to general hospitals but only to Ebola treatment 
units where they could transmit the infection only to 
health-care workers (with probability 0·05% with respect 
to general hospitals). Moreover, we assumed that safe 
burials increase linearly over time from 0% on Aug 15, 
2014, to 90% on Oct 15, 2014. In the model, three key 
parameters have to be estimated for the present outbreak, 
namely βh (transmission rate in hospitals), βf (transmission 
rate between household members, including their 
contacts with the deceased during burial ceremonies), and 
σ (scaling factor for the transmission rate in the general 
community relative to βf).

Model calibration
Simulations were calibrated to begin with 24 initial Ebola 
virus disease-related deaths by June 16, 2014, matching 
an early report from WHO. To estimate the three key 
model parameters, we used a Markov chain Monte Carlo 
approach exploring the likelihood of the recorded 
number of deaths in health-care workers and in the 
general population based on offi  cial reports until Aug 16, 
2014.1,2 In principle, more recent data could be used for 
model calibration. The drawback of this approach is that 
parameter estimate would depend on the simulated 
eff ects of all continuing interventions, the eff ect of which 
is still uncertain. In the baseline scenario, we set the 
reporting rates of deaths both in health-care workers and 
the general population to be 100%. Additionally, to 
provide an upper bound to our predicted number of 
cases and deaths, we investigated a second scenario 
(under-reporting scenario) in which we still assumed 
100% reporting in health-care workers but a 50% 
reporting in the general population—accounting for the 
possibly raised rate of under-reporting of Ebola virus 
disease-related deaths. Random-walk Metropolis-
Hastings sampling was used to explore the parameter 
space, checking convergence by using chains of 10 000 
iterations (after a 2000 burn-in period) starting from 
several diff erent initial values of the parameter set. The 
Markov chain Monte Carlo analysis and the identifi ability 
of parameters are described in the appendix.

Role of the funding source
The funders had no role in study design, data collection 
and analysis, interpretation, or preparation of the 
manuscript. The corresponding author had full access to 
all the data in the study and had fi nal responsibility for 
the decision to submit for publication.

Results
The model calibration yields 830 cases (95% CI 695–969) 
and 402 deaths (332–478) in Liberia by Aug 16, 2014, 
assuming perfect reporting of Ebola virus disease cases 

See Online for appendix
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and deaths (the baseline scenario). If we assume 50% 
under-reporting in the general population and no under-
reporting in health-care workers, the model estimates 
1571 cases (95% CI 1315–1849) and 805 deaths (672–947) 
by that date. The actual reporting rate in Liberia is 
unknown, so these two extreme scenarios are used to 
cover the uncertainty of the surveillance data. The 
estimated cases and deaths over time for both of these 
reporting scenarios are shown in fi gure 1A. The estimated 
basic reproduction number (R0) is 1·84 (95% CI 
1·60–2·13) for the baseline scenario and 1·9 (1·62–2·14) 
for the under-reporting scenario (see table 2 for estimates, 
and appendix for the calculation procedure). R0 estimates 
agree with recent estimates obtained with diff erent 
mathematical modelling approaches.12,15,17–21 In the 
baseline scenario, we estimated a mean generation time 
of 18·1 days (SD 12·3). The growth rate of the simulated 
epidemics is 0·038 per day (95% CI 0·028–0·048), 
corresponding to a doubling time of 18·6 days 
(14·3–24·3). In the under-reporting scenario, the 
generation time is 17·2 days (SD 12·4 days) and the 
growth rate is 0·043 per day (95% CI 0·031–0·052), cor-
responding to a doubling time of 16·5 days (13·2–22·4). 
Such values agree with those reported by the WHO-led 
team,15 namely a mean estimated generation time of 
15·3 days (SD 9·1) and doubling time of 15·8 days (95% 
CI 14·4–17·4) in Liberia.

The model was used to estimate the fraction of Ebola 
virus disease transmission attributable to diff erent 
settings. As of Aug 16, 2014, under the baseline scenario, 
we estimate that 52·9% (95% CI 20·3–71·3) of infections 
occurred in households or in the general community (of 
which 30·7% [14·1–46·4] were within households), 
38·4% (17·4–76·4) in hospitals, and 8·6% (3·2–11·8) at 
funerals (fi gure 1B, C; table 2). The estimated household 
secondary attack rate, or the probability that an infected 
person will infect a susceptible household member, is 
19·4% (95% CI 7·2–34·8), in agreement with values 
reported in Dowell and colleagues22 for the 1995 outbreak 

in the Democratic Republic of the Congo (16%). For the 
under-reporting scenario, 72% (95% CI 60·2–79·8) of 
infections occurred in households or in the general 
community (of which 41·7% [32·9–57·4] were within 
households), 17·5% (9·3–29·8) in hospitals, and 10·4% 
(8·8–12·0) at funerals (fi gure 1B, C; table 2). The 
household secondary attack rate was estimated to be 
36·1% (95% CI 21·8–55·9). The higher estimated 
household secondary attack rate in the under-reporting 
scenario stems from the fact that unreported cases can 
be accounted for only by enhancing transmission in 
households and the general community, because the 
fi nite hospital capacity restricts the number of 
transmissions occurring in that specifi c setting. Ebola 
virus disease transmission attributable to funerals has 
been estimated by others using case report data to be 
9%,15 in good agreement with our transmission model-
based estimates. The lower uncertainty in the estimated 
values for the under-reporting scenario can be explained 
by considering that the number of cases in the general 
population is higher than in the scenario assuming 100% 
reporting, whereas the number of cases in health-care 
workers remains the same (fi gure 1C). This poses an 
upper constraint on the transmissibility in hospitals.

The calibrated model was used to investigate the 
features and drivers of the spatial spread of Ebola virus 
disease in Liberia. Figure 1D, E shows the geographical 
diff usion of the disease outbreak up to Aug 16, 2014 in 
the model (see appendix for a full spatiotemporal 
analysis). Although the model was started with a few 
localised cases, Ebola virus disease was widespread 
across most of the country by early August. The spatial 
drivers of disease spread in our model are contacts across 
households and infected individuals travelling to 
hospitals and clinics. We tested diff erent maximum 
distances between households with frequent contacts 
from 2·5 km to 20 km, but they had little eff ect on the 
model results (appendix). Although this result does not 
exclude the possible eff ects from other long-range 
mobility processes, it does show that up to the initiation 
of intervention a suffi  cient driver for the geographical 
spread of Ebola virus disease is hospitals, where patients 
infected with Ebola virus and those not infected from a 
large catchment area can interact. In the appendix we 
show that the model consistently predicts the week of the 
fi rst Ebola virus disease case and number of cases over 
time by county.

The model can be used to provide projections of the 
future burden of the outbreak, at least in the near future, 
and to analyse the potential eff ectiveness of non-
pharmaceutical interventions. Figure 2A shows 
projections for Jan 1, 2015 (18 weeks after the last data 
used for model calibration), assuming that after early 
August the available beds in Ebola treatment units 
increase over time according to data reported by WHO 
and safe burials are progressively implemented as 
described in the Methods. In the model calibrated to the 

Value Reference

Mean duration of incubation period 11·4 days WHO Ebola Response Team15

Mean time from symptom onset to death 7·5 days WHO Ebola Response Team15

Mean time from symptom onset to recovery for survivors 7·9 days Gomes et al12*

Mean time from symptom onset to hospital admission 5·0 days WHO Ebola Response Team15

Proportion of cases admitted to hospital 80% Gomes et al,12 Khan et al16

Mean time from hospital admission to death 4·2 days WHO Ebola Response Team15

Mean time from hospital admission to recovery for survivors 4·6 days Gomes et al12*

Mean time from hospital admission to dismissal for survivors 11·8 days WHO Ebola Response Team15

Mean time from death to burial 2·0 days Legrand et al14

Overall case-fatality ratio 54% WHO Global Alert and Response2

Results of sensitivity analyses are shown in the appendix. *Values resulting as the diff erence between the time from 
symptom onset or hospital admission to death and time from symptom onset or hospital admission to the end of 
infectiousness as reported in Gomes and colleagues.12

Table 1: Values for the base set of parameters
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baseline scenario, 11 806 cases (95% CI 2387–60 856) and 
4032 deaths (1085–11 446) occurred in the general 
population and 230 deaths (153–324) occurred in health-
care workers by Jan 1, 2015. More cases are projected by 
the model calibrated assuming 50% under-reporting, 
with 321 127 cases (95% CI 56 058–828 797) and 34 751 
deaths (11 639–78 826) in the general population and 
305 deaths (192–426) in health-care workers. The 
numbers provided by the under-reporting scenario seem 
hardly compatible with the actual data reported so far in 
offi  cial reports and suggest that under-reporting could 
not be as high as 50%.

Because of the availability of an increasing number of 
beds for patients with Ebola virus disease in Ebola 
treatment units after mid August, in all investigated 
scenarios hospital transmission drastically decreases over 
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Figure 1: Early spread of Ebola virus disease in Liberia
(A) Top: cumulative number (log scale) of Ebola virus disease deaths over time in the general population of Liberia. Dots refer to the data reported by WHO (blue dots show data used for model 
initialisation and calibration). Lines and shaded areas refer to estimated mean and 95% CI model predictions, respectively. The scenario that assumes 100% reporting is shown in red, and the 
50% under-reporting scenario is shown in blue. The proportion of patients admitted to hospital was assumed to be 80%. Middle: cumulative number (log scale) of Ebola virus disease cases 
(confi rmed, probable, and suspected) over time in the general population; colours as in top. Bottom: cumulative number (log scale) of Ebola virus disease deaths over time in health-care 
workers; colours as in top. (B) Proportions of infections that occur within households and the community, in hospitals, and during funerals as of Aug 16, 2014. Results that assume 50% and 
100% reporting rates in the general population are shown. (C) Proportion of cases in health-care workers and proportion of cases due to contacts between household members as of Aug 16, 
2014, that assume 50% and 100% reporting rates in the general population. (D) Simulations of the spatial spread of Ebola virus disease in Liberia as of Jun 16, 2014. Predicted cumulative 
number of Ebola virus disease cases per cell over time in Liberia, assuming a 100% reporting rate and 80% hospital admission rate. Each cell corresponds to an area of about 25 km². (E) As (D) 
but as of Aug 16, 2014.

100% reporting 50% reporting

βf (per day) 0·15 (0·04–0·28) 0·37 (0·18–0·65)

βh (per day) 0·33 (0·15–0·67) 0·21 (0·11–0·39)

σ 0·73 (0·27–0·99) 0·56 (0·14–0·98)

Household and community transmission* (%) 52·9 (20·3–71·3) 72·0 (60·2–79·8)

Hospital transmission* (%) 38·4 (17·4–76·4) 17·5 (9·3–29·8)

Funeral transmission* (%) 8·6 (3·2–11·8) 10·4 (8·8–12·0)

R0 1·84 (1·60–2·13) 1·90 (1·62–2·14)

Household secondary attack rate (%) 19·4 (7·2–34·8) 36·1 (21·8–55·9)

Data are mean (95% CI). *As of Aug 16, 2014. βf=transmission rate between household members, including their 
contacts with the deceased during burial ceremonies. βh=transmission rate in hospitals. σ=scaling factor for the 
transmission rate in the general community relative to βf. R0=reproduction number.

Table 2: Parameter estimates assuming that 80% of cases are admitted to hospital
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time. In particular, as of Jan 1, 2015, the proportion of 
infection from hospital-based transmission decreases to 
17·0% (95% CI 0·9–59·8) and 0·5% (0·1–1·9) in the 
baseline and under-reporting scenarios. We stress that 
after mid-August only a negligible number of cases were  
generated in hospitals because we assume that patients 
infected with Ebola virus are admitted only to Ebola 
treatment units. According to WHO estimates, 2373 safe 

burials have occurred in Liberia as of Nov 12, 2014, 
consistent with model estimates, namely 1462 on average 
(95% CI 310–3293).

Figure 2B shows the number of admissions in Ebola 
treatment units and the number of patients infected with 
Ebola virus receiving treatment over time. In agreement 
with reported data, the model predicts an increase in the 
number of patients with Ebola virus disease admitted to 
hospital and who received treatment from mid-August to 
mid-September and a subsequent decrease. WHO 
reports after Sept 7, 2014, have shown a decreasing 
number of cases, suggesting that local chains of 
transmission have been broken in some districts. This 
fi nding is consistent with model simulations charac-
terised by a high proportion of cases generated in 
hospitals in the initial phase of the outbreak and a 
consequent later decrease of transmission in hospitals. 
Although fi gure 2B shows that more high-quality data to 
provide fi eld estimates of household secondary attack 
rate and contact patterns within hospitals and Ebola 
treatment units are needed to reduce uncertainty of 
model estimates, the decrease in incidence after 
September, 2014, is widespread. This fi nding is very clear 

Figure 2: Spatiotemporal dynamics after mid-August, 2014
(A) Number of deaths (top) and cases (bottom) in the general population. Dots refer to the data reported by WHO. Lines and shaded areas are estimated mean and 95% CI model predictions, 
respectively. Red shows the 100% reporting scenario, blue the 50% reporting scenario. An 80% hospital admission rate was assumed. (B) Left: daily number of admissions to ETUs assuming the 100% 
reporting scenario. Lines and shaded areas are estimated mean and 95% CI model predictions, respectively. Dots are data reported by WHO. An 80% hospital admission rate was assumed. Right: as left, 
but for the number of patients infected with Ebola virus receiving treatment in Ebola treatment units. (C) Cumulative number of cases in the general population in the most aff ected counties of Liberia 
(the seven counties account for about 97% of overall cases) assuming the 100% reporting scenario. Dots are the data reported by WHO. Lines and shaded areas show the estimated mean and 95% CI 
model predictions, respectively. ETU=Ebola treatment unit.
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Time (days)
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(Aug 31) (Sept 30) (Oct 31) (Nov 30) (Dec 31)

A C

B

Cases in the population Mean averted cases

No interventions 36 775 (12 279–107 913) ··

Ebola treatment unit only 21 479 (2761–103 295) 15 296

Ebola treatment unit and safe burials 11 806 (2388–60 857) 24 969

Ebola treatment unit, safe burials, and protection kits 
(50% coverage)

6185 (2367–13 523) 30 590

Ebola treatment unit, safe burials, and protection kits 
(70% coverage)

5456 (2350–10 488) 31 319

Ebola treatment unit, safe burials, and protection kits 
(90% coverage)

4993 (2286–8770) 31 782

Data are mean (95% CI) or mean.

 Table 3: Number of projected cases and average number of averted cases as of Jan 1, 2015, assuming 
100% reporting and 90% effi  cacy of household protection kits
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in fi gure 2C, showing that the growth of the cumulative 
number of cases over time deviates from exponential 
growth and eventually fl attens in all the most aff ected 
counties of Liberia.

To quantify the contribution of Ebola treatment unit 
deployment and safe burials, in table 3 we report the 
Ebola virus disease cases projected by the model, together 
with the number of averted cases when compared with a 
no interventions scenario (fi gure 3A). In the absence of 
interventions, the model predicts a total of 36 775 cases 
(95% CI 12 279–107 913) on Jan 1, 2015 (table 3). We 
considered the distribution of household protection kits 
to be a certain proportion of households where a case is 
identifi ed. According to Centers for Disease Control and 
Prevention estimates, the protection kit, together with 
the increased awareness in households where the kit is 
distributed, could reduce transmission in a household by 
90%.13 This situation is modelled by reducing the 
transmission rate βf by 90% (the 50% reduction scenario 
is analysed in the appendix) for all infectious individuals 
in the household where the protection kit is supplied, 
which implies a reduction in the force of infection to 
which individuals living in both that household and its 
additional related households are exposed. The same 
reduction is assumed for funeral transmission.

Since no estimates of the coverage achieved in Liberia 
are available (hence why we did not include the eff ects of 
protection kits in the baseline scenario), we model the 
eff ectiveness of deploying protection kits starting from a 
coverage of 30% of households receiving protection kits 
up to 90%. The deployment is assumed to increase 
linearly from 0% on Aug 15, 2014, to the maximum level 
on Oct 15, 2014 (fi gure 3B). Deployment of protection kits 
to about 50% of households might have contributed to 
further reduce incidence from about 30 daily new cases 
in November, 2014, to about ten daily cases, a value 
consistent with WHO reports.

Discussion
The agent-based model presented here can be used for 
projections of the number of cases and the potential 
eff ects of interventions during the current Ebola virus 
disease outbreak. Early modelling approaches to the 
epidemic projected a larger number of cases, but they 
were focusing on the early exponential growth phase of 
the disease with models that assume the population of 
Liberia is homogeneous and well mixed.13,15,18 The 
projections obtained here are closer to the number of 
Ebola virus disease cases reported by WHO because 
they take advantage of the population structure and 
more detailed data for intervention policies. The results 
show the eff ect of Ebola treatment units and safe 
burials in the decrease of incidence seen in Liberia after 
early September, 2014. Ebola treatment units might 
have contributed to halving the number of cases and 
deaths (fi gure 3A) and safe burial might have 
contributed an additional 50% reduction compared 
with a scenario with no intervention. Although 
quantitative assessment of effi  cacy and coverage of 
protection kits is not possible, our results support the 
hypothesis that the reported decreasing trend of 
incidence in Liberia might be partly attributable to this 
mitigation policy. Increasing the coverage of protection 
kits above the 50% threshold produces marginal 
improvements with a less than 4% increase in the 
number of averted cases but a nearly doubling of the 
eff ort and cost of deploying protection kits.

Although the presented model is informed by the most 
recent data available for the Ebola virus disease outbreak 
in Liberia, data availability is limited, and a number of 
assumptions should be kept in mind when considering 
the results of this study. An estimate that is obtained 
from previous outbreaks is the 80% hospital admission 
rate. However, even a lower assumed hospital admission 
rate of 60%, and diff erent assumed transmission models 

Figure 3: Eff ect of non-pharmaceutical interventions
(A) Estimated cumulative number of deaths (boxplot shows 2·5%, 25%, 75%, and 97·5% quantiles of the predicted distribution) as predicted by the model by 
assuming the 100% reporting scenario and considering diff erent degrees of interventions. An 80% hospital admission rate is assumed. (B) Estimated median number 
of daily deaths by assuming the 100% reporting scenario, the eff ects of both Ebola treatment units and safe burials, and by varying the coverage of protection kits 
from 50% to 90%. An 80% hospital admission rate is assumed . ETU=Ebola treatment unit.
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in hospitals, do not change the results substantially 
(appendix). Model estimates also do not vary substantially 
when the case-fatality ratio is increased to 70·8%, 
according to more recent, but highly variable, estimates15 
(appendix), and by assuming key natural history 
parameters derived from the analysis of previous 
outbreaks12,14 (appendix). Our results also suggest that the 
reporting rate is probably much greater than 50%. 
However, the uncertainty of model estimates and 
sensitivity of results to assumptions about the reporting 
rate call for urgent fi eld estimates of the reporting rate, 
because it is probably lower than 100%. Uncertainty of 
model estimates and sensitivity of results to the values of 
the transmission rates in households and hospitals 
(fi gure 1B) show that more high-quality data to provide 
fi eld estimates of the household secondary attack rate 
and contact patterns within hospitals are needed to 
reduce uncertainty of model estimates. Finally, model 
estimates would benefi t from quantitative estimates of 
effi  cacy of the continuing interventions, especially for 
protection kits (panel). Moreover, it would also be key to 
inform the model with detailed estimates of practical 
implementation of policies, because simply providing 
supplies of equipment might not be suffi  cient.23

We assume that each infectious individual can transmit 
the infection in the general community on a daily basis 
to a restricted number of individuals (corresponding to 
two additional households, in the reference scenario) 

living inside a circle (of 10 km radius, in the reference 
scenario) around the household of each patient with 
Ebola virus disease. This choice derives from the fact that 
no evidence of pre-symptomatic Ebola virus disease 
transmission has been reported so far. Thus, infectious 
individuals with Ebola virus disease would be very 
unlikely to be in a condition to travel long distances, 
except for those urgently needing hospital care. 
Susceptible individuals coming into contact with patients 
with Ebola virus disease would mainly be visiting 
relatives and friends. The reliability of such hypotheses is 
supported by our analysis, presented in the appendix, 
showing that even a model accounting for Ebola virus 
disease transmission in the community only at 2·5 km at 
most is able to reproduce the recorded pattern of spatial 
spread, and our projections are fairly insensitive to such 
an extreme assumption. Our fi ndings are also robust 
with respect to increasing the number of contacts in the 
general community (here modelled as additional 
households in the network of daily contacts of each 
individual) and to the distance at which contacts are 
made (appendix). Therefore, although we cannot rule out 
that local population mobility could represent a possible 
driver of Ebola virus disease dynamics in the future, for 
the moment no evidence exists that such mobility is 
necessary to explain what has been reported so far. 
However, we warn that we do not explicitly consider 
mobility due to commuting patterns or other business 
travel. Although this kind of mobility is not likely to play 
a very important part in Ebola virus transmission—
mobile people are generally not symptomatic and thus 
have near zero or very low infectivity—we cannot exclude 
their relevance in increasing the geographical dispersion 
of the outbreak.

This modelling approach can be extended to other 
countries in west Africa and include more detailed 
policies for the isolation of cases, Ebola treatment unit 
management, and funeral preparation. We did not 
investigate pharmaceutical interventions such as 
vaccines because data on their effi  cacy are not available. 
However, the model could be used to analyse the potential 
eff ectiveness of these interventions and their deployment 
strategies as data become available.
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