
2

Span-core Decomposition for Temporal Networks:
Algorithms and Applications

EDOARDO GALIMBERTI, ISI Foundation and University of Turin

MARTINO CIAPERONI, Aalto University

ALAIN BARRAT, Aix Marseille Univ, Université de Toulon, CNRS, CPT and ISI Foundation

FRANCESCO BONCHI, ISI Foundation and Eurecat

CIRO CATTUTO, University of Turin and ISI Foundation

FRANCESCO GULLO, UniCredit

When analyzing temporal networks, a fundamental task is the identification of dense structures (i.e., groups
of vertices that exhibit a large number of links), together with their temporal span (i.e., the period of time
for which the high density holds). In this article, we tackle this task by introducing a notion of temporal core
decomposition where each core is associated with two quantities, its coreness, which quantifies how densely
it is connected, and its span, which is a temporal interval: we call such cores span-cores.

For a temporal network defined on a discrete temporal domain T , the total number of time intervals in-
cluded in T is quadratic in |T |, so that the total number of span-cores is potentially quadratic in |T | as well.
Our first main contribution is an algorithm that, by exploiting containment properties among span-cores,
computes all the span-cores efficiently. Then, we focus on the problem of finding only the maximal span-

cores, i.e., span-cores that are not dominated by any other span-core by both their coreness property and
their span. We devise a very efficient algorithm that exploits theoretical findings on the maximality condition
to directly extract the maximal ones without computing all span-cores.

Finally, as a third contribution, we introduce the problem of temporal community search, where a set of
query vertices is given as input, and the goal is to find a set of densely-connected subgraphs containing the
query vertices and covering the whole underlying temporal domain T . We derive a connection between this
problem and the problem of finding (maximal) span-cores. Based on this connection, we show how temporal
community search can be solved in polynomial-time via dynamic programming, and how the maximal span-
cores can be profitably exploited to significantly speed-up the basic algorithm.

We provide an extensive experimentation on several real-world temporal networks of widely different ori-
gins and characteristics. Our results confirm the efficiency and scalability of the proposed methods. Moreover,
we showcase the practical relevance of our techniques in a number of applications on temporal networks,
describing face-to-face contacts between individuals in schools. Our experiments highlight the relevance of
the notion of (maximal) span-core in analyzing social dynamics, detecting/correcting anomalies in the data,
and graph-embedding-based network classification.

Authors’ addresses: E. Galimberti, ISI Foundation, Via Chisola 5, 10126 Turin, Italy and University of Turin, Turin, Italy;
email: edoardo.galimberti@isi.it; M. Ciaperoni, Aalto University Foundation sr, PO BOX 11000, FI-00076, Aalto, Finland;
email: martino.ciaperoni@aalto.fi; A. Barrat, Centre de Physique Théorique, Campus de Luminy, Case 907, 163 Avenue de
Luminy, 13288 Marseille Cedex 9, France and ISI Foundation, Turin, Italy; email: alain.barrat@cpt.univ-mrs.fr; F. Bonchi,
ISI Foundation, Via Chisola 5, 10126 Turin, Italy and Eurecat, Barcelona, Spain; email: francesco.bonchi@isi.it; C. Cattuto,
University of Turin, Corso Svizzera 185, 10149 Torino, Italy and ISI Foundation, Turin, Italy; email: ciro.cattuto@unito.it;
F. Gullo, Unicredit, Via Molfetta, 101 - 00171 Rome, Italy; email: gullof@acm.org.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1556-4681/2020/12-ART2 $15.00
https://doi.org/10.1145/3418226

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3418226

2:2 E. Galimberti et al.

CCS Concepts: • Mathematics of computing → Graph algorithms; Graph theory; • Information sys-

tems → Temporal data; Data mining; • Theory of computation → Dynamic programming;

Additional Key Words and Phrases: Temporal networks, core decomposition, maximal cores, community
search, face-to-face interaction networks

ACM Reference format:

Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro Cattuto, and Francesco Gullo.
2020. Span-core Decomposition for Temporal Networks: Algorithms and Applications. ACM Trans. Knowl.

Discov. Data 15, 1, Article 2 (December 2020), 44 pages.
https://doi.org/10.1145/3418226

1 INTRODUCTION

A temporal network1 is a representation of entities (vertices), their relations (links), and how these
relations are established/broken over time. Notice that here we will consider discrete times, i.e.,
the temporal networks can be represented as a time-ordered series of snapshots (instantaneous
graphs). Extracting dense structures (i.e., groups of vertices exhibiting a large number of links
with each other), together with their temporal span (i.e., the period of time for which the high
density is observed) is a key mining primitive to characterize such temporal networks and extract
relevant structures. This type of pattern enables fine-grain analysis of the network dynamics and
can be a building block towards more complex tasks and applications, such as finding temporally
recurring subgraphs or anomalously dense ones. For instance, they can help in studying contact
networks among individuals to quantify the transmission opportunities of respiratory infections
in a population and uncover situations where the risk of transmission is higher, with the goal of
designing mitigation strategies [43]. Anomalously dense temporal patterns among entities in a co-
occurrence graph (e.g., extracted from the Twitter stream) have also been used to identify events
and buzzing stories in real time [5, 15, 16]. Another example concerns scientific collaboration and
citation networks, where these patterns can help understand the dynamics of collaboration in
successful professional teams, study the evolution of scientific topics, and detect emerging tech-
nologies [32].

In this article, we adopt as a measure of density of a pattern, the minimum degree holding among
the vertices in the subgraph during the pattern’s span. The problem of extracting all these patterns
is tackled by introducing a notion of temporal core decomposition in which each core is associated
with its span, i.e., an interval of contiguous timestamps, for which the coreness property holds. We
term such a notion of temporal core span-core.

Moreover, in several application scenarios, it is typically required to identify only those dense
patterns that contain a given set of query vertices. We therefore introduce the problem of temporal

community search, whose goal is to find a set of cohesive temporal subgraphs containing the input
query vertices and covering the whole temporal domain.

To the best of our knowledge, the problems of (efficient) span-core computation and temporal
community search have never been studied so far.

1.1 Challenges and Contributions

As the number of possible time intervals is quadratic in the size of the input temporal domain T ,
the total number of span-cores is, in the worst case, quadratic in T too. The naive method to find
all span-cores, which would be to operate a core decomposition for each of these time intervals,

1We use “network” and “graph” interchangeably throughout the article.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

https://doi.org/10.1145/3418226

Span-core Decomposition for Temporal Networks 2:3

would therefore be very time-consuming. This is a major challenge that we tackle by deriv-
ing containment properties between span-cores and by exploiting them to devise an algorithm
for computing all the span-cores that is significantly more efficient than the naïve exhaustive
method.

We then shift our attention to the problem of finding only the maximal span-cores, defined as the
span-cores that are not dominated by any other span-core by both the coreness property and the
span. A straightforward way of approaching this problem is to filter out non-maximal span-cores
during the execution of an algorithm for computing the whole span-core decomposition. However,
as the maximal ones are usually much less numerous than the overall span-cores, it would be
desirable to have a method that effectively exploits the maximality property and extracts maximal
span-cores directly, without computing the complete decomposition. The design of an algorithm
of this kind is an interesting challenge, as it contrasts with the intrinsic conceptual properties of
core decomposition, based on which a core of order k can be efficiently computed from the core
of order k−1, of which it is a subset. For this reason, at first glance, the computation of the core
of the highest order would seem as hard as computing the overall core decomposition. Instead, in
this work, we derive a number of theoretical properties about the relationship among span-cores
of different temporal intervals and, based on these findings, we show how such a challenging goal
may be achieved.

Finally, we focus on the problem of community search in temporal networks. Community search
has been extensively studied in static graphs. It requires to find a subgraph containing a given set of
query vertices and maximizing a certain density measure [36, 51]. Here, we propose a formulation
of the community-search problem in temporal networks as follows: given a setQ of query vertices,
and a positive integer h, find a segmentation of the underlying temporal domain in h segments
{Δi }hi=1 and a subgraph Si for every identified segment Δi such that each Si contains the query
verticesQ and the total density of the subgraphs is maximized. Following the bulk of the literature
in community search on static networks, in our definition of temporal community search, we adopt
the minimum degree as a density measure.

We show that, with some manipulations, temporal community search can be reformulated as
an instance of the popular sequence segmentation problem, which asks for partitioning a sequence
of numerical values into h segments so as to minimize the sum of the penalties (according to some
penalty function) on the identified segments [10]. Therefore, the classical dynamic-programming
(DP) algorithm for sequence segmentation by Bellman [10] can be easily adapted to solve temporal
community search in polynomial time.

A criticality of this approach is that a naïve adaptation of the Bellman’s algorithm takes qua-
dratic time in the size of the input temporal domain T . As a major contribution in this regard,
we prove that the set of maximal span-cores provide a sound and complete basis to still have
an optimal solution to temporal community search, while at the same time leading to a signifi-
cant speed-up with respect to the naïve method. In fact, let T ∗ ⊆ T be the subset of timestamps
that are covered by the span of at least one maximal span-core, together with the timestamps
that immediately precede or succeed any of such spans. We show that considering T ∗ (instead of
T) in the (adaptation of the) Bellman’s algorithm is sufficient to optimally solve the underlying
temporal-community-search problem instance. As, typically, |T ∗ | � |T |, this finding guarantees a
considerable improvement in efficiency (as confirmed by our experiments).

A further challenge in our temporal-community-search problem is a typical one in community-
search formulations based on minimum degree, namely, that the output subgraphs are typically
large in size. We tackle this challenge by devising a method to reduce the size of the output
subgraphs without affecting optimality. The proposed method is inspired by the one devised by
Barbieri et al. [7] for the problem of minimum community search (in static graphs).

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:4 E. Galimberti et al.

To summarize, the main contributions of this article are as follows:

—We introduce the notion of span-core decomposition and maximal span-core in temporal
networks, characterizing structure and size of the search space and providing important
containment properties (Section 3).

—We devise an algorithm for computing all span-cores that exploits the aforementioned con-
tainment properties and is orders of magnitude faster than a naïve method based on tradi-
tional core decomposition (Section 4).

—We study the problem of finding only the maximal span-cores. We derive several theoretical
findings about the relationship between maximal span-cores and exploit these findings to
devise an algorithm that is more efficient than computing all span-cores and discarding the
non-maximal ones (Section 5).

—We introduce the problem of temporal community search and show how it can be solved in
polynomial time via DP. We prove an important connection between temporal community
search and maximal span-cores, which allows us to devise an algorithm that is considerably
more efficient than the naïve DP one. We also propose a method to achieve the critical
challenge of having too large communities as output (Section 6).

—We provide a comprehensive experimentation on several real-world temporal networks,
with millions of vertices, tens of millions of edges, and hundreds of timestamps, which
attests efficiency and scalability of our methods (Section 7).

—We present applications on face-to-face interaction networks that illustrate the relevance
of the notions of (maximal) span-core and temporal community search in real-life analyses
and applications (Section 8).

The next section provides an overview of the related literature, while Section 9 discusses future
work and concludes the article.

An abridged version of this work, covering Sections 4 and 5, together with the corresponding
experiments (i.e., parts of Sections 7 and 8), was presented in [37].

Reproducibility. For the sake of reproducibility, all our code and some of the datasets used in
this article are available at github.com/egalimberti/span_cores.

2 BACKGROUND AND RELATED WORK

2.1 Core Decomposition

Given a simple (static) graph G = (V ,E), let d (S,u) denote the degree of vertex u ∈ V in the sub-
graph induced by vertex set S ⊆ V , i.e., d (S,u) = |{v ∈ S | (u,v) ∈ E}|. The notions of k-core and
core decomposition are defined as follows:

Definition 1 (k-core and Core Decomposition [67]). The k-core (or core of order k) ofG is a maxi-

mal set of vertices Ck ⊆ V such that ∀u ∈ Ck : d (Ck ,u) ≥ k . The set of all k-cores V = C0 ⊇ C1 ⊇
· · · ⊇ Ck∗ (k∗ = arg maxk Ck � ∅) is the core decomposition of G.

Core decomposition can be computed in linear time by iteratively removing the smallest-degree
vertex and setting its core number as equal to its degree at the time of removal [9]. Among the many
definitions of dense structures, core decomposition is particularly appealing as, among others, it
is fast to compute, and can speed-up/approximate dense-subgraph extraction according to various
other definitions. For instance, core decomposition allows for finding cliques more efficiently [31],
as a k-clique is contained into a (k−1)-core, which can be significantly smaller than the original
graph. Moreover, core decomposition is at the basis of approximation algorithms for the densest-
(at-least-k-)subgraph problem [3, 56], and betweenness centrality [47]. Core decomposition has
also been recognized as an important tool to analyze and visualize complex networks [2, 8] in

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

https://github.com/egalimberti/span_cores

Span-core Decomposition for Temporal Networks 2:5

several domains, e.g., bioinformatics [6, 87], software engineering [90], and social networks [41,
54]. It has been studied under various settings, such as distributed [69], streaming/maintenance [60,
77], and disk-based [23], and generalized to various types of static graphs, such as uncertain [19],
directed [44], weighted [28, 40], bipartite graphs [61], or including attributes on the nodes [89].
For a comprehensive survey about theory, algorithms, and applications of core decomposition we
refer to [18, 64].

Two types of extension of core decomposition bear some relation to our work. First, core decom-
position in multilayer networks—i.e., networks that are composed of a superposition of networks—
has been studied in [38, 39]. In the multilayer setting, a core is allowed to extend on any subset
of layers, thus implying that the total number of multilayer cores is exponential in the number of
layers. Although temporal networks can be viewed as a special case of multilayer networks (where
each timestamp is interpreted as a layer), there is a fundamental difference: in a temporal network
the “layers” are ordered, and the sequentiality of timestamps represents an important structural
constraint. In other words, in the temporal setting we are interested in cores that span a temporal
interval, and not simply any subset of (potentially non-contiguous) timestamps. This aspect has
two critical consequences. First, the search space and the number of temporal cores are no longer
exponential, unlike the multilayer case. Second, to guarantee an effective fulfilment of the con-
straint on temporal sequentiality, the requirements for the edges that contribute to the formation
of a temporal core are stricter than the ones at the basis of the multilayer-core definition. A more
detailed technical discussion of the relationship between multilayer core decomposition and the
proposed temporal core decomposition is reported in Section 3.3.

The second extension of core decomposition that shares some relation to the one proposed in
this work is due to Wu et al., who have proposed in [86] an alternative definition of temporal core
decomposition. A major difference between Wu et al.’s definition and ours is that the former does

not take any kind of temporal constraint into account. Indeed, Wu et al. define the (k,h)-core as the
largest subgraph in which every vertex has at least k neighbors and there are at least h temporal
edges between the vertex and its neighbors, without any restriction on when these h edges occur:
the sequentiality of connections is not taken into account and non-contiguous timestamps can
support the same core. In fact, the (k,h)-core decomposition can be seen as a kind of weighted
static core decomposition on the weighted static network resulting from the aggregation of the
temporal network. In contrast, our temporal cores have each a clear temporal collocation and
continuous spans, so that our definition includes temporality in an explicit way and cannot be
reduced to Wu et al.’s one. As we will see in Section 8, associating a temporal collocation to each
core is important in applications.

2.2 Patterns in Temporal Networks

A number of works on extracting dense patterns from a temporal network focus on the well-
established notion of densest subgraph, i.e., a subgraph maximizing the average-degree density.
Jethava and Beerenwinkel [53] consider as input a set of graphs sharing the same vertex set,
which can thus also be interpreted as a temporal network. On such an input, they study the
densest common subgraph problem, i.e., the problem of finding a subgraph maximizing the mini-
mum average degree over all graphs (timestamps), and devise a linear-programming formulation
and a greedy heuristic algorithm for it. Further (mostly theoretical) advancements to the densest-
common-subgraph problem have been provided by Reinthal et al. [71] and Charikar et al. [22].
Semertzidis et al. [78] instead introduce two more variants of the problem, where the goal is to
maximize the average average degree and the minimum minimum degree, respectively. They show
that the average–average variant easily reduces to the traditional densest-subgraph problem, and

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:6 E. Galimberti et al.

that the minimum–minimum variant can be exactly solved by a simple adaptation of the classic
algorithm for core decomposition.

Complementary works focus on variants of the densest-subgraph-discovery problem. Rozen-
shtein et al. study the problem of discovering dense temporal subgraphs whose edges occur in
short time intervals considering the exact timestamp of the occurrences [73], and the problem of
partitioning the timeline of a temporal network into non-overlapping intervals, such that the in-
tervals span subgraphs with maximum total density [72]. Epasto et al. [29] deal with the problem
of maintaining the densest subgraph in a dynamic setting.

Attention in the literature has also been devoted to densities other than the average degree. The
notion of Δ-clique, as a set of vertices in which each pair is in contact at least every Δ timestamps,
has been proposed in [48, 85]. Bentert et al. [11] introduce the Δ-k-plex, a relaxation of Δ-clique in
which each vertex has an edge to all but at most k − 1 vertices at least once every Δ consecutive
timestamps. Li et al. [59] study the problem of finding the maximum (θ ,Δ)-persistent k-core in a
temporal network, i.e., the largest subgraph that is a connected k-core in all the subintervals of
duration θ of a given temporal interval Δ.

A different, but still slightly related body of literature focuses on other definitions of tempo-
ral patterns, such as frequent evolution patterns in temporal attributed graphs [12, 26, 52], link-
formation rules in temporal networks [20, 58], frequency-estimation algorithms for counting tem-
poral motifs [57, 62], finding a small vertex set whose removal eliminates all temporal paths con-
necting two designated terminal vertices [91], finding a subgraph that maximizes the sum of edge
weights in a network whose topology remains fixed but edge weights evolve over time [14, 63],
and the discovery of dynamic relationships and events [25], or of correlated activity patterns [42].

This work differs from all the above ones as our notions of span-core and temporal core decom-
position do not correspond (or are straightforwardly reducible) to any of those temporal patterns.

2.3 Community Search

Given a static graph and a set of query vertices, the community search problem aims at finding a
cohesive subgraph containing the query vertices. Community search has attracted a great deal of
attention in the last years [36, 51]. Sozio and Gionis [79] are the first to introduce this problem
by employing the minimum degree as a cohesiveness measure. Their formulation can be solved
by a simple (linear-time) greedy algorithm, which resembles the traditional two-approximation
algorithm for densest subgraph proposed in [21]. More recently, Cui et al. [24] devise a local-
search approach to improve the efficiency of the method defined in [79], but only for the special
case of a single query vertex. The case of multiple query vertices has instead been addressed by
Barbieri et al. [7], who exploit core decomposition as a preprocessing step to improve efficiency.
They also tackle the problem of minimum community search, i.e., a variant of community search
where the size of the output subgraph has to be minimized.

Community search has also been studied under different names and/or settings. Huang et al. [49]
introduce a community-search model based on the k-truss notion. Andersen and Lang [4] and
Kloumann and Kleinberg [55] study seed set expansion in social graphs, in order to find communi-
ties with small conductance or that are well-resemblant of the characteristics of the query vertices,
respectively. Other works define connectivity subgraphs based on electricity analogues [33], ran-
dom walks [84], the minimum-description-length principle [1], the Wiener index [74], and network
efficiency [75]. Recent approaches also introduce the flexibility of having query vertices belong-
ing to different communities [13, 88]. Finally, community search has been formalized for attributed
graphs [34, 50] and spatial graphs [35] as well.

In this work, we study for the first time community search in temporal graphs. Specifically, we
provide a novel definition of the problem by asking for a set of subgraphs containing the given

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:7

query vertices, along with their corresponding temporal intervals, such that the total minimum-
degree density of the identified subgraphs is maximized and the union of the temporal inter-
vals spanned by those subgraphs covers the whole underlying temporal domain. None of the
above works deal with such a definition of temporal community search, not even the works by
Rozenshtein et al. [72] and Li et al. [59] discussed in the previous subsection. In fact, although
Rozenshtein et al. [72] and Li et al. [59] search for cohesive temporal subgraphs, they do not ac-
cept any query vertices in input. This is a fundamental feature, which makes those works actually
solve a problem other than community search. Another key difference is that they focus on differ-
ent notions of density.

3 TEMPORAL CORE DECOMPOSITION: PROBLEM STATEMENT

In this section, we provide preliminary definitions and the needed notations, introduce the problem
of finding all span-cores and only the maximal ones, and prove containment properties among
span-cores that are at the basis of our efficient algorithms.

3.1 Span-cores

We are given a temporal graph G = (V ,T ,τ), where V is a set of vertices, T = [0, 1, . . . , tmax] ⊆
N is a discrete time domain, and τ : V ×V ×T → {0, 1} is a function defining for each pair of
verticesu,v ∈ V and each timestamp t ∈ T whether edge (u,v) exists in t . We denote E = {(u,v, t) |
τ (u,v, t) = 1} the set of all temporal edges. Given a timestamp t ∈ T , Et = {(u,v) | τ (u,v, t) = 1}
is the set of edges existing at time t . A temporal interval Δ = [ts , te] is contained into another
temporal interval Δ′ = [t ′s , t

′
e], denoted Δ � Δ′, if t ′s ≤ ts and t ′e ≥ te . Given an interval Δ � T , we

denote EΔ =
⋂

t ∈Δ Et the edges existing in all timestamps2 of Δ. Given a subset S ⊆ V of vertices, let
EΔ[S] = {(u,v) ∈ EΔ | u ∈ S,v ∈ S } andGΔ[S] = (S,EΔ[S]). Finally, the temporal degree of a vertex
u within GΔ[S] is denoted dΔ(S,u) = |{v ∈ S | (u,v) ∈ EΔ[S]}|.

Definition 2 ((k,Δ)-core). The (k,Δ)-core of a temporal graph G = (V ,T ,τ) is (when it exists) a
maximal and non-empty set of vertices ∅ � Ck,Δ ⊆ V , such that∀u ∈ Ck,Δ : dΔ(Ck,Δ,u) ≥ k , where
Δ � T is a temporal interval and k ∈ N+.

A (k,Δ)-core is thus a set of vertices implicitly defining a cohesive subgraph (where k represents
the cohesiveness constraint), together with its temporal span, i.e., the interval Δ for which the
subgraph satisfies the cohesiveness constraint. In the remainder of the article, we refer to this type
of temporal pattern as span-core.

The first problem we tackle in this work is to compute the span-core decomposition of a temporal
graph G, i.e., all span-cores of G.

Problem 1 (Span-core Decomposition). Given a temporal graph G, find the set of all (k,Δ)-
cores of G.

2We remark that this is just one of the possible ways of defining the existence of an edge in a temporal domain. There are
two basic semantics used in the literature: the “AND” semantics we employ here, where an edge is required to exist in all
the timestamps of an interval, and an “OR” semantics, requiring that an edge appears in at least one of the timestamps.
Although both semantics can be meaningful and there is no strong a-priori argument to prefer one over the other, the
types of application and the desired semantics of the data analysis can dictate the choice. In this work, we are particularly
interested in networks of social interactions (contacts, communications, etc.), and in exposing structures that are cohesive
and stable, together with their duration. It seems then natural to consider the AND semantics, as an OR semantics would
correspond to an aggregation on a temporal interval and would not constrain the simultaneity of interactions to define a
structure. This simultaneity is crucial in applications such as the ones in Section 8, in which we show the relevance of our
work in the analysis of contact networks among individuals recorded by an RFID-based proximity-sensing infrastructure.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:8 E. Galimberti et al.

Fig. 1. Search space: for a temporal span Δ = [ts , te], the (k,Δ)-core is depicted as a node labeled “k, [ts , te]”.
An arrowC1 → C2 denotesC1 ⊇ C2 (the distinction between solid and dotted arrows is for visualization sake
only).

Unlike standard cores of simple graphs, span-cores are not all nested into each other, due to their
spans. However, they still exhibit containment properties. Indeed, it can be observed that a (k,Δ)-
core is contained into any other (k ′,Δ′)-core with less restrictive degree and span conditions,
i.e., k ′ ≤ k , and Δ′ � Δ. This property is depicted in Figure 1, and formally stated in the next
proposition.

Proposition 1 (Span-core Containment). For any two span-cores Ck,Δ, Ck ′,Δ′ of a temporal

graph G it holds that

k ′ ≤ k ∧ Δ′ � Δ ⇒ Ck,Δ ⊆ Ck ′,Δ′ .

Proof. The result can be proved by separating the two conditions in the hypothesis, i.e., by
separately showing that (i) k ′ ≤ k ⇒ Ck,Δ ⊆ Ck ′,Δ, and (ii) Δ′ � Δ⇒ Ck,Δ ⊆ Ck,Δ′ . The first point
holds as, keeping the span Δ fixed, the maximal set of vertices C for which dΔ(C,u) ≥ k is clearly
contained in the maximal set of vertices C ′ for which dΔ(C ′,u) ≥ k ′, if k ′ ≤ k . To prove (ii), it
can be noted that Δ′ � Δ⇒ EΔ ⊆ EΔ′ , which implies that ∀u ∈ Ck,Δ : dΔ(Ck,Δ,u) ≤ dΔ′ (Ck,Δ,u).
Therefore, all vertices within Ck,Δ satisfy the condition to be part of Ck,Δ′ too. �

The following observation directly derives from Proposition 1 and states that finding all the
span-cores having a fixed span Δ corresponds to computing the core decomposition of a simple
graph.

Observation 1. For a fixed temporal interval Δ � T , finding all span-cores that have Δ as their

span is equivalent to computing the classic core decomposition [9] of the simple graph GΔ = (V ,EΔ).

3.2 Maximal Span-cores

As the total number of temporal intervals that are contained into the whole time domain T is
|T |(|T |+1)/2, the total number of span-cores is potentially O (|T |2 × kmax), where kmax is the
largest value of k for which a (k,Δ)-core exists. It is thus quadratic in |T |, which may be too

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:9

large an output for human direct inspection. In this regard, it may be useful to focus only on the
most relevant cores, i.e., the maximal ones, as defined next.

Definition 3 (Maximal Span-core). A span-core Ck,Δ of a temporal graph G is said maximal if
there does not exist any other span-core Ck ′,Δ′ of G such that k ≤ k ′ and Δ � Δ′.

Hence, a span-core is recognized as maximal if it is not dominated by another span-core both
on the order k and the span Δ. Differently from the innermost core (i.e., the core of the highest
order) in the classic core decomposition, which is unique, in our temporal setting, the number of
maximal span-cores is O (|T |2), as, in the worst case, there may be one maximal span-core for every
temporal interval. However, as observed in empirical temporal-network data, maximal span-cores
are always much less than the overall span-cores: the difference is usually one order of magnitude
or more. The second problem we tackle in this work is to compute the maximal span-cores of a
temporal graph.

Problem 2 (Maximal Span-core Mining). Given a temporal graphG, find the set of all maximal

(k,Δ)-cores of G.

Clearly, one could solve Problem 2 by solving Problem 1 and filtering out all the non-maximal
span-cores. However, an interesting yet challenging question is whether one can exploit the max-
imality condition to develop faster algorithms that can directly extract the maximal ones, without
computing all the span-cores. We provide a positive answer to this question in Section 5.

3.3 Relation to Multilayer Core Decomposition [38, 39]

Multilayer graphs are a representation paradigm of complex systems, where multiple relations of
different types occur between the same pair of entities [17, 27, 82]. A multilayer graph is formally
defined as a tripleG = (V ,E,L), whereV is a set of vertices, L is a set of layers, and E ⊆ V ×V × L
is a set of edges. Given a multilayer graph G = (V ,E,L) and an |L|-dimensional integer vector
�k = [k�]�∈L , Galimberti et al. [38, 39] define the notion of multilayer �k-core of G as a maximal set
C ⊆ V of vertices such that, for all � ∈ L, the minimum degree of a vertex in C in layer � is larger

than or equal to k� . In other words, a �k-multilayer-core corresponds to a subgraph that satisfies
the k�-core definition in layer �, for all � ∈ L. For instance, for |L| = 2, a multilayer (k1,k2)-core is
a subgraph that is simultaneously a k1-core in the first layer and a k2-core in the second layer.

Temporal graphs can be viewed as a special case of multilayer graphs where timestamps cor-
respond to layers. Therefore, a natural question while introducing a notion of temporal core is
how it relates to the definition of a core in the multilayer setting. A fundamental difference is that,
unlike the multilayer context, in a temporal graph the “layers” are ordered, and the consecution
of timestamps should be taken into account. As a result, the two definitions are not comparable
and have different conceptual and computational properties in the general case. A major remark in
this regard is that the multilayer cores, as defined in [38, 39], are exponential in the number |L| of
layers |L|, thus the multilayer core decomposition takes (worst-case) exponential time, while temporal

core decomposition is computable in polynomial time.
Once having ascertained such a key difference, another meaningful investigation would be un-

derstanding whether the notion of multilayer core may still be exploited to define/compute span-
cores, even if only in limited circumstances. In this regard, as formally shown in the next propo-
sition and illustrated in the example in Figure 2, there exists a containment relationship between
span-cores and multilayer cores.

Proposition 2. Let C be the (k,Δ)-span-core of a temporal graph G = (V ,T ,τ). Let also �k =
[kt]t ∈T be a |T |-dimensional integer vector such that∀t ∈ Δ : kt = k ,∀t � Δ : kt = 0, and letC ′ be the

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:10 E. Galimberti et al.

Fig. 2. Relationship between multilayer cores defined in [38, 39] and span-cores introduced in this work
(Proposition 2). The figure depicts a toy temporal graph G, with time domain T = {0, 1, 2}. Solid, dashed,
and dotted edges refer to timestamp 0, 1, and 2, respectively. The (2, [0, 1])-span-core of G corresponds to
C = {A,D,E}. At the same time, C ′ = {A,B,D,E} corresponds to the (2, 2, 0)-multilayer-core of G, when G is
interpreted as a (three-layer) multilayer graph with the first, second, and third layer corresponding to times-
tamps 0, 1, and 2, respectively. While there is no exact correspondence, it can be observed that span-core C
is contained into multilayer core C ′.

�k-multilayer-core extracted from G by interpreting it as a multilayer graph where layers correspond

to timestamps. It holds that C ⊆ C ′.

Proof. According to Definition 2, every vertex v ∈ C , has a at least k neighbors withinC \ {v},
for every timestamp t ∈ Δ. This complies with the definition of �k-multilayer-core, �k = [kt]t ∈T ,∀t ∈
Δ : kt = k , ∀t � Δ : kt = 0, meaning that all vertices in C are necessarily part of the �k-multilayer-
core as well. �

Proposition 2 suggests that, in principle, to compute span-cores, one may: (i) compute all mul-
tilayer cores, (ii) among all multilayer cores, retrieve the ones complying with Proposition 2, and
(iii) post-process those multilayer cores in order to extract the actual span-cores. However, this
strategy is not feasible, as, due to the aforementioned exponential-time computation, extracting
multilayer cores from a temporal graph would be affordable only for very small values of |T |.
In fact, Galimberti et al. [38, 39] show experiments on graphs with at most 10 layers, and in the
10-layer graphs computing the multilayer core decomposition takes more than 28 hours. In the
temporal setting, we are interested in analyzing long-term, sometimes high-frequency, interac-
tions, thus temporal graphs have typically much more than 10 timestamps. Indeed, all the datasets
used in this article have many more timestamps, and the algorithms from [38, 39] cannot run in
a reasonable amount of time. Moreover, even assuming to be able to compute multilayer cores on
temporal networks, those cores have still to be filtered and post-processed, which makes this strat-
egy meaningless with respect to methods that compute span-cores directly, as the ones introduced
in the next section.

4 ALGORITHMS: COMPUTING ALL SPAN-CORES

In this section, we devise algorithms for computing a complete span-core decomposition of a tem-
poral graph (Problem 1).

A naïve approach. As stated in Observation 1, for a fixed temporal interval Δ � T , mining
all span-cores Ck,Δ is equivalent to computing the classic core decomposition of the graph GΔ =

(V ,EΔ). A naïve strategy is thus to run a core-decomposition subroutine [9] on graphGΔ for each
temporal interval Δ � T . Such a method has time complexity O (

∑
Δ�T (|Δ| × |E |)), i.e., O (|T |2 ×

|E |).
A more efficient algorithm. Looking at Figure 1, one can observe that the naïve algorithm

only exploits one dimension of the containment property: it starts from each point on the top

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:11

ALGORITHM 1: Span-cores

Input: A temporal graph G = (V ,T ,τ).
Output: The set C of all span-cores of G.

1 C← ∅; Q ← ∅; A ← ∅
2 forall t ∈ T do

3 enqueue [t , t] to Q ; A[t , t]← V

4 while Q � ∅ do

5 dequeue Δ = [ts , te] from Q

6 EΔ[A[Δ]]← {(u,v) ∈ EΔ | u ∈ A[Δ],v ∈ A[Δ]}
7 if |EΔ[A[Δ]]| > 0 then

8 CΔ ← core-decomposition(A[Δ],EΔ[A[Δ]])

9 C← C ∪ CΔ

10 Δ1 = [max{ts − 1, 0}, te]; Δ2 = [ts ,min{te + 1, tmax }]
11 forall Δ′ ∈ {Δ1,Δ2} | Δ′ � Δ do

12 if A[Δ′] � null then

13 A[Δ′]← A[Δ′] ∩C1,Δ

14 enqueue Δ′ to Q

15 else

16 A[Δ′]← C1,Δ

level, i.e., from cores of order 1, and goes down vertically with the classic core decomposition.
Based on Proposition 1, it is possible to design a more efficient algorithm that exploits also the
“horizontal containment” relationships.

Example 1. Consider coreC1,[0,2] in Figure 1: by Proposition 1 it holds that it is a subset of both
C1,[0,1] and C1,[1,2]. Therefore, to compute C1,[0,2], instead of starting from the whole V , one can
start from C1,[0,1] ∩C1,[1,2]. Starting from a much smaller set of vertices can provide a substantial
speed-up to the whole computation.

This observation, although simple, produces a speed-up of orders of magnitude as we will em-
pirically show in Section 7. The next straightforward corollary of Proposition 1 states that, not
only C1,[0,2] ⊆ C1,[0,1] ∩C1,[1,2], but this is the best one can get, meaning that intersecting these
two span-cores is equivalent to intersecting all span-cores structurally containing C1,[0,2].

Corollary 1. Given a temporal graphG = (V ,T ,τ), and a temporal interval Δ = [ts , te] � T , let

Δ+ = [min{ts + 1, te }, te] and Δ− = [ts ,max{te − 1, ts }]. It holds that

C1,Δ ⊆ (C1,Δ+ ∩C1,Δ−) =
⋂

Δ′�Δ

C1,Δ′ .

Example 2. Consider again C1,[0,2] in Figure 1: Proposition 1 states that it is a subset of
C1,[0,0],C1,[0,1],C1,[1,1],C1,[1,2],C1,[2,2]. Corollary 1 suggests that there is no need to intersect them
all, but only C1,[0,1] and C1,[1,2]: in fact, C1,[0,1] ⊆ C1,[0,0] ∩C1,[1,1] and C1,[1,2] ⊆ C1,[1,1] ∩C1,[2,2].

The main idea behind our efficient Span-cores algorithm (whose pseudocode is given as Algo-
rithm 1) is to generate temporal intervals of increasing size (starting from size one) and, for each
Δ of width larger than one, to initiate the core decomposition from (C1,Δ+ ∩C1,Δ−), i.e., the small-
est intersection of cores containing C1,Δ (Corollary 1). The intervals to be processed are added to
queueQ , which is initialized with the intervals of size one (Lines 2–3): these are the only intervals

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:12 E. Galimberti et al.

for which no other interval can be used to reduce the set of vertices from which the core decompo-
sition is started, thus they have to be initialized with the whole vertex setV . The algorithm utilizes
a map A that, given an interval Δ, returns the set of vertices to be used as a starting set of the
core decomposition on Δ. The algorithm processes all intervals stored in Q , until Q has become
empty (Lines 4–16). For every temporal interval Δ extracted from Q , the starting set of vertices is
retrieved fromA[Δ] and the corresponding set of edges is identified (Line 6). Unless this is empty,
the classic core-decomposition algorithm [9] is invoked over (A[Δ],EΔ[A[Δ]]) (Line 8) and its
output (a set of span-cores of span Δ) is added to the ultimate output set C (Line 9).

Afterwards, the two intervals, denoted Δ1 and Δ2, for which C1,Δ can be used to obtain the
smallest intersections of cores containing them (Corollary 1) are computed at Line 10. For Δ1 (and
analogously Δ2), we check whetherA[Δ1] has already been initialized (Line 12): this would mean
that previously the other “father” (i.e., smallest containing core) of C1,Δ1 has been computed, thus
we can intersectC1,Δ withA[Δ1] and enqueue Δ1 to be processed (Lines 13–14). Instead, ifA[Δ1]
was not yet initialized, we initialize it withC1,Δ (Line 16): in this case Δ1 is not enqueued because
it still lacks one father to be intersected before being ready for core decomposition. This proce-
dural update of Q ensures that both fathers of every interval in Q exist and have been previously
computed, thus no a-posteriori verification is needed.

Example 3. Consider again the search space in Figure 1. Algorithm 1 first processes the intervals
[0, 0], [1, 1], [2, 2], and [3, 3]. Then, it intersects C1,[0,0] and C1,[1,1] to initialize C1,[0,1], intersects
C1,[1,1] and C1,[2,2] to initialize C1,[1,2], and intersects C1,[2,2] and C1,[3,3] to initialize C1,[2,3]. Then,
it continues with the intervals of size 3: it intersects C1,[0,1] and C1,[1,2] to initialize C1,[0,2] and so
on.

The next theorem formally shows soundness and completeness of our Span-cores algorithm.

Theorem 1. Algorithm 1 is sound and complete for Problem 1.

Proof. The algorithm generates and processes a subset of temporal intervals X ⊆ {Δ | Δ �
T }. For every interval Δ ⊆ X, it computes all span-cores CΔ = {C1,Δ,C2,Δ, . . . ,CkΔ,Δ} defined on
Δ by means of the core-decomposition subroutine on the graph (A[Δ],EΔ[A[Δ]]). The set of
vertices A[Δ] is equivalent to (C1,Δ+ ∩C1,Δ−) because of Line 13 (Corollary 1) and the fact that Δ
is enqueued (Line 14) only when both fathers have been processed and the intersection done. The
correctness of doing the classic core decomposition is guaranteed by Observation 1.

As for completeness, it suffices to show that the intervals Δ � X that have not been processed
by the algorithm do not yield any span-core. The algorithm generates all temporal intervals size
by size, starting from those of size one and then going to larger sizes. This is done by maintaining
the queue Q . As said above, an interval Δ is enqueued as soon as both C1,Δ+ and C1,Δ− have been
processed. Thus, an interval Δ is not in X only if either C1,Δ+ or C1,Δ− does not exist. In this case
C1,Δ and all other Ck,Δ do not exist as well. �

Discussion. Algorithm 1 exploits the “horizontal containment” relationships only at the first
level of the search space. For a given Δ, once the restricted starting set of vertices has been defined
for k = 1, the traditional core decomposition is started to produce all the span-cores of span Δ. In
other words, for k > 1 only the “vertical containment” is exploited. Consider the span-coreC3,[1,2]

in Figure 1: we know that it is a subset ofC2,[1,2] (“vertical”) and ofC3,[1,1] andC3,[2,2] (“horizontal”).
One could consider intersecting all these three span-cores before computing C3,[1,2]. We tested
this alternative approach, but concluded that the overhead of computing intersections and data-
structure maintenance was outweighing the benefit of starting from a smaller vertex set.

The worst-case time complexity of Algorithm 1 is equal to the naïve approach, however, in
practice, it is orders of magnitude faster, as shown in Section 7.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:13

Fig. 3. Run-through example of the execution of Span-cores (Algorithm 1) over the search space of a tem-
poral graph havingT = [0, 2]. Full nodes represent computed span-cores, while empty nodes are span-cores
that will be visited in the next steps of the algorithm. Red arrows highlight the containment relationships
exploited during the current step.

Example 4. Figure 3 reports a run-through example, illustrating the execution of Span-cores (Al-
gorithm 1) over the search space of a toy temporal graph havingT = [0, 2] (shown in Figure 3(a)).
The algorithm starts by computing all the span-cores having span of size 1 (Figure 3(b)); in this
case, only the “vertical containment” is exploited by the core-decomposition subroutine. Then,
Span-cores proceeds with the computation of the span-cores having span of size 2. At first, the al-
gorithm exploits the “horizontal containment” relationships at the first level of the search space to
restrict the starting set of vertices for computing the span-cores of k = 1 (Figure 3(c)). Afterwards,
the core-decomposition subroutine computes all the span-cores with span of size 2, by follow-
ing the “vertical containment” (Figure 3(d)). Finally, the same method is applied for visiting the
span-cores with span of size 3 (Figure 3(e)-(f)).

5 ALGORITHMS: COMPUTING MAXIMAL SPAN-CORES

In this section, we focus on Problem 2: computing the maximal span-cores of a temporal graph.
A filtering approach. As anticipated above, a straightforward way of solving this problem

consists in filtering the span-cores computed during the execution of Algorithm 1, so as to ulti-
mately output only the maximal ones. This can easily be accomplished by equipping Algorithm 1
with a data structureM that stores the span-core of the highest order for every temporal interval
Δ � T that has been processed by the algorithm. Moreover, at the storage of a span-core Ck,Δ in

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:14 E. Galimberti et al.

M, the span-cores previously stored in M for subintervals of the temporal interval Δ and with
the same order k are removed fromM. This removal operation, together with the order in which
span-cores are processed, ensures thatM eventually contains only the maximal span-cores.

Efficient maximal-span-core finding. Our next goal is to design a more efficient algorithm
that extracts maximal span-cores directly, without computing complete core decompositions, pass-
ing over more peripheral ones, and without generating all temporal cores. This is a quite chal-
lenging design principle, as it contrasts the intrinsic structural properties of core decomposition,
based on which a core of order k is usually computed from the core of order k−1, thus making
the computation of the core of the highest order as hard as computing the overall decomposition.
Nevertheless, thanks to theoretical properties that relate the maximal span-cores to each other, in
the temporal context such a challenge can be achieved. In the following we discuss such properties
in detail, by starting from a result that has already been discussed above, but only informally.

Consider the classic core decomposition in a standard (non-temporal) graph G (Definition 1)
and let Ck∗[G] denote the innermost core of G, i.e., the non-empty k-core of G with the largest k .

Lemma 1. Given a temporal graph G = (V ,T ,τ), let CM be the set of all maximal span-cores of

G, and Cinner = {Ck∗[GΔ] | Δ � T } be the set of innermost cores of all graphs GΔ. It holds that CM ⊆
Cinner.

Proof. EveryCk,Δ ∈ CM is the innermost core of the non-temporal graphGΔ: else, there would
exist another core Ck ′,Δ � ∅ with k ′ > k , implying that Ck,Δ � CM . �

Lemma 1 states that each maximal span-core is an innermost core of a GΔ, for some temporal
interval Δ � T . Hence, there can exist at most one maximal span-core for every Δ � T (while an
interval Δ may not yield any maximal span-core). The key question to design an efficient maximal-
span-core-mining algorithm thus becomes how to extract innermost cores of the graphs GΔ more
efficiently than by computing the full core decompositions of all GΔ. The answer to this question
comes from the result stated in the next two lemmas (with Lemma 2 being auxiliary to Lemma 3).

Lemma 2. Given a temporal graph G = (V ,T ,τ), and three temporal intervals Δ = [ts , te] � T ,

Δ′ = [ts−1, te] � T , and Δ′′ = [ts , te+1] � T . The innermost coreCk∗[GΔ] is a maximal span-core of

G if and only if k∗ > max{k ′,k ′′} where k ′ and k ′′ are the orders of the innermost cores of GΔ′ and

GΔ′′ , respectively.

Proof. The “⇒” part comes directly from the definition of maximal span-core (Definition 3): if
k∗ were not larger than max{k ′,k ′′}, thenCk∗[GΔ] would be dominated by another span-core both
on the order and on the span (as both Δ′ and Δ′′ are superintervals of Δ). For the “⇐” part, from
Lemma 1 and Proposition 1 it follows that max{k ′,k ′′} is an upper bound on the maximum order
of a span-core of a superinterval of Δ. Therefore, k∗ > max{k ′,k ′′} implies that there cannot exist
any other span-core that dominates Ck∗[GΔ] both on the order and on the span. �

Lemma 3. Given G, Δ, Δ′, Δ′′, k ′, and k ′′ defined as in Lemma 2, let Ṽ = {u ∈ V | dΔ(V ,u) >

max{k ′,k ′′}}, and let Ck∗[GΔ[Ṽ]] be the innermost core of GΔ[Ṽ]. If k∗ > max{k ′,k ′′}, then

Ck∗[GΔ[Ṽ]] is a maximal span-core; otherwise, no maximal span-core exists for Δ.

Proof. Lemma 2 states that, to be recognized as a maximal span-core, the innermost core of
GΔ should have order larger than max{k ′,k ′′}. This means that, if the innermost core of GΔ is a
maximal span-core, all verticesu � Ṽ cannot be part of it. Therefore,GΔ yields a maximal span-core
only if the innermost core of subgraph GΔ[Ṽ] has order k∗ > max{k ′,k ′′}. �

Lemma 3 provides the basis of our efficient method for extracting maximal span-cores. Basically,
it states that, to verify whether a certain temporal interval Δ = [ts , te] yields a maximal span-
core (and, if so, compute it), there is no need to consider the whole graph GΔ, rather it suffices

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:15

ALGORITHM 2: Maximal-span-cores

Input: A temporal graph G = (V ,T ,τ).
Output: The set CM of all maximal span-cores of G.

1 CM ← ∅
2 K ′[t]← 0, ∀t ∈ T
3 forall ts ∈ [0, 1, . . . , tmax] do

4 t∗ ← max{te ∈ [ts , tmax] | E[ts ,te] � ∅}
5 k ′′ ← 0

6 forall te ∈ [t∗, t∗−1, . . . , ts] do

7 Δ← [ts , te]

8 lb ← max{K ′[te],k ′′}
9 Vlb ← {u ∈ V | dΔ(V ,u) > lb}

10 EΔ[Vlb]← {(u,v) ∈ EΔ | u ∈ Vlb ,v ∈ Vlb }
11 C ← innermost-core(Vlb ,EΔ[Vlb])

12 k∗ ← order of C

13 if k∗ > lb then

14 CM ← CM ∪ {C}
15 k ′′ ← max{k ′′,k∗}; K ′[te]← max{K ′[te],k ′′}

to start from a smaller subgraph, which is given by all vertices whose temporal degree is larger
than the maximum between the orders of the innermost cores of intervals Δ′ = [ts−1, te] and
Δ′′ = [ts , te+1]. This finding suggests a strategy that is opposite to the one used for computing
the overall span-core decomposition: a top-down strategy that processes temporal intervals starting
from the larger ones. Indeed, in addition to exploiting the result in Lemma 3, this way of exploring
the temporal-interval space allows us to skip the computation of complete core decompositions of
the whole “singleton-interval” graphs {G[t,t] }t ∈T , which may easily become a critical bottleneck,
as they are the largest ones among the graphs induced by temporal intervals.

The Maximal-span-cores algorithm. Algorithm 2 iterates over all timestamps ts ∈ T in
increasing order (Line 3), and for each ts it first finds all the maximal span-cores that have span
starting in ts . This way of proceeding ensures that a span-core that is recognized as maximal will

not be later dominated by another span-core. Indeed, an interval [ts , te] can never be contained in
another interval [t ′s , t

′
e] with ts < t ′s . For a given ts , all maximal span-cores are computed as follows.

First, the maximum timestamp ≥ ts such that the corresponding edge set E[ts ,te] is not empty is
identified as t∗ (Line 7). Then, all intervals Δ = [ts , te] are considered one by one in decreasing

order of te (Lines 6–7): this again guarantees that a span-core that is recognized as maximal will

not be later dominated by another span-core, as the intervals are processed from the largest to the

smallest. At each iteration of the internal cycle, the algorithm resorts to Lemma 3 and computes
the lower bound lb on the order of the innermost core ofGΔ to be recognized as maximal, by taking
the maximum between K ′[te] and k ′′ (Line 8). K ′ is a map that maintains, for every timestamp
t ∈ [ts , t∗], the order of the innermost core of graph GΔ′ , where Δ′ = [ts−1, t] (i.e., K ′[t] stores
what in Lemmas 2–3 is denoted as k ′). Whereas k ′′ stores the order of the innermost core of
GΔ′′ , where Δ′′ = [ts , te + 1]. Afterwards, the sets of verticesVlb and of edges EΔ[Vlb] that comply
with this lower-bound constraint are built (Lines 9–10), and the innermost core of the subgraph
(Vlb ,EΔ[Vlb]) is extracted (Lines 11–12). Ultimately, based again on Lemma 3, such a core is added
to the output set of maximal span-cores only if its order is actually larger than lb (Lines 13–14),
and the values of k ′′ andK ′[te] are updated (Line 15). Specifically, note that the order k∗ of coreC

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:16 E. Galimberti et al.

may in principle be less than k ′′, asC is extracted from a subgraph ofGΔ. If this happens, it means
that the actual order of the innermost core of GΔ is equal to k ′′. This motivates the update rules
(and their order) reported in Line 15.

Theorem 2. Algorithm 2 is sound and complete for Problem 2.

Proof. The algorithm processes all temporal intervals Δ � T yielding a non-empty edge set
EΔ, in an order such that no interval is processed before one of its superintervals: this guarantees
that a span-core recognized as maximal will not be dominated by another span-core found later
on. For every Δ it extracts a core C that is used as a proxy of the innermost core of graph GΔ. C
is added to the output set CM only if Lemma 3 recognizes it as a maximal span-core, otherwise
it is discarded. This proves the soundness of the algorithm. Completeness follows from Lemma 1,
which states that to extract all maximal span-cores it suffices to focus on the innermost cores of
graphs {GΔ | Δ � T }, and Lemma 3 again, which states the condition for a proxy coreC to be safely
discarded because it is a non-maximal span-core. �

Discussion. The worst-case time complexity of Algorithm 2 is the same as the algorithm for
computing the overall span-core decomposition, i.e., O (|T |2 × |E |). It is worth mentioning that it is
not possible to do better than this, as the output itself is potentially quadratic in |T |. However, as we
will show in Section 7, the proposed algorithm is in practice much more efficient than computing
the overall span-core decomposition and filtering out the non-maximal span-cores as, in this case,
we avoid the visit of portions of the span-coresearch space and the computations are run over
subgraphs of reduced dimensions.

To conclude, we discuss how the crucial operation of building the subgraph (Vlb ,EΔ[Vlb])
may be carried out efficiently in terms of both time and space. Consider a fixed timestamp
ts ∈ [0, . . . , tmax]. The following reasoning holds for every ts . Let E− (te) = E[ts ,te] \ E[ts ,te+1] be the
set of edges that are in E[ts ,te] but not in E[ts ,te+1] , for te ∈ [ts , . . . , t∗− 1]. As a first general step,
for each ts , we compute and store all edge sets {E− (te)}te ∈[ts ,t ∗−1]. These operations can be accom-
plished in O (|T | × |E |) overall time, because every E− (te) can be computed incrementally from
E[ts ,te] as E− (te) = {(u,v) ∈ E[ts ,te] | τ (u,v, te+1) = 0}. Moreover, for any timestamp te , we keep
a map D storing all vertices of G[ts ,te] organized by degree. Specifically, the set D[k] contains
all vertices having degree > k in G[ts ,te] . Every vertex in D is thus replicated a number of times
equal to its degree. This way, the overall space taken byD is O (|E |), i.e., as much space asG.D is
initialized as empty (when te = t∗) and repeatedly augmented as te decreases, by a linear scan of
the various E− (te). The overall filling of D (for all te) therefore takes O (|T | × |E |) time. Then, the
desired Vlb can be computed in constant time simply as Vlb = D[lb].

As for EΔ[Vlb], for any te , we first reconstruct E[ts ,te] as E[ts ,te +1] ∪ E− (te), having previously com-
puted E[ts ,te +1] . Note that storing all E− (te) takes O (|E |) space. That is why we store all E− (te) and
reconstruct E[ts ,te] afterward (instead of storing the latter, which would take O (|T | × |E |) space).
EΔ[Vlb] is ultimately derived by a linear scan of E[ts ,te] , taking all edges in E[ts ,te] having both
endpoints in Vlb . This way, the step of building EΔ[Vlb] for all te takes again O (|T | × |E |) overall
time.

Example 5. We report here a run-through example of the execution of Maximal-span-cores
(Algorithm 4) over the search space of a temporal graph having T = [0, 2] (the same shown in
Figure 3(a)). Maximal-span-cores starts by identifying the span-core of highest order in the largest
possible temporal interval Δ, i.e., Δ = T (Figure 4 (a)). Such a span-core is guaranteed to be maxi-
mal, since the span-core of highest order with spanT cannot be dominated in terms of span by any
other span-core. The algorithm then processes interval [0, 1] (Figure 4(b)): here lb = 2, since the
only constraint derives from the identification of core C2,[0,2] as maximal, therefore core C3,[0,1]

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:17

Fig. 4. Run-through example of the execution of Maximal-span-cores (Algorithm 4) over the search space of
a temporal graph having T = [0, 2] (same as Figure 3(a)). Full nodes represent computed span-cores: span-
cores in black are recognized as maximal, while those in gray are discarded from the set of the maximal
span-cores.

is recognized as maximal. Next, the algorithm searches for the last possible maximal span-core
having span Δ = [ts , te] such that ts = 0, i.e., Δ = [0, 0] (Figure 4(c)). CoreC3,[0,0] is computed, but
discarded from the solution maximal, because it has order equal to the lower bound lb = 3, derived
from core C3,[0,1]. The algorithm proceeds in a similar way, by finding a maximal span-core in all
the remaining intervals, i.e., [1, 2], [1, 1], and [2, 2] (Figures 4(d)–(f)). It is important to note that
in all such cases, the lower bound lb for the existence of a maximal span-core in a given temporal
interval accounts for two factors. For example, consider interval [1, 1]. The innermost core inG[1,1]

is a maximal span-core if it has order greater than both cores C3,[0,1] and C3,[1,2], that is lb = 3.

6 TEMPORAL COMMUNITY SEARCH

Community search in static graphs aims at finding a dense subgraph (community) containing a
set of input query vertices [36, 51]. In the temporal setting, it is very likely that the communities
spanning the query vertices change over time. To be more precise, it may happen that a certain
subgraph S is a well-representative community for the given query vertices Q , but only for a
certain time interval Δ. Instead, for another time interval Δ′, a relevant community for Q might
correspond to a completely different subgraph S ′. For this reason, we formulate community search
on temporal networks as the problem of findingh subgraphs (withh > 0 being an input parameter)
containing the query vertices, together with their temporal span, such that the sum of the density

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:18 E. Galimberti et al.

of those subgraphs is maximized and the union of their temporal spans corresponds to the whole
input temporal domain. Among the many densities proposed in the literature, here we follow
the bulk of the literature on community search, and adopt the minimum-degree density [36, 51].
In fact, as well-discussed, among others, by Sozio and Gionis [79] in their seminal work, unlike
other density notions, including the popular average degree, the minimum-degree density has the
capability of mitigating the so-called “free-rider” effect, i.e., the fact that (large) subgraphs may
be arbitrarily added to a community-search solution to artificially increase the objective-function
value, and thus lead to unintuitive yet unnecessarily large output solutions. Formally, the problem
we study in this work is:

Problem 3 (Temporal Community Search). Given a temporal graphG = (V ,T ,τ), a setQ ⊆ V
of query vertices, and a positive integer h ∈ N+, find a set {〈Si ,Δi 〉}hi=1 of h pairs such that (i) ∀1 ≤
i ≤ h : Q ⊆ Si ⊆ V , (ii)

⋃
1≤i≤h Δi = T , and (iii) the following is maximized:

h∑

i=1

min
u ∈Si

dΔi
(Si ,u). (1)

The input integer h is a user-defined parameter that gives the analyst the flexibility of requir-
ing a specific number of output temporal communities, which might vary from application to
application.

6.1 Connection with Sequence Segmentation

Here we provide some theoretical insights into the Temporal Community Search problem. The
main result we provide at the end of this subsection is an interesting connection with the well-
established Seqence Segmentation problem [10]. As shown in the next subsections, such a result
forms the basis for algorithmic design.

Let us first consider a single-interval variant of Problem 3: for a fixed temporal interval Δ, find
a subgraph containing the input set Q of query vertices that maximizes the minimum temporal
degree within Δ. Formally:

Problem 4 (Single Temporal Community Search). Given a temporal graph G = (V ,T ,τ), a

set Q ⊆ V of query vertices, and an interval Δ � T , find

S∗ = argmaxQ ⊆S ⊆V min
u ∈S

dΔ(S,u).

It is easy to see that solving Problem 4 corresponds to solving minimum-degree-based commu-
nity search on graph GΔ. Therefore, a solution to Problem 4 can straightforwardly be computed
by applying a standard result on minimum-degree-based community search, which states that the
highest-order core containing all query vertices is a solution to that problem [7]. This finding is
formalized next.

Definition 4 ((Q,Δ)-highest-order-span-core). Given a temporal graphG = (V ,T ,τ), a setQ ⊆ V
of query vertices, and an interval Δ � T , the (Q,Δ)-highest-order-span-core of G, denoted C∗Q,Δ,
is defined as the highest-order span-core among all span-cores of G with temporal span Δ and
containing all query vertices in Q . Let also v∗Q,Δ denote the order of C∗Q,Δ.

Fact 1. Given a temporal graphG = (V ,T ,τ), a setQ ⊆ V of query vertices, and an interval Δ � T ,

the (Q,Δ)-highest-order-span-core of G is a solution to Problem 4 on input 〈G,Q,Δ〉.

Note that Problem 4 may have multiple solutions:C∗Q,Δ is only one of those possibly many ones.
C∗Q,Δ can be computed by running a core decomposition on (static) graph GΔ, and stopping it

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:19

when the first core that does not contain all query vertices in Q has been encountered. Therefore,
Problem 4 can be solved in O (|Δ| × |E |) time.

In light of the above findings, an alternative yet equivalent way of formulating our Temporal
Community Search problem is to ask for a segmentation (i.e., a partition) of the time domain T
into a set {Δi }hi=1 of h intervals so as to maximize the sum

∑h
i=1v

∗
Q,Δi

of the orders of the (Q,Δ)-
highest-order-span-cores of those identified intervals. Once such an optimal segmentation ofT has
been computed, the ultimate {〈Si ,Δi 〉}hi=1 pairs are derived by simply setting Si = C

∗
Q,Δi

,∀1 ≤ i ≤ h.
Formally:

Problem 5 (Alternative Formulation of Problem 3). Given a temporal graph G = (V ,T ,τ),
a set Q ⊆ V of query vertices, and a positive integer h ∈ N+, find a set {〈Si ,Δi 〉}hi=1 of h pairs such

that (i) ∀1 ≤ i ≤ h : Si = C
∗
Q,Δi

, (ii) {Δi }hi=1 is a partition of T , and (iii) the following is maximized:

h∑

i=1

v∗Q,Δi
. (2)

Correspondence between Problems 3 and 5 easily follows from Fact 1 and from the observation
that for any feasible solution {〈Si ,Δi 〉}hi=1 to Problem 3 with overlapping intervals, there exists
an overlapping-interval-free feasible solution with not smaller objective-function value. To see
the latter, for any two overlapping intervals Δi and Δj , simply replace one of the two intervals,
say Δi , with Δ′i = Δi \ (Δi ∩ Δj). As Δ′i � Δi , it holds that v∗

Q,Δ′
i

≥ v∗Q,Δi
, therefore the resulting

overlapping-interval-free solution will have objective-function value greater than or equal to the
objective-function value of the starting solution with overlapping intervals.

Thanks to the reformulation in Problem 5, it is immediate to observe that our Temporal Com-
munity Search problem is an instance of the well-established Seqence Segmentation problem,
which asks for partitioning a sequence of numerical values into b segments so as to minimize the
sum of the penalties (according to some penalty function) on each identified segment [10]:

Problem 6 (Seqence Segmentation [10]). Given a sequence X = (x0,x1, . . . ,xmax) of numer-

ical values, and a function p : {Y }Y �X → R that assigns a penalty score to every subsequence Y of X ,

partition X into a set {Xi }bi=1 of b subsequences such that
∑b

i=1 p (Xi) is minimized.

Fact 2. Temporal Community Search (Problem 3) on input 〈G = (V ,T ,τ),Q,h〉 is an instance

of Sequence Segmentation (Problem 6) with X = T , b = h, and ∀Δ � T : p (Δ) = −v∗Q,Δ.

In the following two subsections we show how to exploit the result in Fact 2 (and a further
important finding about maximal span-cores) to design efficient algorithms for our Temporal
Community Search problem.

6.2 A Basic Algorithm (Based on All Span-cores)

Seqence Segmentation can be solved in O (|X |2 × h + τp) time via DP [10], where τp is the
overall time spent for computing the penalty score of all subsequences of the input sequence X
(according to the given penalty function p). Thanks to the connection shown in Fact 2, the DP
algorithm for Seqence Segmentation can be easily adapted to solve Temporal Community
Search as well. The pseudocode of this algorithm – termed Temporal-community-search – is
reported as Algorithm 3, and described next.

The Temporal-community-search algorithm makes use of two (|T | × h)-dimensional matrices,
i.e., P and R. Matrix P represents the penalty matrix. It contains, ∀t ∈ T , ∀i ∈ [0,h), the minimum
cost of segmenting the sequence corresponding to the first t timestamps of T into i + 1 segments.
As a result, P[tmax ,h − 1] contains the objective-function value of the ultimate optimal solution

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:20 E. Galimberti et al.

ALGORITHM 3: Temporal-community-search

Input: A temporal graph G = (V ,E,T), a set Q ⊆ V of query vertices, an integer h ∈ N+.
Output: A set {〈Si ,Δi 〉}hi=1, where Q ⊆ Si ⊆ V , ∀1 ≤ i ≤ h, and {Δi }hi=1 is a partition of T .

/* Initialization */

1 Compute v∗
Q,Δ and C∗

Q,Δ, ∀Δ � T , via Q-constrained span-core decomposition

2 P← an empty (|T | × h)-dimensional matrix // Penalty matrix

3 R← an empty (|T | × h)-dimensional matrix // Reconstruction matrix

4 forall t ∈ T do

5 P[t , 0]← −v∗
Q,[0,t]

6 R[t , 0]← 0

/* Dynamic-programming step */

7 forall t ∈ T do

8 forall i ∈ [1,h) do

9 P[t , i]← min�∈[0,t] P[�, i − 1] −v∗
Q,[�+1,t]

10 R[t , i]← argmin�∈[0,t] P[�, i − 1] −v∗
Q,[�+1,t]

/* Reconstruction of the solution */

11 ub ← tmax

12 forall i ∈ (h, 0] do

13 lb ← R[ub, i]

14 Δi ← [lb,ub]

15 ub ← lb − 1

16 forall i ∈ (h, 0] do

17 Si ← C∗
Q,Δi

to Problem 5. Matrix R is the reconstruction matrix. It provides information about the optimal
segmentation, and is used at the end of the algorithm to reconstruct the output {Δi }hi=1. Note
that the algorithm does not explicitly compute the Si subgraphs corresponding to the optimal Δi

intervals. In fact, as discussed above, each Si can be easily retrieved at the end of the algorithm,
by simply setting it equal to the corresponding (Q,Δi)-highest-order-span-core C∗Q,Δi

. According
to Fact 2, the penalty score of an interval Δ � T corresponds to −v∗Q,Δ, i.e., the negative of the
order of the (Q,Δ)-highest-order-span-core C∗Q,Δ. All individual v∗Q,Δ values, for all Δ � T , are
efficiently computed altogether, at the beginning of the algorithm, via a “Q-constrained” variant
of span-core decomposition (an alternative, but much less efficient strategy consists in computing
every single v∗Q,Δ from scratch, on the fly). Specifically, a simple (yet more efficient) variant of
the span-core decomposition algorithm (Algorithm 1) is employed for this purpose, which outputs
only those span-cores containing all the vertices in Q . This is easily achievable by stopping the
core-decomposition subroutine, for every interval Δ � T , as soon as a core not containing all query
vertices in Q has been encountered.

The time complexity of Algorithm 3 is O (|T |2 × h + τsc), where τsc is the time spent for com-
puting the Q-constrained span-core decomposition of the input graph G.

6.3 A More Efficient Algorithm (Based on Maximal Span-cores)

A more efficient algorithm can be designed by noticing that, actually, one does not need to consider
all timestamps inT in the DP step. Rather, focusing on a subsetT ∗ ⊆ T – which is properly defined

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:21

ALGORITHM 4: Efficient-temporal-community-search

Input: A temporal graph G = (V ,E,T), a set Q ⊆ V of query vertices, an integer h ∈ N+.
Output: A set {〈Si ,Δi 〉}hi=1, where Q ⊆ Si ⊆ V , ∀1 ≤ i ≤ h, and {Δi }hi=1 is a partition of T .

/* Identification of T ∗ */

1 Compute the set CM (Q) of Q-constrained maximal span-cores of G

2 D← {Δ � T | Ck,Δ ∈ CM (Q)}
3 TD ←

⋃
Δ∈D Δ; T+

D
← {min{te+1, tmax } | [ts , te] ∈ D}; T−

D
← {max{ts−1, 0} | [ts , te] ∈ D}

4 Tsup ← {ti ∈ T \ (TD ∪T−D ∪T
+
D
∪ {tmax }) | i ∈ [1,h + 1 − |TD ∪T−D ∪T

+
D
∪ {tmax }|]}

5 T ∗ ← TD ∪ T+
D
∪ T−

D
∪ {tmax } ∪ Tsup

/* Initialization */

6 Compute v∗
Q,Δ, ∀Δ � T

7 M← mapping function [0, |T ∗ |) → T ∗

8 P← an empty (|T ∗ | × h)-dimensional matrix // Penalty matrix

9 R← an empty (|T ∗ | × h)-dimensional matrix // Reconstruction matrix

10 forall r ∈ [0, |T ∗ |) do

11 P[r , 0]← −v∗
Q,[0,M[r]]

12 R[r , 0]← 0

/* Dynamic-programming step */

13 forall r ∈ [0, |T ∗ |) do

14 forall i ∈ [1,h) do

15 P[r , i]← min�∈[0,r] P[�, i − 1] −v∗
Q,[M[�+1],M[r]]

16 R[r , i]← argmin�∈[0,r] P[�, i − 1] −v∗
Q,[M[�+1],M[r]]

/* Reconstruction of the solution */

17 ub ← |T ∗ | − 1

18 forall i ∈ (h, 0] do

19 lb ← R[ub, i]

20 Δi ← [M[lb],M[ub]]

21 ub ← lb − 1

22 forall i ∈ (h, 0] do

23 Si ← C∗
Q,Δi

based on the maximal span-cores of the input graph, see next – allows for significantly reducing
the dimensionality of the penalty matrix P and the reconstruction matrix R, hence the overall time
complexity of the algorithm, without affecting optimality of the output solution. The following
fact provides the theoretical basis for defining such a reduced temporal domain T ∗.

Fact 3. Given a temporal graph G = (V ,T ,τ) and a set Q ⊆ V of query vertices, let CM (Q) be

the set of all Q-constrained maximal span-cores of G. For a temporal interval Δ � T , it holds that

v∗Q,Δ = max{0,max{k | Ck,Δ′ ∈ CM (Q),Δ � Δ′}}.

Fact 3 states that the penalty score v∗Q,Δ of an interval Δ corresponds to the maximum among
the orders of the Q-constrained maximal span-cores whose span includes Δ, if some exist. If an
interval Δ is not a subset of any span of a Q-constrained maximal span-core, then v∗Q,Δ = 0. In
that case, therefore, Δ can be safely discarded, as it cannot be part of the optimal solution of
the given Temporal Community Search problem instance (unless it is needed to fill possible
“holes”, see below). The ultimate consequence of this finding is that the aforementioned reduced

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:22 E. Galimberti et al.

temporal domain T ∗ is identified by the timestamps covered by the spans of the maximal span-
cores, along with auxiliary timestamps, which are needed to ensure a smooth execution of the
DP step, as well as a correct handling of some extreme cases. Specifically, let D = {Δ � T | Ck,Δ ∈
CM (Q)} be the set of the spans of the Q-constrained maximal span-cores of the input graph, and
TD =

⋃
Δ∈D Δ be the set of timestamps that are part of a span of a Q-constrained maximal span-

core. The first two sets of auxiliary timestamps correspond to the timestamps that immediately
precede and succeed the intervals in D, i.e., the sets T +

D
= {min{te + 1, tmax } | [ts , te] ∈ D} and

T −
D
= {max{ts − 1, 0} | [ts , te] ∈ D}, respectively. The timestamps inT +

D
andT −

D
(along with the last

timestamp tmax of the input temporal domain T) are needed to allow the DP step to identify a
solution that actually covers the whole temporal domain T (as per Condition (ii) of Problem 3).
In particular, such timestamps may be interpreted as a trick to give the DP step the flexibility to
select “holes” (i.e., time intervals in-between two consecutive but not necessarily contiguous times-
tamps inTD). Moreover, we defineTsup as the set of the firsth + 1 − |TD ∪T −D ∪T

+
D
∪ {tmax }| times-

tamps ofT not contained inTD ∪T −D ∪T
+
D
∪ {tmax }, i.e.,Tsup = {ti ∈ T \ (TD ∪T −D ∪T

+
D
∪ {tmax }) |

i ∈ [1,h + 1 − |TD ∪T −D ∪T
+
D
∪ {tmax }|]}. The timestamps inTsup are further auxiliary timestamps

that are needed to return a correcth-sized solution when the timestamps inTD ∪T −D ∪T
+
D
∪ {tmax }

are less than h + 1 (the minimum number of timestamps required in T ∗ to have a solution of size
h). Note that Tsup is nonempty only if |TD ∪T −D ∪T

+
D
∪ {tmax }| < h + 1. Ultimately, T ∗ is defined

as

T ∗ = TD ∪ T +
D
∪ T −

D
∪ {tmax } ∪ Tsup .

The proposed more efficient method for Temporal Community Search, termed Efficient-
temporal-community-search, is summarized in Algorithm 4 and described next. The first five lines
of the algorithm are devoted to the identification ofT ∗. As said above, matrices P and R have here
reduced dimensionality with respect to Algorithm 3: they are (|T ∗ | × h)-dimensional matrices,
where |T ∗ | ≤ |T |. A mapping function M is used to assign an index within [0, |T ∗ |) to every times-
tamp in |T ∗ | (Line 6). Such a mapping is needed to have every timestamp in |T ∗ | logically assigned
to a row of matrices P and R. The rest of the algorithm resembles Algorithm 3, except for the fact
that M is used every time that a row index has to be mapped to its corresponding timestamp (e.g.,
during the reconstruction of the solution).

An important point to clarify is that, during the execution of the Efficient-temporal-community-
search algorithm, we might need the penalty score v∗Q,Δ of intervals Δ � T corresponding to non-

maximal (Q-constrained) span-cores. Therefore, the algorithm needs thev∗Q,Δ score of all intervals
Δ � T . To compute thesev∗Q,Δ scores (and, related to this, the set CM (Q) ofQ-constrained maximal
span-cores, at Line 1), there are two main options. The first one consists in computing the whole
Q-constrained span-core decomposition (as done in Algorithm 3), keep the v∗Q,Δ scores of all such
cores, and eventually compute CM (Q) by simply filtering out non-maximal span-cores. The sec-
ond option corresponds instead to compute CM (Q) directly, without passing through the whole
Q-constrained span-core decomposition. This may be carried out by running a simple variant of
the algorithm for computing maximal span-cores (Algorithm 2), where containment of query ver-
tices is added as a further constraint. The computation of all thev∗Q,Δ scores comes for free during
the execution of this algorithm for Q-constrained maximal span-cores: these scores can therefore
be retained by adding a few straightforward (constant-time) instructions to that algorithm. In our
implementation we stick to the latter, as the Maximal-span-cores algorithm has been experimen-
tally recognized as faster than the naïve filtering approach in all tested datasets.

The time complexity of the proposed Efficient-temporal-community-search algorithm is
O (|T ∗ |2 × h + τmsc), with τmsc being the time spent in computing theQ-constrained maximal span-
cores and the penalty scores v∗Q,Δ. As in practice (attested by our experiments) |T ∗ | � |T |, the

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:23

proposed Efficient-temporal-community-search algorithm is expected to be much more efficient
than its naïve counterpart, i.e., Algorithm 3.

6.4 Minimum Community Search

An instance of Temporal Community Search may admit several optimal solutions which might
differ either in terms of output intervals {Δi }hi=1, or in terms of subgraphs assigned to the various
identified intervals. More precisely, the latter refers to the fact that two optimal solutions might
find the same segmentation {Δi }hi=1 of the input temporal domain, but select different subgraphs
Si for any interval Δi . Therefore, if the communities Si are not chosen carefully, they may result
to be excessively large, not really cohesive, and containing redundant/outlying vertices. This is a
well-recognized issue of minimum-degree-based community search [79]. At the same time, large
communities might include more cohesive and denser subgraphs that still exhibit optimality. Mo-
tivated by this, in this subsection we devise a method to refine the communities originally found
by our algorithms for Temporal Community Search, specifically attempting to minimize their
size while preserving optimality. The main idea behind our refinement method is based on the
following result:

Proposition 3 (Community Containment). Given a temporal graphG = (V ,T ,τ), a setQ ⊆ V
of query vertices, and a positive integer h ∈ N+, let {〈Si ,Δi 〉}hi=1 be a solution to Problem 3 on input

〈G,Q,h〉with Si corresponding to the (Q,Δi)-highest-order-span-core ofG,∀i ∈ [1,h]. For every other

solution {〈S ′i ,Δi 〉}hi=1 (referring to the same segmentation {Δi }hi=1) to Problem 3 on input 〈G,Q,h〉 it

holds that S ′i ⊆ Si , ∀i ∈ [1,h].

Proof. Let ki be the minimum degree of Si , i.e., ki = v
∗
Q,Δi

is the order of the (Q,Δi)-highest-
order-span-core. Assume that there exists a solution S ′i to Problem 4 that is not contained in Si .
This implies that (i) the minimum degree of a vertex of S ′i in Δi is ki , and (ii) the minimum degree
of a vertex of Si ∪ S ′i in Δi is ki as well. This violates the maximality condition of the definition of
span-core, since, by hypothesis, Si corresponds to the (Q,Δi)-highest-order-span-core of G. �

The above proposition states that, given a solution {〈Si ,Δi 〉}hi=1 to the Temporal Community
Search problem where every Si corresponds to the (Q,Δi)-highest-order-span-core of the input
graph, one can focus on the various Si solely to refine the output communities, as such Si are
guaranteed to contain all optimal solutions of the underlying problem instance (while keeping
the segmentation {Δi }hi=1 fixed). Within this view, we formulate the following optimization prob-
lem (which is a variant of Problem 4, with the additional constraint of requiring a smallest-sized
solution):

Problem 7. Given a temporal graph G = (V ,T ,τ), a set Q ⊆ V of query vertices, and an interval

Δ � T , let S∗ ⊆ V be the subset of vertices containing all the solutions to Problem 4 on input 〈G,Q,Δ〉
(according to what stated in Proposition 3). Find

S∗min = argmin{S |Q ⊆S ⊆S∗,minu∈S dΔ (S,u)≥minu∈S∗ dΔ (S∗,u) } |S |.

Theorem 3. Problem 7 in NP-hard.

Proof. Consider (the optimization version of) the NP-hard mCST problem introduced by
Cui et al. [24]: given a graph H = (VH ,EH) and a query vertex q ∈ VH , find a minimum-sized sub-
graph that contains q, is connected, and maximizes the minimum degree. Given an instance 〈H ,q〉
of the mCST problem, construct an instance 〈G,Q,Δ〉 of Problem 7 by definingG as composed by a
single temporal snapshot corresponding to graphH , Δ as a singleton interval composed of the sin-
gle timestamp ofG, and settingQ = {q}. It is straightforward to see that solving Problem 7 on input

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:24 E. Galimberti et al.

ALGORITHM 5: Greedy-minimum-community-search

Input: A temporal graph G = (V ,E,T), a set Q ⊆ V of query vertices, an interval Δ � T , a subset of
vertices S∗ ⊆ V containing all the solutions to Problem 4 on input 〈G,Q,Δ〉.

Output: A subset S∗min of vertices such that Q ⊆ S∗min ⊆ S∗ and
minu ∈S∗

min
dΔ(S∗min ,u) ≥ minu ∈S∗ dΔ(S∗,u).

1 S∗min ← ∅; P ← ∅; A ← ∅
2 add every q ∈ Q to P with priority +∞
3 k∗ ← minu ∈S∗ dΔ(S∗,u); k∗min ← 0

4 while k∗min < k∗ or Q � S∗min do

5 dequeue u from P

6 S∗min ← S∗min ∪ {u}
7 forall v ∈ neiдhΔ(S∗,u) \ S∗min \ P do

8 A[v]← score (v)

9 add v to P with priority A[v]

10 forall v ∈ neiдhΔ(S∗min ,u) do

11 if dΔ(S∗min ,v) = k∗ then

12 forall w ∈ neiдhΔ(P ,v) do

13 A[w]← A[w] − 1

14 k∗min ← minv ∈S∗
min

dΔ(S∗min ,v)

〈G,Q,Δ〉 is equivalent to solving mCST on input 〈H ,q〉, as the constraint about connectedness is
automatically satisfied in Problem 7 for the special case of a single query vertex. �

As Problem 7 is NP-hard, we devise a heuristic that is inspired to the greedy one proposed for the
Minimum Community Search problem in [7]. The proposed heuristic is outlined in Algorithm 5
and described next. In the pseudocode and in the following we denote as k∗ and k∗min the minimum
degree of S∗ and S∗min , respectively, and as neiдhΔ(S,u) the neighbors of a vertex u ∈ V in the
subgraph induced by S ⊆ V and Δ � T . Algorithm 5 iteratively adds vertices to the solution S∗min

according to a priority queue P . Priorities of vertices in P are defined based on a score that measures
how promising a vertex is for making the current solution S∗min reach the optimal minimum degree.
Specifically, the score of a vertex u ∈ S∗ is defined as:

score (u) = score+ (u) − score− (u),

where

score+ (u) = |{v ∈ neiдhΔ(S∗min ,u) | dΔ(S∗min ,v) < k∗}|;

score− (u) = max{0,k∗ − dΔ(S∗min ,u)}.
score+ (u) is the gain effect of adding u to S∗min , while score− (u) is the penalty effect. In particular,
score+ (u) counts the number of neighbors of u in S∗min that would benefit from the inclusion of u
to S∗min , i.e., that have degree less than k∗. On the other hand, score− (u) represents the number of
neighbors ofu still required in S∗min so thatu has degree at least k∗. The algorithm starts by adding
the query vertices to the queue P with priority +∞, in order to ensure that they will be selected
at the very beginning. At each iteration of the main cycle of the algorithm (starting at Line 4), the
vertex u exhibiting the highest priority is dequeued from P and is added to the solution S∗min . As a
consequence, a couple of updates are performed. First,u’s neighbors not in the priority queue P are
added to it (Lines 8–9). Note that this is the only step of the algorithm where the score of a vertex

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:25

Table 1. Temporal Graphs Used in the Experiments

dataset |V | |E | |T | window size domain
HighSchool 327 47k 1, 212 5 mins face-to-face

PrimarySchool 242 55k 390 5 mins face-to-face
HongKong 806 2M 2, 976 5 mins face-to-face

ProsperLoans 89k 3M 307 7 days economic
Last.fm 992 4M 77 21 days co-listening

WikiTalk 2M 10M 192 28 days communication
DBLP 1M 11M 80 366 days co-authorship

StackOverflow 2M 16M 51 56 days question answering
Wikipedia 343k 18M 101 56 days co-editing
Amazon 2M 22M 115 28 days co-rating
Epinions 120k 33M 25 21 days co-rating

is computed from scratch and stored in A, a map that keeps the scores of all vertices in P up-to-
date during the whole execution of the algorithm. The second update consists in recomputing the
score of every v’s neighbor w in the queue, if a vertex v ∈ S∗min has reached the desired minimum
degree k∗ after the addition of u.

7 EXPERIMENTS

In this section, we present an experimental evaluation to empirically assess the performance of
all the proposed methods. Specifically, we focus on whole span-core decomposition (Section 7.1),
maximal span-cores (Section 7.2), characterization of the extracted span-cores (Section 7.3), and
temporal community search (Section 7.5).

Datasets. We use 11 real-world datasets recording timestamped interactions between entities.
For each dataset, we select a window size to define a discrete time domain, composed of contigu-
ous timestamps of the same duration, and build the corresponding temporal graph. If multiple
interactions occur between two entities during the same discrete timestamp, they are counted as
one. The characteristics of the resulting temporal graphs, along with the selected window sizes,
are reported in Table 1.

The three smallest datasets were gathered by using wearable proximity sensors in schools, with
a temporal resolution of 20 seconds. PrimarySchool3 contains the contact events between 242 vol-
unteers (232 children and 10 teachers) in a primary school in Lyon, France, during 2 days [81].
HighSchool3 describes the close-range proximity interactions between students and teachers
(327 individuals overall) of nine classes during 5 days in a high school in Marseilles, France [66].
HongKong reports the same kind of interactions for a primary school in Hong Kong, whose
population consists of 709 children and 65 teachers divided into 30 classes, for 11 consecutive
days [76].

ProsperLoans4 represents the network of loans between the users of Prosper, a marketplace
of loans between privates. Last.fm4 records the co-listening activity of the Last.fm streaming
platform: an edge exists between two users if they listened to songs of the same band within
the same discrete timestamp. WikiTalk4 is the communication network of the English Wikipedia.
DBLP4 is the co-authorship network of the authors of scientific papers from the DBLP computer

3sociopatterns.org.
4konect.cc.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

https://sociopatterns.org
https://konect.cc

2:26 E. Galimberti et al.

science bibliography. StackOverflow5 includes the answer-to-question interactions on the stack
exchange of the stackoverflow.com website. Wikipedia4 connects users of the Italian Wikipedia
that co-edited a page during the same discrete timestamp. Finally, for both Amazon4 and Epin-
ions4, vertices are users and edges represent the rating of at least one common item within the
same discrete timestamp.

Implementation. All methods are implemented in Python (v. 2.7.16) and compiled by Cython.
All the experiments were run on a machine equipped with Intel Xeon CPU at 2.1 GHz. The exper-
iments reported in Sections 7.1 and 7.2 used 64 GB RAM, while the ones in Section 7.5 used 32 GB
RAM.

7.1 Span-core Decomposition

We compare the two methods to compute a complete decomposition described in Section 4, i.e., the
baseline Naïve-span-cores and the proposed Span-cores, in terms of execution time, memory, and
total number of vertices input to the core-decomposition subroutine. We report these measures,
together with the number of span-cores and maximal span-cores of each dataset, in Table 2.

In terms of execution time, Span-cores considerably outperforms Naïve-span-cores in all
datasets, achieving a speed-up from 2.1 up to two orders of magnitude. The speed-up is explained
by the number of vertices processed by the core-decomposition subroutine, which is the most time-
consuming step of the algorithms albeit linear in the size of the input subgraph. The difference of
this quantity between Span-cores and Naïve-span-cores reaches over an order of magnitude in the
WikiTalk, Wikipedia, and Epinions dataset, confirming the effectiveness of the “horizontal con-
tainment” relationships. The memory required by the two procedures is comparable in all cases
since the largest structures needed in memory are the temporal graph itself and the set C of all
span-cores.

7.2 Maximal Span-cores

We compare our Maximal-span-cores algorithm to the naïve approach, described at the beginning
of Section 5, based on running the Span-cores algorithm and filtering out the non-maximal span-
cores, which we refer to as Naïve-maximal-span-cores. The results are again reported in Table 2.

Naïve-maximal-span-cores behaves very similarly to Span-cores: they only differ for the fil-
tering mechanism which requires a few additional seconds in most cases. Maximal-span-cores is
much faster than Naïve-maximal-span-cores for all datasets, with a speed-up from 1.3 for the Epin-
ions dataset to one order of magnitude for the HongKong dataset. Except for the school datasets
and Last.fm, the difference in terms of number of processed vertices is between one and three
orders of magnitude, attesting the advantages of the top-down strategy of Maximal-span-cores,
which avoids the visit of portions of the span-coresearch space and handles the overhead of re-
constructing graphs, i.e., (Vlb ,EΔ[Vlb]), efficiently. Finally, the memory requirements of the two
methods are comparable for all datasets.

7.3 Span-cores Characterization

We compare and characterize all span-cores against maximal span-cores. At first, Table 2 shows
that span-cores are at least one order of magnitude more numerous than maximal span-cores for
all datasets, with the maximum difference of three orders of magnitude for the HongKong dataset.

In Figure 5, we show the number (top) and the average size (bottom) of span-cores and maximal
span-cores as a function of the order k for the DBLP and Epinions datasets. For both datasets, the
number of maximal span-cores is at least one order of magnitude lower than the total number of

5snap.stanford.edu.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

https://snap.stanford.edu

Span-core Decomposition for Temporal Networks 2:27

Table 2. Evaluation of the Proposed Algorithms: Number of Output Span-cores,
Running Time, Memory, and Number of Processed Vertices

output running memory # processed

dataset method span-cores time (s) (GB) vertices

HighSchool

Naïve-span-cores
12,320

18 0.1 3M

Span-cores 1 0.1 581k

Naïve-maximal-span-cores
450

1 0.1 581k

Maximal-span-cores 0.3 0.1 181k

PrimarySchool

Naïve-span-cores
4, 703

4 0.1 818k

Span-cores 0.6 0.1 174k

Naïve-maximal-span-cores
409

0.6 0.1 174k

Maximal-span-cores 0.1 0.1 63k

HongKong

Naïve-span-cores
2, 367, 743

85, 180 1 819M

Span-cores 18, 389 0.8 216M

Naïve-maximal-span-cores
1, 807

18, 641 0.8 216M

Maximal-span-cores 339 0.5 212M

ProsperLoans

Naïve-span-cores
4, 273

101 2 55M

Span-cores 46 2 27M

Naïve-maximal-span-cores
293

48 2 27M

Maximal-span-cores 8 2 980k

Last.fm

Naïve-span-cores
126, 819

707 0.5 2M

Span-cores 199 0.5 531k

Naïve-maximal-span-cores
1, 670

202 0.5 531k

Maximal-span-cores 57 0.5 271k

WikiTalk

Naïve-span-cores
19, 693

322, 302 36 25B

Span-cores 1, 084 36 555M

Naïve-maximal-span-cores
632

1, 194 36 555M

Maximal-span-cores 126 35 2M

DBLP

Naïve-span-cores
6, 135

10, 506 11 1B

Span-cores 278 11 150M

Naïve-maximal-span-cores
268

292 11 150M

Maximal-span-cores 116 11 620k

StackOverflow

Naïve-span-cores
1, 238

5, 360 10 1B

Span-cores 245 10 127M

Naïve-maximal-span-cores
129

245 10 127M

Maximal-span-cores 128 10 3M

Wikipedia

Naïve-span-cores
125 191

17, 155 4 1B

Span-cores 522 4 35M

Naïve-maximal-span-cores
2, 147

537 4 35M

Maximal-span-cores 201 4 320k

Amazon

Naïve-span-cores
29, 318

10, 415 18 2B

Span-cores 409 18 247M

Naïve-maximal-span-cores
303

580 18 247M

Maximal-span-cores 123 18 688k

Epinions

Naïve-span-cores
63, 111

699 4 39M

Span-cores 186 4 3M

Naïve-maximal-span-cores
320

201 4 3M

Maximal-span-cores 154 5 129k

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:28 E. Galimberti et al.

Fig. 5. Top plots: number of span-cores and maximal span-cores as a function of the order k . Bottom plots:
average size of all span-cores and maximal span-cores as a function of the order k .

span-cores up to a quarter of the k domain, where the span-cores are more numerous. Instead, in
the rest of the domain, they mostly coincide due to the maximality condition over |Δ|. The average
size is also smaller for maximal span-cores, difference that wears thin when the gap between the
numbers of span-cores and maximal span-cores starts decreasing since, for high values of k , most
(or all) span-cores are maximal.

Figure 6 shows a different picture when numbers and average sizes of span-cores are shown as
a function of the size of the span |Δ|. For both datasets, the number of span-cores and maximal
span-cores is decreasing—which is expected since the number of intervals decreases when |Δ|
increases—with a constant gap close to one and two orders of magnitude, respectively. On the
other hand, the behavior of the average size is quite different between the two datasets. For low
values of |Δ|, the average size of span-cores of the DBLP dataset is much higher than the average
size of maximal span-cores, then the difference decreases and vanishes at the end of domain where
a maximal span-core of |Δ| = 37 dominates all other span-cores with |Δ| ≥ 20. Instead, for the
Epinions dataset, the average size of all span-cores and of maximal span-cores follow the same
behavior, with a difference of less than an order of magnitude, because the maximality condition
over k excludes the largest span-cores from the set of maximal span-cores.

Figure 7 yields some additional insights by showing the whole distribution of sizes of the span-
cores: these distributions are very skewed and span several orders of magnitude. The figure also
shows the size distributions of span-cores with a given order or duration: all are broad, becoming
narrower as the order or duration increase. We have also considered randomized versions of the
datasets, in which edges are reshuffled at random at each timestamp. In this case as well, the
distributions of the sizes of the span-cores are found to be broad, showing that the heterogeneity
in span-coresizes can also be obtained in largely random data. However, the cohesive temporal
structures are destroyed in the reshuffled data (see also Section 8.1): all the span-cores have then
very small order and span.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:29

Fig. 6. Top plots: number of span-cores and maximal span-cores as a function of the size of the temporal
span |Δ|. Bottom plots: average size of all span-cores and maximal span-cores as a function of the size of the
temporal span |Δ|.

7.4 Scalability Analysis

Here we evaluate the scalability of Algorithms 1 and 2. To this aim, we consider temporal subgraphs
derived from the Amazon dataset with increasing number of vertices and timestamps. To obtain
temporal subgraphs with varying number of timestamps, we simply consider the temporal graphs
associated with the first 20, 40, 60, 80, and 100 timestamps, while considering all the vertices and
edges existing in these time-frames. For what concerns the temporal subgraphs with controlled
number of vertices, we consider the entire temporal domain and sample sets of vertices of size
0.2M , 0.4M , 0.6M , 0.8M , 1M , 1.2M , 1.4M , 1.6M , and 1.8M . Vertices are sampled according to the
following simple procedure:

—Select a vertex uniformly at random from the whole V and add such a vertex to the set of
sampled nodes S

—Starting from the first timestamp of the temporal domain T , iteratively
—For each vertex v in S , select a neighbor of v uniformly at random and add it to S
—Move to the next timestamp

—If the last timestamp is reached, restart from the first one

The results of this scalability experiment are reported in Figure 8. It can be observed that the
trends shown in the figure comply with the time complexities discussed in Sections 4 and -5: run-
ning times are quadratic in the number of timestamps and linear in the number of vertices/edges.
Another relevant consideration is that the difference between the algorithm to compute maximal
span-cores and the one for computing all the span-cores gets larger as the number of timestamps or
vertices increase. This further attests the usefulness of introducing an algorithm that is specifically
devoted to maximal-span-core computation.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:30 E. Galimberti et al.

Fig. 7. Distribution of sizes of the span-cores. Top plots: overall distributions. Middle plots: distributions of
the sizes of span-cores with fixed temporal span. Bottom plots: distributions of the sizes of span-cores with
fixed order.

7.5 Temporal Community Search

In this subsection, we assess the performance of the proposed algorithms for temporal community
search (presented in Sections 6.2 and 6.3), as well as the greedy procedure for reducing the size of
the output communities (presented in Section 6.4). In the remainder of this subsection, we refer to
our basic algorithm (i.e., Algorithm 3, which precomputes the penalty scores via span-core decom-
position) as SC-TCS, and to our more efficient algorithm (i.e., Algorithm 4, which exploits maximal
span-cores to reduce the number of timestamps to be considered) as MSC-TCS. We also involve in
the comparison a naïve version of Algorithm 3, where the penalty scores of the various intervals
are computed from scratch during the execution of the algorithm, instead of precomputing them
all via span-core decomposition. We refer to such a naïve method as Naïve-TCS.

The experimental setting we consider here is as follows. We vary the number |Q | of query
vertices from 1 to 3. In particular, when |Q | = 1, we sample the single query vertex uniformly at
random from the whole vertex setV . Instead, for |Q | > 1, we employ a more sophisticated sampling
strategy that aims at finding meaningful query-vertex sets, i.e., vertices interacting with each other
during the temporal observations, and, at the same time, independent from the specific form of
the resulting span-core decomposition. Specifically, the sampling strategy we use is based on an
adaptation of random walk to the temporal settings:

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:31

Fig. 8. Scalability analysis: running time of the algorithms for extracting all the span-cores (SC, Algorithm 1)
and only the maximal span-cores (MSC, Algorithm 2) as a function of the number timestamps and vertices,
on the Amazon dataset.

—Select a vertex uniformly at random from the whole V and add such a vertex to the set
Qvisited of visited vertices

—Starting from the first timestamp of the temporal domain T , iteratively:
—With probability p, move the random walker to a neighbor of the current vertex and add

the neighbor to Qvisited. If the current vertex has no neighbors in a given timestamp, the
random walker jumps to the first next timestamp in which that vertex has at least one
neighbor

—With probability 1 − p, keep the random walker at the current vertex, but go to the next
timestamp

—Restart if the last timestamp of T is reached
—Stop when |Qvisited | reaches a proper (user-defined) size ν
—Sample |Q | query vertices fromQvisited with probability proportional to the frequency of the

visits during the random walk

In our experiments, we set p = 0.8 and ν = 3|Q |. As far as the number h of output communities, we
consider the range h ∈ [10, 20, 30, 40, 50, 60] on all datasets, with the exception of StackOverflow,
for which we discardh = 60, and Epinions, for which we considerh ∈ [4, 8, 12, 16, 20, 24]. For every
parameter configuration, we perform five runs of every algorithm (in every run we sample a dif-
ferent query-vertex set). Note that we were not able to run the algorithms for temporal community
search on the WikiTalk dataset due to memory constraints.

Running time. In Figure 9, we show the running time of the proposed algorithms as a func-
tion of the number h of output communities, for the HighSchool, DBLP, Wikipedia, and Amazon
datasets. The first general observation we make is that the running time of all algorithms increases
as h gets higher. This in accordance with the time-complexity analysis reported in Section 6. Also,
running times are independent of the selected query-vertex set Q . Looking at the individual per-
formance, we notice that, as expected, the Naïve-TCS method has severe limitations in terms of
efficiency: it takes hours to run on the HighSchool and Wikipedia datasets, while it is not able to
terminate in less than 10 days on the remaining datasets. SC-TCS and MSC-TCS are much faster
than Naïve-TCS, achieving a speedup of up to more than four orders of magnitude. MSC-TCS is
in most cases faster than SC-TCS, with speedup up to one order of magnitude (on HighSchool, for
h = 60). This confirms that the exploitation of the maximal span-cores is effective in both short-
ening the precomputation time and reducing the temporal domain considered in the DP step. The
only exception is the Wikipedia dataset. To dive deeper into the motivations of this exception,
we report in Figure 10 the split of the average running time of SC-TCS and MSC-TCS into the

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:32 E. Galimberti et al.

Fig. 9. Running time of the algorithms for Temporal Community Search, as a function of the number h of
output communities. Each boxplot corresponds to 15 data points.

Fig. 10. Split of the average running time of the SC-TCS and MSC-TCS algorithms into DP and precompu-
tation, for the Wikipedia and Last.fm datasets.

time spent in the DP step (which also includes the identification of the reduced temporal domain
T ∗ for MSC-TCS), and the precomputation time (i.e., the time required for computing all penalty
scores via span-core decomposition or maximal span-cores). Interestingly, what affects the most
the running time is the precomputation of the scores. Apparently, the Q-constrained version of
Span-cores is more efficient than Maximal-span-cores in some datasets, which we believe is due
to the structure of the search space. On the other hand, these results confirm that the reduction of
the temporal domain considered by the DP step is actually effective since the DP running time of
MSC-TCS is always less than (or equal to) the DP running time of SC-TCS.

Greedy-minimum-community-search. Here we evaluate the performance of the proposed
Greedy-minimum-community-search algorithm (Algorithm 5) for reducing the size of the out-
put communities. We recall that the proposed algorithms for Temporal Community Search
(evaluated above) output communities corresponding to the (Q,Δi)-highest-order-span-cores
for all {Δi }hi=1 temporal intervals identified. The Greedy-minimum-community-search algorithm
takes every (Q,Δi)-highest-order-span-core and attempts to reduce its size, while preserving
optimality. Thus, the ultimate goal of the evaluation presented next is to show how well

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:33

Fig. 11. Comparison of the size of the communities in the solutions to Temporal Community Search:
original output of the algorithms for Temporal Community Search (CS) and after running the Greedy-
minimum-community-search algorithm on top of them (minimum CS). Each boxplot corresponds to 15 data
points.

Greedy-minimum-community-search is able to reduce the size of the original span-cores, and
what is its overhead in terms of running time.

Figure 11 compares the size of the starting (Q,Δi)-highest-order-span-cores and the size of
the corresponding reduced community yielded by the Greedy-minimum-community-search algo-
rithm, for the PrimarySchool, HongKong, Last.fm, and Epinions datasets. It can be easily observed
that, as a general trend, the reduced communities are much smaller than the original ones, in all
datasets, up to four orders of magnitude. The results on the Epinions dataset are a bit different than
the other three datasets. In fact, on that dataset, the original communities (CS) always include the
whole 120k vertices of the graph, while the communities found by Greedy-minimum-community-
search (minimum CS) have median size smaller than 10, and, in many cases, they correspond to
communities composed of the query vertices only. This means that, on the Epinions dataset, for our
tested queries, the algorithms for Temporal Community Search do not extract communities that
are really cohesive around the query vertices. This way, the benefits of exploiting an a-posteriori
community-size-reduction step are less evident. Also, we do not notice any evident pattern as a
function of h, for any dataset.

In Table 3, we report the average running time of an execution of Greedy-minimum-community-
search, for all datasets. Note that this is the average time required to process one of the h commu-
nities in a solution to Temporal Community Search. Greedy-minimum-community-search runs
in 8 seconds or less in all tested datasets. Therefore, the additional running time required by the
algorithm is rather negligible.

To summarize, Greedy-minimum-community-search is empirically recognized as a powerful
post-processing method for improving the quality of the solutions to Temporal Community
Search: it finds much smaller communities at a very small additional computational cost.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:34 E. Galimberti et al.

Table 3. Average Running Time of an Execution of the
Greedy-minimum-community-search Algorithm

HighSchool PrimarySchool HongKong ProsperLoans Last.fm
running time (s) 0.003 0.001 0.02 0.3 0.06

DBLP StackOverflow Wikipedia Amazon Epinions
running time (s) 7 8 1 7 6

8 APPLICATIONS

In this section, we illustrate applications of (maximal) span-cores in the analysis of face-to-face
interaction networks, and how the methods for Temporal Community Search can be profitably
exploited in a task of graph classification. For these applications we use the three networks gath-
ered in schools, i.e., PrimarySchool, HighSchool, and HongKong, which are described above, at
the beginning of Section 7. We use a window size of 5 minutes and, in the analysis, we discard
span-cores of |Δ| = 1, i.e., having span of 5 minutes, since they represent short interactions, not
significant for our purposes. In the following we show (i) three types of interesting temporal pat-
terns (Section 8.1), i.e., social activities of groups of students within a school day, mixing of gender
and class, and length of social interactions in groups; (ii) a procedure to detect anomalous con-
tacts and intervals that exploits maximal span-cores (Section 8.2); and, (iii) an approach to graph
classification based on temporal community search (Section 8.3).

8.1 Temporal Patterns

Temporal activity. We first show how span-cores afford a simple temporal analysis of social
activities of groups of people within a school day. The left side of Figure 12 reports colormaps
of the order k of the span-cores as a function of their starting time ts (x-axis) and of the size of
their temporal span |Δ| (y-axis), for a school day of the PrimarySchool and HighSchool datasets.
Darker gray indicates span-cores of high order and slots located in the upper part of the plots
refer to span-cores of long span. It is important to notice that the linear decay in span duration is
naturally due to the definition of span-core and to the shifting of the starting time ts ; therefore, it
is not a distinguishing feature of the activity patterns found in the analyzed data. In both datasets,
fluctuations of k and |Δ| are observed along the day, which can be related to school events. Around
10 a.m., the size of the span |Δ| reaches a local maximum in correspondence to the morning break,
which means that students establish long-lasting interactions that hold beyond the break itself.
Moreover, when classes gather for the lunch break, the order k reaches its maximum value since
students tend to form larger and more cohesive groups.

In order to verify that these results are not trivially derived from the general temporal activity,
as simply given by the number of interactions in each timestamp, we compare our findings to a null
model. At each timestamp of the temporal graphs, we reshuffle the edges by the Maslov–Sneppen
algorithm [65] which consists in repeating the following operations up to when all edges have
been processed: select at random two edges with no common vertices, e.g., (u,v) and (w, z), and
transform them into (u, z) and (w,v), if neither (u, z) and (w,v) existed in the original timestamp.
This reshuffling preserves the degree of each vertex in each timestamp and the global activity (i.e.,
the number of contacts per timestamp), but destroys correlations between edges of successive
timestamps. In the right side of Figure 12, we show the results of the temporal analysis described
above for the reshuffled datasets. In both, the values of |Δ| and k reached are much smaller than
in the original datasets. The size of the span |Δ| is always shorter than 20 minutes, while in the

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:35

Fig. 12. Temporal activity of a school day of the PrimarySchool and HighSchool datasets: the x-axis reports
the hour of the day at which the span of a span-corestarts, the y-axis specifies the size of the span (in
minutes), and the color scale shows the order k . At a glance, it can be observed that the temporal structure
of the span-core decomposition detects time-evolving cohesive structures in the original datasets (left plots)
that completely disappear in the reshuffled datasets (right plots).

original datasets it is much longer, up to 170 minutes, and the orderk is always equal to 1, compared
to the original maximum of 5. The time-evolving cohesive structures detected by the temporal core
decomposition in the original datasets are completely lost on reshuffling, since only span-cores of
short span and low coreness are observed in the latter case. This shows that the temporal structure
exposed by the span-core decomposition is not simply a consequence of temporal patterns of global
activity but that span-cores represent a concrete method to detect complex cohesive structures and
their temporal evolution.

Mixing patterns. We now show an analysis of mixing patterns of students with respect to gen-
der and class. Such vertex attributes are indeed available for the individuals of the PrimarySchool
dataset. We define as gender purity of a span-core the fraction of individuals of the most repre-
sented gender within the span-core. Class purity is analogously defined. The left plot of Figure 13
reports the temporal evolution of the average gender and class purity of the maximal span-cores
spanning each timestamp, during the first school day of the PrimarySchool dataset. During lessons,
when students are in their own classes, class purity has naturally very high values, very close to 1.
Gender purity is instead rather low. On the other hand, when students are gathered together, dur-
ing the morning break at 10 a.m. and the lunch break between 12 a.m. and 2 p.m., the situation is
overturned: gender purity reaches large values while class purity drastically decreases. This shows
that primary school students group with individuals of the same class, disregarding the gender,
only when they are forced by the schedule of the lessons, but prefer on average to form cohesive

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:36 E. Galimberti et al.

Fig. 13. Temporal evolution (time on the x-axis) of average gender purity and average class purity (y-axis) of
the maximal span-cores of the PrimarySchool dataset. Original data on the left, reshuffled data on the right.

Fig. 14. Distribution of the size of the span |Δ| of the maximal span-cores. The x-axis reports the size of the
span (in minutes), while the y-axis the percentage of maximal span-cores having a given size of the span.

groups with students of the same gender during breaks. This is in agreement and complements a
previous study of the same dataset focusing on single interactions in the static aggregated network
[80].

The right plot of Figure 13 shows the temporal evolution of the average gender and class pu-
rity for a null model in which gender and class are randomly reshuffled among individuals. The
two curves are more flat and the anti-correlation between them completely vanishes. This testifies
that the results on the original dataset are not simply due to the relative abundance of individu-
als of each type interacting at each time, but reflect genuine mixing patterns and their temporal
evolution.

Interaction length. Finally, we analyze the duration of interactions of social groups in schools
by studying the distribution of the size of the span of the maximal span-cores of the three datasets
(Figure 14). All distributions are extremely skewed with broad tails: most maximal span-cores
have duration less than 1 hour, but durations much larger than the average can also be observed.
Interestingly, the three datasets at hand all exhibit the same functional shape, confirming a robust
statistical behavior. We also note that similar robust broad distributions have been observed for
simpler characteristics of human interactions such as the statistics of contact durations [66, 81].
Outliers appear also at very large durations, especially for the HongKong dataset that has maximal
span-cores lasting up to 83 hours. Group interactions of such long span are clearly abnormal and
represent outliers in the distributions. We will show, in the following of this section, how to exploit
such outliers to detect both irregular interactions and anomalous temporal intervals.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:37

Fig. 15. HongKong dataset: number of edges per timestamp in the original data (top), after filtering anoma-
lous edges (middle), and after filtering anomalous edges and intervals (bottom). Days 6 and 7 are weekend.

8.2 Anomaly Detection

The identification of anomalous behaviors in temporal networks has been the focus of several
studies in the last few years [68, 76]. Based on the above findings, we devise a simple procedure to
detect anomalous edges and intervals of the HongKong dataset that exploits maximal span-cores.
The topmost plot of Figure 15 reports the number of edges for each timestamp of the original
HongKong dataset. It is easy to notice that there is a lot of constant anomalous activity between
school days and during the weekend, i.e., days six and seven: unexpectedly, the number of interac-
tions per timestamp does not drop to zero. This happened in fact because proximity sensors were
left in each class and close to each other, at the end of the lessons. In order to automatically detect
these steady activity patterns that do not correspond to any genuine social dynamics, we apply
the following procedure: (i) find a set of anomalously long temporal intervals supporting maximal
span-cores, (ii) identify anomalous vertices, and (iii) filter out anomalous edges.

The first step of this procedure requires to find the set of temporal intervals I = {Δ � T | Ck,Δ ∈
CM ∧ |Δ| > tr } that are the span of a maximal span-coreCk,Δ with size longer than a certain thresh-
old tr . Then, for each timestamp t ∈ T , select as anomalous all those vertices that appear in the
span-cores {C1,Δ | Δ ∈ I ∧ t ∈ Δ}, i.e., the span-cores of k = 1 whose span is in I and contains t .
Finally, at each timestamp t ∈ T , remove edges that are incident to at least a vertex that has been
marked as anomalous at time t . Consistently with the distribution of the span durations of the
maximal span-cores, we select the threshold tr = 22 (110 minutes). The results of this filtering
procedure are shown in the middle plot of Figure 15. The number of edges during school days re-
mains approximately unchanged, while the activity noticeably decreases in-between. Identifying
as positives the spurious interactions occurring when the school is closed and as negatives the

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:38 E. Galimberti et al.

genuine interactions observed when the school is open, this approach achieves a precision of 0.91
and a recall of 0.64.

We can refine this anomaly detection process by identifying, in addition to anomalous edges,
also anomalous temporal intervals. We define a timestamp t ∈ T as anomalous if the ratio between
the number of original edges (top plot of Figure 15) and the number of filtered edges (middle plot of
Figure 15) exceeds a given threshold. We apply this further filtering to the HongKong dataset with
a threshold of 1.5 and report the results in the bottommost plot of Figure 15. The number of edges
when the school is closed drops to zero, while the activity during school days is not modified,
except for the last one, which is affected by the proximity to the end of the time domain. The
overall procedure yields a slightly higher value of precision, 0.93, and substantially improves the
recall to 0.99.

8.3 Graph Embedding and Vertex Classification

In this subsection, we show how Temporal Community Search can be profitably exploited for
classifying the vertices of a temporal graph. Specifically, the classification framework we set up
is based on the paradigm of graph embedding, which has attracted a great deal of attention in the
last few years, and whose goal is to assign to every vertex of a graph a numerical vector (i.e.,
an embedding) such that structurally similar vertices are represented by similar vectors, and vice
versa [30, 45, 46]. Here, our framework simply consists in learning suitable embeddings for the
vertices of the input graph, and then give them as input to some (well-established) classifier to
ultimately accomplish the desired classification task. Thus, the main goal is to learn embeddings
that are well-representative of the relationships among vertices, so as to help the classifier per-
form accurately. As our main result here, we show how an embedding strategy based on a simple
exploitation of the output of Temporal Community Search achieves results comparable to well-
established vertex-embedding methods such as DeepWalk [70], LINE [83], and node2vec [46].

Method. For every vertex of the input temporal graph, we build an embedding as an
h-dimensional vector conveying the information provided by a solution to the Temporal Com-
munity Search problem on the same graph. Specifically, consider a vertex u ∈ V and a solu-
tion {〈Si ,Δi 〉}hi=1 to Temporal Community Search on query-vertex set Q = {u}. We define u’s
embedding as

Xu =
[
v∗Q,Δ1

,v∗Q,Δ2
, . . . ,v∗Q,Δh

]
,

which corresponds to the temporally-ordered sequence of minimum degrees of the h communities
identified by the temporal-community-search solution. Below we show that this simple approach
is sufficient to achieve interesting experimental results. Clearly, more sophisticated methods are
possible, e.g., by simultaneously exploiting information from the Si communities. However, our
main goal here is to give an idea of how the Temporal Community Search problem can be
successfully leveraged in a relevant application scenario, rather than devise the best temporal-
community-search-based graph-embedding method.

Evaluation. We assess the performance of our method on the PrimarySchool and HighSchool
datasets. In these datasets vertices correspond to students, and vertex labels (to be predicted) are
the classes that every student belongs to. We involve in the comparison the following state-of-the-
art vertex-embedding methods:

—DeepWalk [70], a method that preserves the proximity between vertices by running a set
of random walks and maximizing the sum of the log-likelihood of a set of vertices for each
walk.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:39

Fig. 16. Vertex classification: Macro F1-score of the proposed temporal-community-search-based graph-
embedding method TCS and the competing methods, with varying the dimensionality h of the output em-
beddings, on the PrimarySchool and HighSchool datasets.

—LINE [83], which optimizes a suitable objective function preserving both first-order (one-
hop) and second-order (two-hop) proximities. Neighborhoods are not explored via random
walk, but in a breadth-first fashion.

—node2vec [46], which is based on the same idea underlying DeepWalk, but allowing more
flexibility on how random walks explore and leave the neighborhood of the current vertex.

These three methods consider non-temporal graphs. Therefore, we feed them with aggregated
graphs in which every edge exists if it exists in at least one timestamp.

Exhaustive grid search is carried out to tune parameters of node2vec [46] and DeepWalk [70].
In particular, for both methods, we tune the neighborhood parameters of a vertex, i.e., number of
walks r , and walk length l , while the neighborhood size k is set to 10. Furthermore, for node2vec
we tune the return and in-out parameters p and q. For each parameter, we use the same grid of
values as the one considered in the parameter sensitivity analysis reported in the original node2vec
paper [46]. Specifically, we consider the following parameter space:

—Number of walks, r = {6, 8, 10, 12, 14, 16, 18, 20};
—Walk length, l = {30, 40, 50, 60, 70, 80, 90, 100, 110};
—Return parameter, p = {0.25, 0.5, 1, 2, 4};
—In-out parameter, q = {0.25, 0.5, 1, 2, 4}.

We select the combination of parameters maximizing the Macro F1-score averaged over a range
of numbers of latent dimensions d = {16, 32, 64, 128, 256}.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:40 E. Galimberti et al.

After filtering out those vertices representing the teachers, we partition the remaining vertices
(i.e., the students) into training and test sets with an 80–20 split. A standard scaler is applied to the
features extracted by each embedding method and, then, a penalized logistic-regression classifier
is trained.

In Figure 16, we report classification results in terms of Macro F1-score, with varying the di-
mensionality h of the embeddings. On the PrimarySchool dataset, for h ≥ 200, our TCS has per-
formance close to 1 in terms Macro F1-score, similarly to the three baselines. It can be observed
that the TCS results are better as h gets higher; in particular, TCS is even better than node2vec for
h = |T |. This is expected and is motivated as, for higher h, TCS is allowed to rely on more temporal
information about the vertices. On the HighSchool dataset, TCS is outperformed by all methods
for smaller h. However, again, the performance of TCS becomes competitive for larger h, up to
achieving comparable results to the best method(s) for h = |T |.

9 CONCLUSIONS

Temporal networks are a powerful representation of how relations are established and interrupted
along time among a given population of entities. An interesting primitive for analyzing this type
of networks is the extraction of relevant patterns, such as dense subgraphs, together with their
time interval of existence (or span). Following this idea, we introduced in this article, a notion of
temporal core decomposition where each core is associated with its span. Exploiting containment
properties among cores, we developed efficient algorithms for computing all the span-cores, and
also only the maximal ones. We then introduced the problem of temporal community search and
showed how it can be solved in polynomial time via DP. We also proved an interesting connection
between temporal community search and maximal span-cores, which made it possible to devise
a considerably more efficient algorithm than the naïve DP one. Finally, we presented applications
on empirical networks of human close-range proximity, that illustrate the relevance of the notions
of (maximal) span-core and temporal community search in a variety analyses and applications.

In future work, we will study the role of maximal span-cores with large coreness and/or |Δ|
in spreading processes on temporal networks. Furthermore, span-cores represent features that
can be used for network fingerprinting and classification, as well as for model validation, and
that could provide support for new ways of visualizing large-scale time-varying graphs. We also
plan to investigate different semantics of temporal patterns and the corresponding notions of core
decompositions extracted from temporal networks, such as, for instance, the ones that might arise
by considering a temporal edge existing in a given interval if it appears in at least one of the
timestamps of the interval, or in a fraction of timestamps larger than a given threshold. Finally,
investigation in temporal community search has just started: we plan to study different notions
of community search and their corresponding extraction problems. As an example, a variant of
the notion adopted in this article, which is worth to be investigated further, would correspond to
relaxing the requirement of covering the whole temporal domain T , and instead looking for a set
of communities giving a good enough temporal coverage.

REFERENCES

[1] Leman Akoglu, Duen Horng Chau, Christos Faloutsos, Nikolaj Tatti, Hanghang Tong, and Jilles Vreeken. 2013. Mining
connection pathways for marked nodes in large graphs. In Proceedings of the 2013 SIAM International Conference on

Data Mining (SDM’13). 37–45.
[2] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespignani. 2006. Large scale networks

fingerprinting and visualization using the k-core decomposition. In Proceedings of the 18th International Conference

on Advances in Neural Information Processing Systems (NeurIPS’06). 41–50.
[3] Reid Andersen and Kumar Chellapilla. 2009. Finding dense subgraphs with size bounds. In Proceedings of the 6th

International Workshop on Algorithms and Models for the Web-Graph (WAW’09). 25–37.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:41

[4] Reid Andersen and Kevin J. Lang. 2006. Communities from seed sets. In Proceedings of the 15th International Conference

on World Wide Web (WWW’06). 223–232.
[5] Albert Angel, Nikos Sarkas, Nick Koudas, and Divesh Srivastava. 2012. Dense subgraph maintenance under streaming

edge weight updates for real-time story identification. Proceedings of the VLDB Endowment 5, 6 (2012), 574–585.
[6] Gary D. Bader and Christopher W. V. Hogue. 2003. An automated method for finding molecular complexes in large

protein interaction networks. BMC Bioinformatics 4, 2 (2003).
[7] Nicola Barbieri, Francesco Bonchi, Edoardo Galimberti, and Francesco Gullo. 2015. Efficient and effective community

search. Data Mining and Knowledge Discovery 29, 5 (2015), 1406–1433.
[8] Vladimir Batagelj, Andrej Mrvar, and Matjaz Zaversnik. 1999. Partitioning approach to visualization of large graphs.

In Proceedings of the International Symposium on Graph Drawing (GD’99). 90–97.
[9] Vladimir Batagelj and Matjaz Zaversnik. 2011. Fast algorithms for determining (generalized) core groups in social

networks. Advances in Data Analysis and Classification 5, 2 (2011), 129–145.
[10] R. Bellman. 1961. On the approximation of curves by line segments using dynamic programming. Communications

of the ACM 4, 6 (1961), 284.
[11] Matthias Bentert, Anne-Sophie Himmel, Hendrik Molter, Marco Marik, Rolf Niedermeier, and René Saitenmacher.

2018. Listing all maximal k-plexes in temporal graphs. In Proceedings of the 2018 IEEE/ACM International Conference

on Advances in Social Networks Analysis and Mining (ASONAM’18). 41–46.
[12] Michele Berlingerio, Francesco Bonchi, Björn Bringmann, and Aristides Gionis. 2009. Mining graph evolution rules.

In Proceedings of the Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery

in Databases (ECML PKDD’09). 115–130.
[13] Yuchen Bian, Yaowei Yan, Wei Cheng, Wei Wang, Dongsheng Luo, and Xiang Zhang. 2018. On multi-query local

community detection. In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM’18). 9–18.
[14] Petko Bogdanov, Misael Mongiovì, and Ambuj K Singh. 2011. Mining heavy subgraphs in time-evolving networks.

In Proceedings of the IEEE International Conference on Data Mining (ICDM’11). 81–90.
[15] Francesco Bonchi, Ilaria Bordino, Francesco Gullo, and Giovanni Stilo. 2016. Identifying buzzing stories via anoma-

lous temporal subgraph discovery. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence

(WI’16). 161–168.
[16] Francesco Bonchi, Ilaria Bordino, Francesco Gullo, and Giovanni Stilo. 2019. The importance of unexpectedness:

Discovering buzzing stories in anomalous temporal graphs. Web Intelligence 17, 3 (2019), 177–198.
[17] Francesco Bonchi, Aristides Gionis, Francesco Gullo, Charalampos E. Tsourakakis, and Antti Ukkonen. 2015. Chro-

matic correlation clustering. ACM Transactions on Knowledge Discovery from Data 9, 4 (2015), 34:1–34:24.
[18] Francesco Bonchi, Francesco Gullo, and Andreas Kaltenbrunner. 2018. Core decomposition of massive, information-

rich graphs. In Encyclopedia of Social Network Analysis and Mining, 2nd Edition, Reda Alhajj and Jon G. Rokne (Eds.).
Springer.

[19] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana Volkovich. 2014. Core decomposition of uncer-
tain graphs. In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (KDD’14).
1316–1325.

[20] Björn Bringmann, Michele Berlingerio, Francesco Bonchi, and Aristides Gionis. 2010. Learning and predicting the
evolution of social networks. IEEE Intelligent Systems 25, 4 (2010), 26–35.

[21] Moses Charikar. 2000. Greedy approximation algorithms for finding dense components in a graph. In Proceedings of

the 3rd International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’00).
84–95.

[22] Moses Charikar, Yonatan Naamad, and Jimmy Wu. 2018. On finding dense common subgraphs. CoRR abs/1802.06361
(2018).

[23] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. 2011. Efficient core decomposition in massive networks.
In Proceedings of the IEEE International Conference on Data Engineering (ICDE’11). 51–62.

[24] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search of communities in large graphs. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD’14). 991–1002.

[25] Anish Das Sarma, Alpa Jain, and Cong Yu. 2011. Dynamic relationship and event discovery. In Proceedings of the

International Conference on Web Search and Data Mining (WSDM’11). 207–216.
[26] Elise Desmier, Marc Plantevit, Céline Robardet, and Jean-François Boulicaut. 2012. Cohesive co-evolution patterns in

dynamic attributed graphs. In Proceedings of the International Conference on Discovery Science (DS’12). 110–124.
[27] Mark E. Dickison, Matteo Magnani, and Luca Rossi. 2016. Multilayer Social Networks. Cambridge University Press.
[28] Marius Eidsaa and Eivind Almaas. 2013. s-core network decomposition: A generalization of k-core analysis to

weighted networks. Physical Review E 88, 6 (2013), 062819.
[29] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient densest subgraph computation in evolving graphs.

In Proceedings of the World Wide Web Conference (WWW’15). 300–310.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:42 E. Galimberti et al.

[30] Alessandro Epasto and Bryan Perozzi. 2019. Is a single embedding enough? Learning node representations that cap-
ture multiple social contexts. In Proceedings of the World Wide Web Conference (WWW’19). 394–404.

[31] David Eppstein, Maarten Löffler, and Darren Strash. 2010. Listing all maximal cliques in sparse graphs in near-optimal
time. In Proceedings of the International Symposium on Algorithms and Computation (ISAAC’10). 403–414.

[32] Péter Érdi, Kinga Makovi, Zoltán Somogyvári, Katherine Strandburg, Jan Tobochnik, Péter Volf, and László Zalányi.
2013. Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics 95, 1
(2013), 225–242.

[33] Christos Faloutsos, Kevin S. McCurley, and Andrew Tomkins. 2004. Fast discovery of connection subgraphs. In Pro-

ceedings of the ACM International Conference on Knowledge Discovery and Data Mining (KDD’04). 118–127.
[34] Yixiang Fang, Reynold Cheng, Yankai Chen, Siqiang Luo, and Jiafeng Hu. 2017. Effective and efficient attributed

community search. The VLDB Journal 26, 6 (2017), 803–828.
[35] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng Hu. 2017. Effective community search over large

spatial graphs. Proceedings of the VLDB Endowment 10, 6 (2017), 709–720.
[36] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng, and Xuemin Lin. 2020. A survey of

community search over big graphs. The VLDB Journal 29, 1 (2020), 353–392.
[37] Edoardo Galimberti, Alain Barrat, Francesco Bonchi, Ciro Cattuto, and Francesco Gullo. 2018. Mining (maximal)

span-cores from temporal networks. In Proceedings of the International Conference on Information and Knowledge

Management (CIKM’18). 107–116.
[38] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. 2017. Core decomposition and densest subgraph in mul-

tilayer networks. In Proceedings of the International Conference on Information and Knowledge Management (CIKM’17).
1807–1816.

[39] Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano. 2020. Core decomposition in mul-
tilayer networks: Theory, algorithms, and applications. ACM Transactions on Knowledge Discovery from Data 14, 1
(2020), 11:1–11:40.

[40] Antonios Garas, Frank Schweitzer, and Shlomo Havlin. 2012. A k-shell decomposition method for weighted networks.
New Journal of Physics 14, 8 (2012), 083030.

[41] David García, Pavlin Mavrodiev, and Frank Schweitzer. 2013. Social resilience in online communities: The autopsy
of Friendster. In Proceedings of the ACM International Conference on Online Social Networks (COSN’13). 39–50.

[42] Laetitia Gauvin, André Panisson, and Ciro Cattuto. 2014. Detecting the community structure and activity patterns of
temporal networks: A non-negative tensor factorization approach. PLOS ONE 9, 1 (2014), e86028.

[43] Valerio Gemmetto, Alain Barrat, and Ciro Cattuto. 2014. Mitigation of infectious disease at school: Targeted class
closure vs school closure.BMC Infectious Diseases 14, 1 (2014), 695.

[44] Christos Giatsidis, Dimitrios M. Thilikos, and Michalis Vazirgiannis. 2013. D-cores: Measuring collaboration of di-
rected graphs based on degeneracy. Knowledge and Information Systems 35, 2 (2013), 311–343.

[45] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications, and performance: A survey.
Knowledge-Based Systems 151 (2018), 78–94.

[46] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the ACM

International Conference on Knowledge Discovery and Data Mining (KDD’16). 855–864.
[47] John Healy, Jeannette Janssen, Evangelos E. Milios, and William Aiello. 2006. Characterization of graphs using degree

cores. In Proceedings of the 4th International Workshop on Algorithms and Models for the Web-Graph (WAW’06). 25–37.
[48] Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. 2016. Enumerating maximal cliques in

temporal graphs. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis

and Mining (ASONAM’16). 337–344.
[49] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying k-truss community in large and

dynamic graphs. In Proceedings of the ACM International Conference on Management of Data (SIGMOD’14). 1311–1322.
[50] Xin Huang and Laks VS Lakshmanan. 2017. Attribute-driven community search. Proceedings of the VLDB Endowment

10, 9 (2017), 949–960.
[51] Xin Huang, Laks VS Lakshmanan, and Jianliang Xu. 2017. Community search over big graphs: Models, algorithms,

and opportunities. In Proceedings of the IEEE International Conference on Data Engineering (ICDE’17). 1451–1454.
[52] Akihiro Inokuchi and Takashi Washio. 2010. Mining frequent graph sequence patterns induced by vertices. In Pro-

ceedings of the SIAM International Conference on Data Mining (SDM’10). 466–477.
[53] Vinay Jethava and Niko Beerenwinkel. 2015. Finding dense subgraphs in relational graphs. In Proceedings of the Joint

European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML

PKDD’15). 641–654.
[54] Maksim Kitsak, Lazaros K. Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik, H. Eugene Stanley, and HernÃ¡n

A. Makse. 2010. Identifying influential spreaders in complex networks. Nature Physics 6, 11 (2010), 888–893.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

Span-core Decomposition for Temporal Networks 2:43

[55] Isabel M. Kloumann and Jon M. Kleinberg. 2014. Community membership identification from small seed sets. In
Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (KDD’14). 1366–1375.

[56] Guy Kortsarz and David Peleg. 1994. Generating sparse 2-spanners. Journal of Algorithms 17, 2 (1994), 222–236.
[57] Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész, and Jari Saramäki. 2011. Temporal motifs in time-

dependent networks. Journal of Statistical Mechanics 2011, 11 (2011), P11005.
[58] Cane Wing-ki Leung, Ee-Peng Lim, David Lo, and Jianshu Weng. 2010. Mining interesting link formation rules in

social networks. In Proceedings of the International Conference on Information and Knowledge Management (CIKM’10).
209–218.

[59] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai. 2018. Persistent community search in temporal
networks. In Proceedings of the IEEE International Conference on Data Engineering (ICDE’18). 797–808.

[60] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient core maintenance in large dynamic graphs. IEEE Transactions

on Knowledge and Data Engineering 26, 10 (2014), 2453–2465.
[61] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou. 2019. Efficient (α , β)-core computation:

An index-based approach. In Proceedings of the World Wide Web Conference (WWW’19). 1130–1141.
[62] Paul Liu, Austin R. Benson, and Moses Charikar. 2019. Sampling Methods for Counting Temporal Motifs. In Proceed-

ings of the International Conference on Web Search and Data Mining (WSDM’19). 294–302.
[63] Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, and Jinpeng Huai. 2017. Fast computation of dense temporal

subgraphs. In Proceedings of the IEEE International Conference on Data Engineering (ICDE’17). 361–372.
[64] Fragkiskos D. Malliaros, Christos Giatsidis, Apostolos N. Papadopoulos, and Michalis Vazirgiannis. 2020. The core

decomposition of networks: Theory, algorithms and applications. The VLDB Journal 29, 1 (2020), 61–92.
[65] Sergei Maslov and Kim Sneppen. 2002. Specificity and stability in topology of protein networks. Science 296, 5569

(2002), 910–913.
[66] Rossana Mastrandrea, Julie Fournet, and Alain Barrat. 2015. Contact patterns in a high school: A comparison between

data collected using wearable sensors, contact diaries and friendship surveys. PLOS ONE 10, 9 (09 2015), 1–26.
[67] David W. Matula and Leland L. Beck. 1983. Smallest-last ordering and clustering and graph coloring algorithms.

Journal of the ACM 30, 3 (1983), 417–427.
[68] Misael Mongiovi, Petko Bogdanov, Razvan Ranca, Evangelos E. Papalexakis, Christos Faloutsos, and Ambuj K. Singh.

2013. Netspot: Spotting significant anomalous regions on dynamic networks. In Proceedings of the SIAM International

Conference on Data Mining (SDM’13). 28–36.
[69] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. 2013. Distributed k-core decomposition. IEEE

Transactions on Parallel and Distributed Systems 24, 2 (2013), 288–300.
[70] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of social representations. In Pro-

ceedings of the ACM International Conference on Knowledge Discovery and Data Mining (KDD’14). 701–710.
[71] Alexander Reinthal, Arvid Andersson, Erik Norlander, Philip Stålhammar, and Sebastian Norlin. 2016. Finding the

densest common subgraph with linear programming. Technical Report. Department of Computer Science and Engi-
neering, Chalmers University of Technology.

[72] Polina Rozenshtein, Francesco Bonchi, Aristides Gionis, Mauro Sozio, and Nikolaj Tatti. 2018. Finding events in tem-
poral networks: Segmentation meets densest-subgraph discovery. In Proceedings of the IEEE International Conference

on Data Mining (ICDM’18). 397–406.
[73] Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. 2017. Finding dynamic dense subgraphs. ACM Transactions

on Knowledge Discovery from Data 11, 3 (2017), 27.
[74] Natali Ruchansky, Francesco Bonchi, David García-Soriano, Francesco Gullo, and Nicolas Kourtellis. 2015. The min-

imum wiener connector problem. In Proceedings of the ACM International Conference on Management of Data (SIG-

MOD’15). 1587–1602.
[75] Natali Ruchansky, Francesco Bonchi, David García-Soriano, Francesco Gullo, and Nicolas Kourtellis. 2017. To be con-

nected, or not to be connected: That is the minimum inefficiency subgraph problem. In Proceedings of the International

Conference on Information and Knowledge Management (CIKM’14). 879–888.
[76] Anna Sapienza, André Panisson, Joseph Wu, Laetitia Gauvin, and Ciro Cattuto. 2015. Detecting anomalies in time-

varying networks using tensor decomposition. In Proceedings of the IEEE International Conference on Data Mining -

Worskshops (ICDMW’15). 516–523.
[77] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and Ümit V. Çatalyürek. 2013. Streaming

algorithms for k-core decomposition. Proceedings of the VLDB Endowment 6, 6 (2013), 433–444.
[78] Konstantinos Semertzidis, Evaggelia Pitoura, Evimaria Terzi, and Panayiotis Tsaparas. 2018. Finding lasting dense

subgraphs. Data Mining and Knowledge Discovery 33, 5 (2018), 1417–1445.
[79] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and how to plan a successful cocktail party.

In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (KDD’10). 939–948.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

2:44 E. Galimberti et al.

[80] Juliette Stehlé, François Charbonnier, Tristan Picard, Ciro Cattuto, and Alain Barrat. 2013. Gender homophily from
spatial behavior in a primary school: A sociometric study. Social Networks 35, 4 (2013), 604–613.

[81] Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Lorenzo Isella, Jean-FranÃ§ois Pinton, Marco Quaggiotto,
Wouter Van den Broeck, Corinne Régis, Bruno Lina, and Philippe Vanhems. 2011. High-resolution measurements of
face-to-face contact patterns in a primary school. PLOS ONE 6, 8 (2011), e23176.

[82] Andrea Tagarelli, Alessia Amelio, and Francesco Gullo. 2017. Ensemble-based community detection in multilayer
networks. Data Mining and Knowledge Discovery 31, 5 (2017), 1506–1543.

[83] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. Line: Large-scale information
network embedding. In Proceedings of the World Wide Web Conference (WWW’15). 1067–1077.

[84] Hanghang Tong and Christos Faloutsos. 2006. Center-piece subgraphs: Problem definition and fast solutions. In Pro-

ceedings of the ACM International Conference on Knowledge Discovery and Data Mining (KDD’06). 404–413.
[85] Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. 2016. Computing maximal cliques in link streams. Theo-

retical Computer Science 609 (2016), 245–252.
[86] Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and Hejun Wu. 2015. Core decomposition in

large temporal graphs. In Proceedings of the IEEE International Conference on Big Data. 649–658.
[87] Stefan Wuchty and Eivind Almaas. 2005. Peeling the yeast protein network. Proteomics 5, 2 (2005), 444–449.
[88] Yaowei Yan, Yuchen Bian, Dongsheng Luo, Dongwon Lee, and Xiang Zhang. 2019. Constrained local graph clustering

by colored random walk. In Proceedings of the World Wide Web Conference (WWW’19). 2137–2146.
[89] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2017. When engagement meets similarity: Efficient

(k, r)-core computation on social networks. Proceedings of the VLDB Endowment 10, 10 (2017), 998–1009.
[90] Haohua Zhang, Hai Zhao, Wei Cai, Jie Liu, and Wanlei Zhou. 2010. Using the k-core decomposition to analyze the

static structure of large-scale software systems. The Journal of Supercomputing 53, 2 (2010), 352–369.
[91] Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. 2020. The complexity of finding small sep-

arators in temporal graphs. Journal of Computer and System Sciences 107 (2020), 72–92.

Received September 2019; revised May 2020; accepted July 2020

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 1, Article 2. Publication date: December 2020.

