
Social Spam Detection

Benjamin Markines1,2
∗

Ciro Cattuto2 Filippo Menczer1,2

1School of Informatics, Indiana University, Bloomington, Indiana, USA
2Complex Networks Lagrange Laboratory, Institute for Scientific Interchange Foundation, Torino, Italy

ABSTRACT
The popularity of social bookmarking sites has made them prime
targets for spammers. Many of these systems require an adminis-
trator’s time and energy to manually filter or remove spam. Here
we discuss the motivations of social spam, and present a study
of automatic detection of spammers in a social tagging system.
We identify and analyze six distinct features that address various
properties of social spam, finding that each of these features pro-
vides for a helpful signal to discriminate spammers from legitimate
users. These features are then used in various machine learning
algorithms for classification, achieving over 98% accuracy in de-
tecting social spammers with 2% false positives. These promising
results provide a new baseline for future efforts on social spam. We
make our dataset publicly available to the research community.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information Services;
K.4.2 [Computers and Society]: Social Issues; K.6.5 [Management of
Computing and Information Systems]: Security and Protection

General Terms
Algorithms, Design, Experimentation, Human Factors, Performance

Keywords
Social spam, tag, resource, post, annotations, tag similarity, Web 2.0

1. INTRODUCTION
With the transition to Web 2.0, various forms of social linking

have gained considerable ground and have shifted the control over
content as well as content structure toward the bottom. To date,
the most successful form of social annotation has been collabora-
tive tagging [12, 21, 10], to the point that tags have become the
hallmark of Web 2.0 systems. As the Web becomes increasingly
user-driven, tagging metadata is regarded as a first-class data source
to harvest emergent semantics in social media, with the goals of

∗Corresponding author. Email: bmarkine@cs.indiana.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AIRWeb ’09, April 21, 2009 Madrid, Spain.
Copyright 2009 ACM 978-1-60558-438-6 ...$5.00.

Figure 1: A spammer using two identities posts a Russian porn site on
delicious.com. The spammer uses popular tags such as “music,”
“news” and “software,” which are unrelated to each other and the site.

improving navigation and search, learning ontologies, and making
contact with more formal representations of content.

The success of tagging can be ascribed to its simplicity and open-
ended nature: in a social tagging system any user can easily asso-
ciate a free-form tag to any resource represented in the system. The
type of resource depends on the specific system, and there are many
popular systems for annotating almost any kind of media. The data
structure that supports a tagging systems is a collaborative artifact
known as “folksonomy,” formally represented as a hyper-graph.
In this view, nodes comprise users, resources and tags, and each
annotation adds a hyper-edge to the graph, connecting a user, the
annotated resource, and the chosen tag.

Since every user can easily add to the folksonomy, the structure
of the graph is entirely user-driven, and a malicious user can ex-
ploit this control to make some content more prominent, drive user
traffic to chosen targets, and in general to pollute the folksonomy.
We refer to these kinds of exploitations of collaborative annotation
systems as social spam. Identifying social spam automatically and
efficiently is a key challenge in making social annotations viable
for any given system and for the Web at large.

Here we restrict our analysis to social bookmarking systems.
These systems are typically “broad folksonomies,” that is, users
provide annotations of content that is external to the bookmark-
ing system (in contrast with systems like Flickr); this affords the
aggregation of annotations from an entire community, and the defi-
nition of several socially-induced measures of content similarity [5,
19]. Furthermore, the success of social bookmarking systems and
the large communities they bind make them an attractive target for
spamming. Fig. 1 shows a typical example of social spam.

Contributions and Outline
Social spam is a relatively new research area and the literature is
still sparse. After a formal definition of the data structures underly-

41

bob

alice

wired.com cnn.com

www2009.org

web tech

news

Figure 2: Example folksonomy. Two users (alice and bob) anno-
tate three resources (cnn.com, www2009.org, wired.com) using
three tags (news, web, tech). The triples (u, r, t) are represented
as hyper-edges connecting a user, a resource and a tag. The 7 triples
correspond to the following 4 posts: (alice, cnn.com, {news}),
(alice, www2009.org, {web, tech}), (bob, cnn.com, {news}),
(bob, wired.com, {news, web, tech}).

ing a folksonomy and some background on social tagging systems,
we provide a brief review of related work in adversarial information
retrieval and the recent shift of attention toward social spam (§ 2).
In the remainder of the paper we make the following contributions:

• We discuss the main motivation and incentives behind social
spam, relating it to the phenomena of click fraud and Web
pollution (§ 3).
• We identify six features of collaborative tagging systems cap-

turing various properties of social spam (§ 4).
• We analyze how the proposed features can be used to detect

spammers, showing that each feature has predictive power
for discriminating spammers and legitimate users (§ 5.2).
• We evaluate various supervised learning algorithms that use

these features to detect spam, and show that the resulting
classifiers achieve accuracy above 98% while maintaining a
false positive rate near 2%. Further feature selection anal-
ysis reveals that the best performance is obtained using all
six features. These promising results provide a baseline for
future efforts on social spam detection (§ 5.3).
• We make our dataset publicly available to stimulate further

open research on social spam detection.

2. DEFINITIONS AND BACKGROUND
A folksonomy F is a set of triples. The triple representation

is widely adopted in the Semantic Web community [14]. Each
triple (u, r, t) represents user u annotating resource r with tag t.
A post (u, r, (t1, . . . , tn)) can be represented as the set of triples
{(u, r, t1), . . . , (u, r, tn)}. Fig. 2 displays an example.

Lambiotte et al. introduced the tripartite graph representation for
folksonomies [18, 21]. Hammond et al. reviewed some early social
tagging systems [12]. Golder and Huberman provided a first quan-
titative analysis of delicious.com [10]. The network structure
of folksonomies and the exposure of non-social behavior through
network measures was investigated by Cattuto et al. [6]. We inves-
tigated the design of effective and efficient tag-tag and resource-
resource similarity measures [20, 19].

Long before social tagging became popular, spam was a problem
in other domains, first in email then in Web search [11, 1]. Unfortu-
nately, the countermeasures that were developed for email and Web
spam do not directly apply to social systems [13]. Recently, Caver-
lee et al. introduced a trust system for combating spam on social

networking sites [7]. Benevenuto examined spam detection on the
social media site YouTube.com [2]. Social annotations sites that
enable voting have also been a target for spammers [3]. Koutrika
et al. [16] conducted one of the first studies of spam detection in
social bookmarking systems, the problem on which we focus here.

The dataset used in this paper has been the focus of other so-
cial spam detection efforts. Gkanogiannis et al. use a Rocchio-
like method to maximize the discrimination between spammers and
non-spammers using tags [9]. Chevalier et al. use features such as
number of tags per post, length of tags, and number of tags with a
special character for classification [8]. Kim and Hwang compute
the mutual information between a tag and a user for classification
with naive Bayes [15]. Krause et al. investigate several features
based on account properties, number of account requests from a
location (IP), average number of tags per post, tag blacklists, and
other semantic features [17]. None of the six social spam features
analyzed here are found in prior literature.

3. MOTIVATIONS OF SOCIAL SPAM
The first step toward the design of effective measures to detect

and combat social spam is an understanding of the motivations be-
hind it. Based on our experience as well as judging from past his-
tory of spam in other contexts, we argue that the most threatening
motivation is financial gain. How can someone make money by
abusing social tagging systems? This question has not yet been
thoroughly explored. The spammer probably makes money when a
user visits site X, and therefore the spammer needs to attract users
to site X. Social spam is a cheap way to attract users. Other meth-
ods include email spam, search engine manipulation, and placing
ads. The first is more expensive because there is already an in-
frastructure in place against email spam: filters, black lists, and so
on. Search manipulation is more expensive because search engines
have a financial interest in preventing rank manipulation and thus
invest in spam detection algorithms. Finally, advertising has ob-
vious monetary and disclosure costs. Social tagging systems are
therefore a target of opportunity; an abuser can submit many spam
annotations effectively, efficiently, cheaply, and anonymously.

Once the spammer has attracted users to site X, the easiest and
most effective way to make a profit is to place ads. The widespread
adoption, low entrance cost, and ease of use of advertising plat-
forms and networks such as Google AdSense (www.google.com/
adsense) and Yahoo APT (apt.yahoo.com) have created a mar-
ket for online traffic and clicks. Abuse is therefore to be expected.
All the spammer needs to do is create some content, place ads,
and use social sites to attract traffic. Much of this can be done
automatically, and therefore cheaply. For instance tools are avail-
able to identify a set of keywords that, if used to tag the target
website, are likely to generate traffic to it. Such tools include
Google Trends (trends.google.com) and Google Keyword Tool
(adwords.google.com/select/KeywordToolExternal). It is
important at this point to briefly discuss the relationship between
social spam and click fraud.

Advertising networks and keyword tools are legitimate when used
as intended. If a user tags with helpful keywords a legitimate site
containing ads, this is not a case of spam. We consider social spam
only those abusive uses of social tagging in which misleading tags
are used, and/or a fraudulent or malicious site is tagged. Examples
include phishing sites, pages that install malware, and so on. Click
fraud may occur when a site uses ads in a way that is inconsistent
with the terms of service of the ad provider, for instance simulating
clicks to generate revenue or harm a competitor. However, there is
a large gray area between the extreme of blatant click fraud (which
an ad network would censure) and the extreme of legitimate use.

42

This gray area includes target sites with fake or plagiarized con-
tent, whose exclusive purpose is to draw profit from ads. Such sites
may not violate the advertising terms of service. Yet a reasonable
user would consider annotations that lead to them as social spam.

Content can be manipulated to attract users to ads. From the
spammer’s perspective, there is no need for text to be coherent or
meaningful. The only important criterion is for content to attract
visitors. To this end one would generate text that contains pop-
ular keywords and that looks genuine, at least to search engines’
crawlers and content analysis algorithms. The expression “origi-
nal content” is sometimes used to refer to text that looks original
enough to trick a search engine into thinking it is a genuine page
written to convey information — as opposed to its hidden, exclu-
sive purpose of attracting clicks to revenue-generating ads.

There are at least three ways to generate “original content.” One
is to hire cheap labor. Another approach is automated generation of
text via natural language techniques. The third approach is to pla-
giarize the content from legitimate sources such as Wikipedia —
sources abound. There is already a marketplace for such services;
questionable sites like www.adsenseready.com allow users to
download pre-made “content-rich” sites on which to place ads.

In January 2006 a security mailing list circulated a message by
Charles Mann, a writer who had authored a piece on click fraud
for Wired magazine. Mann reported on a letter that he received in
response to his article. The anonymous letter writer told his story
as a former author of “original content.” The story detailed how
a disreputable company developed software to automatically cre-
ate fake Web sites to capitalize on Google AdSense. In particular,
the software would automatically: (1) find relevant keywords us-
ing suggestion tools such as those mentioned above; (2) register
domain names based on the keywords; (3) create hosting accounts
for those domain names; (4) create complete websites full of bo-
gus content using keywords in generic sentences, with embedded
ads; (5) upload these websites to the hosting accounts for the cor-
responding domain names; and (6) cross-link the websites to boost
PageRank. The software allowed the creation of hundreds of sites
per hour, each with hundreds of pages, generating significant rev-
enues from advertising. This testimonial clearly demonstrates that
there is both an incentive and an industry to generate online junk,
and consequently to promote it through social spam.

As a demonstration of the ease with which revenue can be gen-
erated this way, we wrote a simple script that generates a dynamic
websites for a fake “Gossip Search Engine” (homer.informatics.
indiana.edu/cgi-bin/gossip/search.cgi). When the user
submits a celebrity name, the site acts as if it had searched for news
about the query. In reality, a fake news item is created on the fly
with a grammar-based text generation algorithm (dev.null.org/
dadaengine). Additional news and images are obtained from RSS
feeds and search APIs. Although the page seems to provide origi-
nal content, the information presented is either fake or stolen. The
script simulates the experience of navigating through pages with
different content by linking back to itself with keywords scraped
from other sites. The ads on the generated pages are often rele-
vant to the contextual information (celebrity names and gossip key-
words). As a result the demo generates revenues.

It is important to ask, Who is harmed by spammers who generate
fake content? The advertiser gains, because real users click on ads
and thus visit the advertiser’s page, which is the desired outcome.
The intermediary gains its fees from the advertiser. The publisher
(spammer) of course gains its cut from the clicked ads. And one
might argue that if a user clicks, he/she was ultimately interested
in the ad, thus no harm is done. Paradoxically it may seem there
are no victims. This leads to a lack of incentives for the interme-

diary to curb this kind of abuse. In reality, when bogus content is
generated to play the system, good information resources become
diluted in junk and become harder to be found. Search engines and
folksonomies direct traffic in the wrong directions. Information
consumers end up with less relevant or valuable resources. Produc-
ers of relevant resources receive less cash as a reward (lower click-
through rate) while producers of junk receive more cash. One way
to describe this is pollution. Virtual junk pollutes the Web environ-
ment by adding noise. Everybody but the polluters pays a price for
Web pollution: search engines work less well, users waste precious
time and attention on junk sites, and honest publishers lose income.
The polluter spoils the Web environment for everybody else.

The above discussion provides us with a clear financial motive
for social spam. Understanding the incentives for social spam is es-
sential to the design of effective countermeasures. In the remainder
of this paper we describe a detection approach whose key ingredi-
ents are a set of features directly inspired by such insight.

4. FEATURES
The first issue to address in the design of a social spam detection

system is what class of objects should be seen as potential candi-
dates for spam labeling. Spam can be injected into a tagging system
at three different levels. The traditional view is to classify pages or
sites as spam based on their content, that is, resources that users of
the system perceive as non relevant or “junk.” The problem with
this perspective is its subjectivity: what is spam to one person can
be interesting to another. Secondly, we can focus on spam posts,
i.e., on malicious associations between resources and tags. As-
sociating a spam resource with many and/or popular tags creates
pathways that lead to that resource. This type of spam pollutes the
system by creating artificial links between resources and tags that
would otherwise be unrelated. This kind of pollution thus affects
the measures of tag and resource similarity that are grounded in the
social annotations, altering recommendation, ranking and search.
Finally, one can look at user accounts created with the goal of in-
jecting foreign content into the system. Such accounts may or may
not mix legitimate content with spam, in order to mask spamming
activity. Flagging users as spammers is the approach taken by some
social tagging system, such as BibSonomy. This approach is intu-
itive and easy from an administrator’s point of view, but it uses a
broad brush. It may be exceedingly strict if a user happens to post
one bit of questionable content on otherwise legitimate annotations.

When detecting spam, one can focus on each of the different
levels mentioned above, and design features that selectively target
spam resources, spam posts (tag-resource associations), or spam-
mer users. We think that the appropriate level of resolution for
classifying spam is often that of a post. When a resource’s con-
tent is hard to classify, observing how a user annotated it should
reveal the intent. Consider for example Fig. 1: different users may
disagree on whether the resource itself is spam, but any reasonable
user would recognize the posts as spam based on the misleading
tags. Conversely, appropriate tags might suggest legitimate annota-
tion of a questionable resource. Moreover, spam labels can be “es-
calated” from posts to users when necessary, by aggregating across
the posts of a user. Here we define six features designed to capture
social spam. Two of the features operate at the post level, three at
the resource level, and one at the user level. For each feature we
discuss the underlying strategy, the technique used for computing
it, and the complexity entailed by such computation.

4.1 TagSpam
A simple feature can be built on the notion that taggers share a

prevalent vocabulary to annotate resources [23]. Spammers may

43

therefore use tags and tag combinations that are statistically un-
likely to appear in legitimate posts. If a body of annotations labeled
for spam is available, we can use it to estimate the probability that
a given tag is associated with legitimate content. The support used
to define this probability depends on the granularity of spam labels.
In the present case we have labels on a per-user basis (cf. 5.1). Let
Ut be the set of users with tag t (Ut = {u : (∃r : (u, r, t) ∈ F)})
and St ⊂ Ut the subset of these users labeled as spammers. We
can then define the TagSpam feature via the probability that a tag t
is used to spam, estimated by the fraction of users tagging with
t who are spammers: Pr(t) = |St|/|Ut|. These probabilities
are then aggregated across a post’s tags to obtain the TagSpam
feature. Consider a user u who annotated resource r with tags
T (u, r) = {t : (u, r, t) ∈ F}. We define the TagSpam feature
as:

fTagSpam(u, r) =
1

|T (u, r)|
X

t∈T (u,r)

Pr(t).

This feature can be computed in constant time for any post entering
the system, assuming the number of tags in a post does not grow
with the number of annotations in the system. However TagSpam
suffers from a cold start problem, since a body of labeled annota-
tions is needed to bootstrap the tag probabilities.

4.2 TagBlur
In spam posts, the spam resource is usually associated with a

large number of popular tags that may be unrelated to the resource
and are often semantically unrelated to one another. This happens
because spammers gain from associating the spam resource with a
number of high-frequency tags, regardless of their meaning in the
context of the folksonomy. This is one of the malicious behaviors
described by Koutrika et al. [16]. We define a new feature that
captures this degree of unrelatedness of tags belonging to a post,
i.e., the “semantic blur” of the post. The underlying assumption is
that spam posts tend to lack semantic focus.

To define a measure of semantic blur we need to build on a notion
of semantic similarity for tags. To this end, we draw upon our pre-
vious work on social similarity [20, 19], where a systematic char-
acterization of measures for tag and resource similarity was carried
out and validated against a manually-created taxonomy of concepts
and resources. In this prior work we have shown that mutual infor-
mation is one of the best measures of tag similarity (we omit the
definition in this context for brevity, see [19]). Let the similarity
σ(t1, t2) ∈ [0, 1] be defined as the mutual information between
two tags t1 and t2, computed on the basis of a set of annotations
(cf. § 5.1) and normalized into the unit interval. The TagBlur fea-
ture is obtained from a measure of distance (dissimilarity) between
tags, averaged across all the pairs of tags in a post:

fTagBlur(u, r) =
1

Z

X
t1 6=t2∈T (u,r)

1

σ(t1, t2) + ε
− 1

1 + ε

where Z is the number of tag pairs in T (u, r), ε is a constant ensur-
ing that the distance is defined (and large) when σ = 0, and the last
term ensures that the distance is zero when σ = 1. The computa-
tion of TagBlur is quadratic in the number of tags per post, but can
still be considered constant time if the number of tags in a post does
not grow with the annotations in the system. This feature relies on
the availability of a precomputed similarity for any two tags in the
folksonomy, as is the case in the GiveALink.org system.

4.3 DomFp
Let us now focus on the content of annotated resources, by ob-

serving that Web pages in social spam often tend to have a similar

document structure, possibly due to the fact that many of them are
automatically generated by tools that craft web sites from prede-
fined templates. We want to estimate the likelihood that the content
of a tagged page is generated automatically, by measuring its struc-
tural similarity to other pages from a body of annotations manually
labeled as spam. We first extract a fingerprint of a page’s DOM
structure (hence the feature name DomFp). We strip away all the
content but the HTML 4.0 elements and then build a string by map-
ping HTML elements to symbols while preserving their order of
appearance in the page.

Assuming a body of labeled social spam, we can build a set K
of fingerprints associated with spam resources. Each fingerprint
k ∈ K will have an associated frequency denoting the number of
times that fingerprint is encountered in spam. Based on this fre-
quency we can estimate the probability Pr(k) that k is associated
with spam resources. The likelihood that a resource r is spam is
then estimated by measuring the similarity between its fingerprint
k(r) and the spam fingerprints. To measure the similarity between
two fingerprints k1 and k2 we turn to the shingles method [4]. For
each fingerprint sequence we build a set of shingles (10 symbols
each), and define the fingerprint similarity σ(k1, k2) ∈ [0, 1] as the
Jaccard coefficient between the sets of shingles corresponding to
the two fingerprints. Let us finally define the DomFp feature for
resource r as the normalized weighted average:

fDomFp(r) =

P
k∈K σ(k(r), k) · Pr(k)P

k∈K σ(k(r), k)
.

We interpret DomFp as the likelihood that resource r is spam based
on its document structure. This feature requires that each resource
be crawled to extract its fingerprint. We also assume that a labeled
spam collection is available and spam fingerprint probabilities are
precomputed. For each resource it is necessary to compute its sim-
ilarity to all spam fingerprints, with complexity that grows linearly
with the size of the labeled spam collection.

4.4 NumAds
Another resource feature, NumAds, draws upon the idea that

spammers often create pages for the sole purpose of serving ads
(see § 3). Ads are typically served from external resources through
javascript. Since Google AdSense is the most popular ad service,
we focus on it to illustrate our idea, by simply counting the number
of times the Google ad server googlesyndication.com appears
in a Web page tagged by a user. Let g(r) be the number of ads
in page r. We compute the NumAds feature as fNumAds(r) =
g(r)/gmax, where gmax is a normalization constant. For evalua-
tion purposes we set gmax = 113, which is the maximum value
of g(r) over all resources in our dataset (cf. § 5.1). Computing
NumAds requires the complete download of a Web page.

4.5 Plagiarism
Our last resource feature, Plagiarism, shares with DomFp the

goal of detecting automatically generated pages. Spammers can
easily copy original content from all over the Web, as discussed in
§ 3. To estimate the odds that a page’s content is not genuine, we
look for authoritative pages that are likely sources of plagiarized
content. We first extract a random sequence of 10 words from the
page’s content. This sequence is submitted as a phrase query (us-
ing double quotes) to the Yahoo search service API (developer.
yahoo.com/download). We can measure Plagiarism by the num-
ber of results returned by the search engine, excluding the originat-
ing resource’s URL. Let y(r) be the number of search hits different
from r matching the phrase query extracted from r. We then define
fPlagiarism(r) = y(r)/ymax, where ymax is a normalization con-

44

stant. For evaluation purposes we limited the results from Yahoo to
10, and set ymax = 10. So fPlagiarism(r) = 1 if y(r) ≥ 10.

Plagiarism is the most expensive of our features. The page must
be downloaded to extract the random sequence of words, then the
search engine must be queried for a total of two network requests
per resource. While each of the resource features requires a down-
load, the extra request and the query limits of the Yahoo search
service impose a larger burden on the computation of Plagiarism.

4.6 ValidLinks
Our last feature, ValidLinks, is defined at the level of a user and

focuses on the detection of user profiles created for spam purposes.
Many of the resources posted by a spammer may have questionable
content (for example copyright infringing material along with ads)
and be taken offline when detected by the hosting service. Other
examples include malware or phishing sites. Malicious users may
temporarily set up a page to obtain sensitive information, and then
post the malicious resource to a social site. Once enough data is
collected or the site is taken down by the hosting company, the
resource disappears. Finally, a spammer may become inactive for
various reasons and leave broken links in the social site. To capture
these situations, we define ValidLinks as the fraction of a user’s
posts with valid resources, fV alidLinks(u) = |Vu|/|Ru|, where
Ru = {r : (∃t : (u, r, t) ∈ F)} is the set of resources tagged by
user u and Vu ⊂ Ru is the subset of these resources whose links are
valid. To determine the validity of a link we send an HTTP HEAD
request. This must be done for each of a user’s posts, making this
feature expensive to compute for users with many resources.

5. EVALUATION

5.1 Dataset Description
To evaluate the proposed features, both individually based on

their discrimination power and together in support of a classifier,
we need labeled examples to build training and test sets. We turn to
a public dataset released by BibSonomy.org as part of the
ECML/PKDD 2008 Discovery Challenge on Spam Detection in
Social Bookmarking Systems (www.kde.cs.uni-kassel.de/ws/
rsdc08). The dataset contains all the annotations of 27,000 users,
of which 25,000 are manually labeled as spammers and the remain-
ing 2,000 as legitimate users. Manual classification by a trusted
moderator is one of the methods described in [16]. In this particu-
lar case, the criterion is that if any one resource tagged by a user is
judged to be spam, then the user is labeled as a spammer.

To perform our evaluation we sampled a subset of users from the
complete dataset. The sample is random, except for two sources of
intentional bias. One bias is to select an equal number of spammers
and legitimate users. While such a ratio of spammers is not reflec-
tive of the original dataset, we have two reasons for this balance.
First, from an evaluation perspective, spammers are so predominant
in the BibSonomy dataset that a baseline classifier labeling all users
as spammers would achieve over 92% accuracy, making it difficult
to compare different features and algorithms. Second, in a realistic
setting we expect that a social bookmarking site would have a spam
defense mechanism in place, so that the density of spam in the sys-
tem should not be so high. We also apply a bias such that users
with more posts in their profiles have a higher probability of being
sampled. The resulting dataset comprises of a total of 500 users,
250 of whom are labeled spammers, with all their annotations.

Three features — TagSpam, TagBlur and DomFp — rely on
statistics from the folksonomy, that is, we need a training set to
compute them. We could split the dataset into a training set for
this purpose and a test set, however this would create an imbalance

0  50  100  150  200  250  300  350  400  450 

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1 

Plagiarism 

NumAds 

ValidLinks 

DomFp 

TagBlur 

TagSpam 

chi‐squared 

 pearson correla1on 

pearson 

chi‐squared 

Figure 3: Discrimination power of our features with respect to spam-
mers, as measured by Pearson’s correlation and χ2. For the former,
error bars are computed by shuffling the contingency matrices.

with respect to the test set size for the other features. To keep the
same test set size of 500 users for all features, we drew another in-
dependent sample from the original BibSonomy dataset using the
same procedure. The annotations of these separate 500 users (again
half spammers) were used to compute the values of TagSpam, Tag-
Blur, and DomFp for the 500 users in our dataset. More precisely,
to compute TagBlur we need at least one post with more than two
tags, leaving us with 486 users in the original dataset with usable
statistics. There are other feature requirements as well. Users with-
out any valid resource links have NumAds, DomFp, and Plagiarism
undefined. This yields 453 users with the NumAds feature defined.
To extract a DOM fingerprint we need at least one crawled resource
containing at least one W3C-standard HTML element, leaving 450
users with usable DomFp statistics. Only 446 users have at least
one resource with text content allowing us to compute Plagiarism.
Finally all 500 users have TagSpam and ValidLinks features defined.

5.2 Feature Analysis
The labels in our dataset are at the level of users, therefore we

must apply user-level spam detection to be able to evaluate our fea-
tures and algorithms. One of our proposed features, ValidLinks, is a
user-level measure. The other five features defined in § 4, however,
are computed at the level of posts or resources, and we must aggre-
gate them across each user’s posts for evaluation. We considered
various aggregation methods: average, minimum, maximum, prod-
uct (sum-log), and variance. Among these approaches, the simple
average of feature values across the posts/resources of a user pro-
vides the best results in terms of user discrimination power, which
we report below. In some individual feature cases other aggregation
schemes performed as well as averaging, but none was as effective
across all features as the simple average:

f(u) =
1

|P (u)|
X

(u,r)∈P (u)

f(u, r)

where f(u, r) if the value of feature f for post (u, r) (or just for re-
source r) and the set P (u) of posts by user u is defined as {(u, r) :
(∃t : (u, r, t) ∈ F)} (and similarly for resources).

To analyze the discriminating power of each feature in separating
spammers from legitimate users, we first normalized each feature
such that f(u) ∈ [0, 1]. We then divided the unit interval into 20
equal-size bins, building a contingency matrix n(l, f) for the num-
ber of users with feature value f(u) = f and spam label l(u) = l
(l = 1 for spammers, l = 0 otherwise). Finally we applied two
standard discrimination functions, the χ2 statistics and Pearson’s
correlation. Fig. 3 shows that both measures yield a consistent
ranking of our six features by discrimination power. Not surpris-
ingly, the three features that rely on statistics from the training set

45

are the most effective; TagSpam is the best predictor — spammers
do tend to use certain “suspect” tags more than legitimate users. All
features have a statistically significant correlation with the spam la-
bel, therefore all features are predictive. These results are robust;
we repeated the analysis on a separate, independent sample of users
and found the same correlations.

For each feature we also show in Fig. 4 the histograms of spam-
mers and legitimate users from the contingency matrices. These
distributions give a visual intuition for how well each feature dis-
criminates spammers. While some features, such as TagSpam, clearly
lend themselves to being used in linear discrimination classifiers,
others such as ValidLinks may also be good discriminators but would
require the use of nonlinear classifiers; the distributions of spam-
mers and legitimate users are not so easily separated by a simple
threshold. This is evident if we use each feature alone in conjunc-
tion with a threshold to detect spammers. When we rank users by
the values of each feature we obtain the ROC curves and AUC val-
ues shown in Fig. 5. The ranking of the features by AUC is roughly
consistent with the discrimination power of the features (Fig. 3)
except for those features that require a nonlinear classifier, which
underperform in this simple linear detection setting.

We note that our top feature, TagSpam, achieves alone an AUC
of 0.99, which compares favorably with the best classifier from the
ECML/PKDD 2008 Challenge on Spam Detection in Social Book-
marking Systems: the winner of the challenge scored an AUC of
0.98 [9]. This is very encouraging, especially when considering
that we use a smaller and more balanced sample of the dataset.

5.3 Classification
Having found that all of the proposed six features have predic-

tive power, we used various supervised learning algorithms to con-
struct social spam detectors based on these features. We turned to
the Weka software library ([22], www.cs.waikato.ac.nz/ml/
weka) for off-the-shelf implementations of many established ma-
chine learning algorithms. To use all features we focused on the
subset of 431 users (203 spammers) in our dataset for whom all
six features are defined. We evaluated many of the classifiers in
the Weka suite using default values for all parameters and 10-fold
cross-validation. The top 30 classifiers and their performance are
shown in Table 1. The best algorithm, additive logistic regression
(LogitBoost), even without any tuning reaches an accuracy of al-
most 98% with a false positive rate below 2%. All classifiers per-
form very well, with accuracy over 96% and false positive rate be-
low 5%. This attests to the effectiveness of our proposed features.

To explore the issue of feature selection and see if the accuracy
can be further improved by tuning a detector’s parameters, let us
consider AdaBoost, a well-known and popular ensemble classifier
whose performance is very close to the best (AdaBoostM1 in Ta-
ble 1). For sake of comparison we also consider the linear support
vector machine (SVM), another widely popular algorithm (SMO in
Table 1). After tuning the parameters for both we could not improve
on the default SVM, while AdaBoost’s performance was enhanced
by simply extending the number of iterations to 1000. AdaBoost
thus achieved an accuracy of 98.4% (better than LogitBoost with
default parameters), with a false positive rate of 2% and F1 = 0.98
(comparable to LogitBoost). This is our best result.

The effect of feature selection is reported in Table 2 and dis-
played in Fig. 6. In the case of SVM we see a modest improve-
ment in accuracy and decrease in false positive rate by using both
TagSpam and TagBlur, but additional features do not help. Perfor-
mance is actually hindered by the addition of the ValidLinks feature.
This is understandable because as we have discussed above, this
feature does not give a clean linear separation of spammers from

Table 1: Top Weka classifiers, ranked by accuracy (fraction of users
correctly classified). Also shown is the false positive rate (FP), related
to precision and defined as the fraction of legitimate users who are
wrongly classified as spammers. In a deployed social spam detection
system it is more important that the false positive rate be kept low com-
pared to the miss rate, because misclassification of a legitimate user is
a more consequential mistake than missing a spammer. The F1 mea-
sure is the harmonic mean of precision and recall. Recall is related to
misses (undetected spammers). Each classifier uses default parameter
values, is trained using all six features, and is validated with 10-fold
cross-validation. Best scores are highlighted.

Weka Classifier Accuracy FP F1

LogitBoost 97.91% .018 .978
LWL 97.68% .013 .975
AdaBoostM1 97.68% .018 .975
ConjunctiveRule 97.68% .013 .975
DecisionTable 97.68% .018 .975
DecisionStump 97.68% .013 .975
RandomCommittee 97.45% .018 .973
RandomForest 97.45% .018 .973
Bagging 97.22% .022 .970
NNge 97.22% .022 .970
ADTree 97.22% .026 .970
ClassificationViaRegression 96.98% .031 .968
Decorate 96.98% .018 .968
MultiBoostAB 96.98% .026 .968
LMT 96.98% .044 .969
REPTree 96.98% .026 .968
RBFNetwork 96.75% .031 .966
SMO 96.75% .048 .966
JRip 96.75% .039 .966
OneR 96.75% .035 .966
PART 96.75% .039 .966
J48 96.75% .039 .966
BayesNet 96.52% .039 .963
Logistic 96.29% .044 .961
VotedPerceptron 96.29% .053 .961
NaiveBayes 96.06% .035 .958
NaiveBayesSimple 96.06% .035 .958
NaiveBayesUpdateable 96.06% .035 .958
MultilayerPerceptron 96.06% .035 .958
SimpleLogistic 96.06% .048 .959

Table 2: Performance of linear SVM and AdaBoost social spam de-
tectors as we select features in the order of their discrimination power
(Fig. 3). Best performance (highlighted) is when all features are used.

SVM AdaBoost
Features Accuracy FP F1 Accuracy FP F1

TagSpam 95.82% .061 .957 94.66% .048 .943
+ TagBlur 96.75% .048 .966 96.06% .044 .958
+ DomFp 96.75% .048 .966 96.06% .044 .958
+ ValidLinks 96.52% .048 .964 96.75% .026 .965
+ NumAds 96.52% .048 .964 97.22% .026 .970
+ Plagiarism 96.75% .048 .966 98.38% .022 .983

legitimate users and the linear SVM is therefore unable to exploit
this feature. AdaBoost, on the other hand, is able to combine ev-
idence from all features and thus improve both accuracy and false
positive rate by learning from as many features as are available.

6. DISCUSSION AND CONCLUSION
Our discussion of the incentives of social spam has motivated the

design of a number of novel features to detect spammers who abuse
social bookmarking systems. These features all have strong dis-

46

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

fra
c%
on

 o
f u

se
rs

average TagSpam

non‐spammers

spammers

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

fra
c%
on

 o
f u

se
rs

average TagBlur

non‐spammers

spammers

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

fra
c%
on

 o
f u

se
rs

average DomFp

non‐spammers

spammers

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

fra
c%
on

 o
f u

se
rs

average ValidLinks

non‐spammers

spammers

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

fra
c%
on

 o
f u

se
rs

average NumAds

non‐spammers

spammers

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

fra
c%
on

 o
f u

se
rs

average Plagiarism

non‐spammers

spammers

Figure 4: Distributions of the values of the six proposed features for spammers vs. legitimate users. Each feature’s distribution is based on the
subset of users for which the feature is defined (see text).

0 0.2 0.4 0.6 0.8 1
false positive rate (fp)

0

0.2

0.4

0.6

0.8

1

tru
e

po
sit

iv
e

ra
te

 (t
p)

TagSpam
TagBlur
DomFp
ValidLinks
NumAds
Plagiarism

0.99 

0.78 
0.86 

0.64 
0.7 

0.65 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

TagSpam  TagBlur  DomFp  ValidLinks  NumAds  Plagiarism 

ro
c 
au

c 

Figure 5: Left: ROC curves for each of the proposed features to detect spammers. A true positive is a correctly classified spammer, a false positive
is a legitimate user incorrectly classified as a spammer. Right: Areas under the ROC curves (AUC) for the six features. Larger AUC denotes better
detection trade-off between true and false positives for the linear classifier based on the corresponding feature.

criminating power in detecting spammers; using just one of them
allows to correctly classify about 96% of users with a linear dis-
criminant function, while combining all six features boosts the ac-
curacy to over 98% with an ensemble classifier. At the same time
the false positive rate can be kept below 5% with a single feature
and pushed down to 2% combining all features. These promising
results provide a new baseline for future efforts on social spam. A
natural extension is to combine our features with those of Krause
et al. [17] to see if performance can be further improved. To facil-
itate such efforts we have made our dataset freely available to the
research community at GiveALink.org/socialspam.

In an effort to bring these findings to bear on contemporary tag-
ging systems by making them more robust with respect to social
spam, we are currently working on the integration of a spam detec-
tion system — such as described here — into GiveALink.org, a
social annotation system that we develop and maintain for research
purposes. Of course spam detection is just one of the measures
that must be put in place to defend a social bookmarking system

from spammers. Other measures include prevention (e.g. through
captchas) and mitigation (e.g. through ranking algorithms that pe-
nalize tags used by spammers) [13].

When deploying a spam detection system in a live social tag-
ging site it is not necessary to aggregate post-level features into
user-level features, as was done here due to evaluation dataset con-
straints. We plan to experiment with the option of detecting individ-
ual spam posts rather than classifying users. The detection system
can be used in many ways: to filter posts, to flag posts to a moder-
ator, or to flag users, say when a significant portion of their posts
is deemed to be spam. It remains to be seen whether the finer res-
olution of posts will lead to increased effectiveness (by decreasing
false positives) or to an encouragement of non-social behavior.

From an efficiency/feasibility perspective, the TagBlur feature
looks promising. While not quite as predictive as TagSpam, it re-
lies on tag-tag similarity measures, which can be maintained up-to-
date with incremental techniques [20, 19] and therefore are always
available. Other features rely on the availability of infrastructure

47

1 2 3 4 5 6
number of features

94

95

96

97

98

99

pe
rc

en
t c

or
re

ct
ly

 c
la

ss
ifi

ed

linear SVM
AdaBoost

Figure 6: Accuracy of linear SVM and AdaBoost social spam detec-
tors with features select in order of discrimination power (see Fig. 3).
Error bars are based on root mean squared error reported by Weka.

to enable access to resource content (e.g. DomFp, NumAds) or the
cooperation of a search engine (e.g. Plagiarism) and thus their fea-
sibility depends on the circumstances of a particular social annota-
tion system. Another efficiency issue, not explored here, is feature
selection on the tags. The computation of features such as TagSpam
and TagBlur might be greatly accelerated by focusing on a subset of
the tags in the folksonomy, for example the most frequently used.

Bootstrap is an open issue. In the absence of spam labels, or until
these may become available through a user feedback mechanism,
we need spam assessments to compute the features that rely on tag
spam statistics, such as TagSpam and DomFp. One approach we
are exploring is to bootstrap the probabilities necessary to compute
these features using the other features, which do not require super-
vision, on a sample of annotations. There are also indirect depen-
dencies on labeled data, however. TagBlur relies on tag similarity,
which is assumed to be computed on legitimate annotations. An
abundance of spam in the folksonomy would bias the tag similarity
values making TagBlur less effective. For example if “software”
and “sex” co-occur often (due to spam posts), the system could
wrongly conclude that these tags are related, missing posts such as
those in Fig. 1. Therefore the similarity computations must exclude
posts labeled as spam. In general, a deployed social spam detection
system must be incrementally trained. As similarities are updated
and spam labels collected in response to newly received annota-
tions, the feature values of incoming posts that depend on these as-
sessments need to be computed with the latest statistics to keep the
detector fresh. A question for future research is whether after the
initial bootstrap phase, unsupervised features such as ValidLinks or
Plagiarism should continue to be used — along with user input —
to update the supervised features, in semi-supervised fashion.

Given the current financial incentives for social spam, we have
no doubt that this is but one early chapter in an escalating arms race
to combat the emerging phenomena of Web 2.0 abuse.

Acknowledgments
We are indebted to G. Stumme, A. Hotho, D. Benz, B. Krause, N. Street,
and the Networks & agents Network at the IU School of Informatics for
helpful discussions. We gratefully acknowledge the BibSonomy team and
the European Commission’s TAGora project (tagora-project.eu) for
access to the Bibsonomy spam dataset. Thanks to the ISI Foundation for
support; the ideas presented here hatched while FM and BM were visiting
ISI. This work is partly funded by NSF Award IIS-0811994.

7. REFERENCES
[1] J. Attenberg and T. Suel. Cleaning search results using term distance

features. In Proc. 4th Intl. Workshop on Adversarial Information

Retrieval on the Web (AIRWeb), pages 21–24, 2008.
[2] F. Benevenuto, T. Rodrigues, V. Almeida, J. Almeida, C. Zhang, and

K. Ross. Identifying video spammers in online social networks. In
Proc. 4th Intl. Workshop on Adversarial Information Retrieval on the
Web (AIRWeb), pages 45–52, 2008.

[3] J. Bian, Y. Liu, E. Agichtein, and H. Zha. A few bad votes too
many?: towards robust ranking in social media. In Proc. 4th Intl.
Workshop on Adversarial Information Retrieval on the Web
(AIRWeb), pages 53–60, 2008.

[4] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. Computer Networks and ISDN
Systems, 29(8–13):1157–1166, 1997. Proc 6th Intl. WWW Conf.

[5] C. Cattuto, D. Benz, A. Hotho, and G. Stumme. Semantic grounding
of tag relatedness in social bookmarking systems. In Proc. ISWC,
vol. 5318 of LNCS, pages 615–631, 2008.

[6] C. Cattuto, C. Schmitz, A. Baldassarri, V. D. P. Servedio, V. Loreto,
A. Hotho, M. Grahl, and G. Stumme. Network properties of
folksonomies. AI Commun., 20(4):245–262, 2007.

[7] J. Caverlee, L. Liu, and S. Webb. Socialtrust: tamper-resilient trust
establishment in online communities. In Proc. 8th ACM/IEEE-CS
Joint Conf. on Digital libraries (JCDL), pages 104–114, 2008.

[8] J. Chevalier and P. Gramme. RANK for spam detection ECML -
Discovery Challenge. In Proc. Europ. Conf. on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD), 2008.

[9] A. Gkanogiannis and T. Kalamboukis. A novel supervised learning
algorithm and its use for spam detection in social bookmarking
systems. In Proc. Europ. Conf. on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML/PKDD),
2008.

[10] S. Golder and B. A. Huberman. The structure of collaborative tagging
systems. Journal of Information Science, 32(2):198–208, April 2006.

[11] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating web
spam with trustrank. In Proc. 13th Intl. Conv Very Large Data Bases
(VLDB), pages 576–587, 2004.

[12] T. Hammond, T. Hannay, B. Lund, and J. Scott. Social Bookmarking
Tools (I): A General Review. D-Lib Magazine, 11(4), April 2005.

[13] P. Heymann, G. Koutrika, and H. Garcia-Molina. Fighting spam on
social web sites: A survey of approaches and future challenges. IEEE
Internet Computing, 11(6):36–45, 2007.

[14] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Information
retrieval in folksonomies: Search and ranking. In The Semantic Web:
Research and Applications, vol. 4011 of LNAI, pages 411–426.
Springer, 2006.

[15] C. Kim and K.-B. Hwang. Naive bayes classifier learning with
feature selection for spam detection in social bookmarking. In Proc.
Europ. Conf. on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML/PKDD), 2008.

[16] G. Koutrika, F. A. Effendi, Z. Gyöngyi, P. Heymann, and
H. Garcia-Molina. Combating spam in tagging systems. In Proc. 3rd
Intl. Workshop on Adversarial Information Retrieval on the Web
(AIRWeb), pages 57–64, 2007.

[17] B. Krause, C. Schmitz, A. Hotho, and G. Stumme. The anti-social
tagger: detecting spam in social bookmarking systems. In Proc. 4th
Intl. Workshop on Adversarial Information Retrieval on the Web
(AIRWeb), pages 61–68, 2008.

[18] R. Lambiotte and M. Ausloos. Collaborative tagging as a tripartite
network. LNCS, 3993:1114, Dec 2005.

[19] B. Markines, C. Cattuto, F. Menczer, D. Benz, A. Hotho, and
G. Stumme. Evaluating similarity measures for emergent semantics
of social tagging. In Proc. 18th Intl. WWW Conf., 2009.

[20] B. Markines, H. Roinestad, and F. Menczer. Efficient assembly of
social semantic networks. In Proc. 19th ACM Conf. on Hypertext and
Hypermedia (HT), pages 149–156, 2008.

[21] P. Mika. Ontologies are us: A unified model of social networks and
semantics. In Proc. ISWC, vol. 3729 of LNCS, pages 522–536, 2005.

[22] I. H. Witten and E. Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2 edition, 2005.

[23] Z. Xu, Y. Fu, J. Mao, and D. Su. Towards the semantic web:
Collaborative tag suggestions. In Proc. WWW’06 Collaborative Web
Tagging Workshop, 2006.

48

