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Social and asocial learning in zebrafish are encoded
by a shared brain network that is differentially
modulated by local activation
Júlia S. Pinho1,6, Vincent Cunliffe 2, Kyriacos Kareklas1, Giovanni Petri 3 & Rui F. Oliveira 1,4,5✉

Group living animals use social and asocial cues to predict the presence of reward or pun-

ishment in the environment through associative learning. The degree to which social and

asocial learning share the same mechanisms is still a matter of debate. We have used a

classical conditioning paradigm in zebrafish, in which a social (fish image) or an asocial (circle

image) conditioned stimulus (CS) have been paired with an unconditioned stimulus

(US=food), and we have used the expression of the immediate early gene c-fos to map the

neural circuits associated with each learning type. Our results show that the learning per-

formance is similar to social and asocial CSs. However, the brain regions activated in each

learning type are distinct and a community analysis of brain network data reveals segregated

functional submodules, which seem to be associated with different cognitive functions

involved in the learning tasks. These results suggest that, despite localized differences in

brain activity between social and asocial learning, they share a common learning module and

social learning also recruits a specific social stimulus integration module. Therefore, our

results support the occurrence of a common general-purpose learning module, that is dif-

ferentially modulated by localized activation in social and asocial learning.
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The social intelligence hypothesis1,2 states that living in
social groups creates a demand for enhanced cognitive
abilities in order to handle the variability and unpredict-

ability of social interactions, hence driving the evolution of more
complex cognitive skills (aka intelligence), and consequently
selecting for larger executive brains (i.e. social brain
hypothesis)3,4. However, two different scenarios have been pro-
posed for how these evolved cognitive abilities implement adap-
tive behavior. According to a general-purpose brain scenario,
mechanisms of information input, encoding, storage and retrieval
are shared between functional domains (e.g. social, foraging,
predator avoidance), hence, although evolved in a specific domain
(e.g. social), enhanced cognitive abilities are advantageous in all
domains. Alternatively, each functional domain relies on special-
purpose cognitive modules, which are highly specialized with
independent mechanisms of information processing. In this
regard, there is an ongoing debate in the field of social cognition,
on the extent to which social learning (i.e. learning from other
individuals) is a general-domain or a domain-specific process5–9.
For example, comparative studies in birds and primates show
correlations between the performance on social learning and
individual learning (aka asocial learning) tasks or measures of
behavioral flexibility, suggesting that these traits evolved
together10–12. Furthermore, observational learning in bumblebees
has been shown to emerge through the integration of two learned
associations following Pavlovian conditioning rules13. In contrast,
there is also comparative evidence supporting the occurrence of
domain-specific modules, such as the differences found in social
learning, but not in individual learning, between two corvid
species with differences in degree of sociality, or between human
children and apes14,15. Moreover, intra-specific studies in mice
show that maternal deprivation early in life impairs social
learning whereas spatial learning is unaffected, and that
communally-reared mice, when compared to single-mother
reared mice, have better social competence but do not differ in
spatial learning and memory capacity tests16,17. Finally, a third
scenario has also been proposed that suggests that social learning
operates on the same general learning mechanisms as asocial
learning with adaptive specializations present only for the input
systems (i.e. social information acquisition)6–9.

The study of the proximate mechanisms (i.e. genetic basis,
neural circuits) of social and asocial learning can, in principle,
help to clarify the occurrence of shared processes. Unfortunately,
there are few studies on such mechanisms with notable excep-
tions for the study of observational fear learning and for social
learning of food preference. In both humans and rodents, social
(i.e. observational) and asocial fear conditioning share, at least
partially, the same neural substrates, with the anterior cingulate
cortex (ACC) processing the social information and conveying it
to the amygdala, which plays then a major role in the CS-US
pairing in both learning types18–22. In rodents, a specialized
olfactory subsystem has been described that is required for the
acquisition of socially transmitted food preferences23. Moreover,
social fear learning and classic fear learning can prime each other
(i.e. a prior observational fear learning will enhance fear con-
ditioning and vice-versa; e.g. 24). Together these results suggest an
overlap of the neural mechanisms involved in social learning and
in learning from direct experience, with specializations being
mainly present at the level of social information acquisition.
However, the above-mentioned studies address specific brain
regions that are chosen a priori as candidates for the social
learning tasks, and studies using an unbiased brain network
approach are lacking in this field. This is particularly important
because despite the overlap of brain circuits processing social and
asocial learning, the candidate brain region approach does not
rule out the occurrence of specialized circuits elsewhere in the

brain. Furthermore, the analysis of localized neuronal activation,
which is usually the parameter studied in relation to the beha-
vioral output, does not provide per se information on the patterns
of co-activation across a brain network that may reveal either
specialized or conserved modules for the two learning types.
Finally, the study of the neural mechanisms of social learning has
focused on mammals, and comparative data in other vertebrate
species that lack evolved cortical structures is also missing.

Here we have used a classic (Pavlovian) conditioning paradigm
in zebrafish, in which a social (static image of a zebrafish) or an
asocial (static image of a circle) conditioned stimulus (CS) was
paired with an unconditioned stimulus (US = food), to investi-
gate the neural basis of social and asocial learning (see Supple-
mentary Figure 1 for images of the static stimuli used). The use of
a static image of a fish was used as a social stimulus since it is
known that both biological motion and body shape and/or col-
oration pattern are cues that elicit social attraction25,26, and
previous social learning paradigms have successfully used static
social cues as CS (e.g. 13). The choice of this classic conditioning
paradigm where the social and asocial treatments are matched for
everything except the visual shape of the CS rule out putative
confounding variables, such as for example the involvement of
different sensory modalities in the acquisition of the social
information. We have used the expression of the immediate early
gene c-fos as a molecular marker of neuronal activity27,28. We
have also developed a method to analyze brain network func-
tional connectivity based on the brain regions’ co-activation
matrices for each experimental treatment. In network neu-
roscience, such matrices are built for individual brains based on a
similarity measure between the timeseries of brain parcels in
fMRI, or the different channels in an EEG29. In the case of a
molecular marker of neuronal activity, such as c-fos, that only
provides a single snapshot per brain, the correlations of activity
between brain regions (i.e. the number of positive c-fos cells for
each pair of brain nuclei), are obtained for a set of brains from
different individuals. Therefore, the estimation of the similarity in
activation between regions can only be computed at the group
level (i.e. using datapoints from individuals in the same treat-
ment), effectively extracting a group-level, as opposed to indivi-
dual, functional connectivity network. Finally, we used techniques
from network community analysis to identify coherent sets of
nodes (submodules) consistently recruited by the different cog-
nitive tasks involved in the social and asocial learned response. It
must be stressed here that learning is a multi-step process that
involves encoding, storage, and retrieval of information in the
brain30. Since we have tested the patterns of brain activation in
response to the probe test (after a training phase) the identified
brain areas should reflect the retrieval of the learned response, but
not necessarily encoding or storage. Therefore, in this paper when
we refer to brain regions or networks involved in learning we are
specifically referring to those involved in the retrieval of the
learned response, that may or may not also be involved in
encoding or storage.

Results
Social and asocial classic conditioning in zebrafish. Pavlovian
conditioning was assessed using a plus-maze paradigm divided
into a training phase and a probe test. During the training phase,
we spatially paired a social or an asocial conditioned stimulus
(CS) with an unconditioned stimulus (US; food = bloodworms)
in a specific location (Fig. 1a). The percentage of correct choices
per session (composed of 8 trials) was measured. In the probe test
(24h after the last training session), individuals only had access to
the CS, and the cumulative time spent in the region of interest
(RoI) of the correct arm of the maze was quantified to measure
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learning. Unpaired treatments were used as controls, where the
CS (either social or asocial) was spatially unmatched with the US.

Animals learned both socially and asocially (learning main effect:
X2

R(1)= 11.39, p < 0.0001, η2p= 0.079) as shown by the compar-
ison in the percentage of correct choices between paired CS-US
[social learning (SL) and asocial learning (AL)] and unpaired CS-US
[social control (SC) and asocial control (AC)) treatments for social
and asocial CSs (SL vs SC:X2

R(1)= 6.95, p= 0.0089, η2p= 0.030; AL
vs AC:(X2

R(1)= 28.44, p < 0.0001, η2p= 0.139) (Fig. 1b). Animals in
the social and asocial learning treatments (SL and AL)) acquired
information at the same rate, since no significant differences between
social and asocial learning curves were found either in slope
(X2

R(1)= 1.53, p= 0.22, η2p= 0.006) or elevation (X2
R(1)= 0.001,

p=0.97, η2p=0.000) (Fig. 1b). It is worth mentioning that there were

also no significant differences between the social and asocial control
treatments either in slope (X2

R(1)= 2.0, p= 0.16, η2p= 0.012) or
elevation (X2

R(1)= 0.14, p= 0.70, η2p= 0.001) (Fig. 1b). Moreover,
in control treatments, animals did not present any biased behavior
towards one of the arms of the plus maze exhibiting a random
proportion of choices over the trials (25% in social and asocial
treatments across the training sessions).

In the probe test, individuals from the learning treatments (SL
and AL) spent more time in the target arm independently if they
were trained using a social (X2

F(1)= 12.89, p= 0.001,
η2p= 0.212) or an asocial (X2

F(1)= 11.53, p= 0.001,
η2p= 0.194) CS, when compared to the control treatments (i.e.
unpaired CS-US). We did not observe any significant difference
in the time spent in the other arms of the plus-maze indicating an
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absence of any spatial biases in the spatial use of the maze by the
fish during this phase of the experiment (opposite arm to the
target arm: SL vs SC,, X2

F(1)=1.22, p=0.276, η2p =0.025, AL vs
AC,, X2

F(1)=0.32, p=0.577, η2p =0.007; left of the target arm: SL
vs SC, X2

F(1)=0.42, p=0.522, η2p =0.009, AL vs AC, X2
F(1)

=0.06, p=0.801, η2p =0.001; right of the target arm: SL vs SC,
X2

F(1)=0.25, p=0.617, η2p =0.005, AL vs AC, X2
F(1)=0.21,

p=0.649, η2p =0.004) (Fig. 1c). It must be stressed that only
successful animals in the training phase (i.e. that acquired the
learning) were tested in the test phase. Thus, this paradigm
allowed the classification of individuals in the learning treatments
(SL and AL) into three different categories: non-learners, learners
and learners that forget the learned information from the last
learning session to the probe test (i.e. no-retention group: social
non-retention (SNR) and asocial non-retention (ANR)).The
learners were able to acquire the information and recall it (50%
of individuals in both the social and asocial learning treatments);
the no-retention group were animals that despite showing a
learning curve during the training sessions did not recall the
acquired information in the probe test (36.67% individuals in the
social group (SNR) and 22.73% individuals in the asocial group(-
ANR)); and a small percentage of individuals that did not improve
the performance over the training sessions (13.33% individuals in
the social groups and 27.27% individuals in the asocial group) were
classified as non-learners (Fig. 1d, e). The non-learners and no-
retention animals were identified using the lower limit of the 95%
interval of confidence in the training phase (based on the values
from the last day of training) and cumulative time in the RoI of the
target arm during the probe test as criteria, respectively. The
proportion of learners (X2(1)= 0, p= 1, OR= 1), non-learners
(X2(1)= 1.56, p= 0.21, OR= 0.5) and non-retention
(X2(1)= 1.14, p= 0.29, OR= 1.58) individuals did not differ
between social and asocial learning treatments (Fig. 1d, e).

Given the lack of difference in behavioral measures between
social and asocial learning it was important to make sure that the
individuals can discriminate the two CS stimuli used in this test.
Thus, a visual discrimination task was used to assess if zebrafish
can discriminate between the two stimuli (social and asocial CS),
where one stimulus (either the social or the asocial CS) was
associated with a reward (food) and the other with a punishment
(netting), in a balanced manner; that is, in half the animals the
social stimulus was associated with reward and in the other half it
was associated with punishment. In the probe test, only the CSs
were presented, and, if individuals were able to discriminate
between the two stimuli, they should prefer the arm associated
with reward. This test indicated that zebrafish could distinguish
between the social and asocial stimuli used in this study and that
the learning curve for the acquisition of these discrimination was

similar when either the social or the asocial were paired with the
reward (slope X2

R(1)= 1.74, p= 0.22, η2p= 0.178; elevation
X2

R(1)= 0.43, p= 0.53, η2p= 0.046; Fig. 1f). Given that social
animals usually have an innate preference for social cues (e.g.
refs. 31–33) we have also tested the preference of zebrafish for the
social stimuli used here to make sure that it had a positive
valence. Preference was assessed using a choice test, where
animals could choose between spending time near the social vs.
the asocial stimuli used in our study. As predicted, a preference
for the social stimulus was observed (t(15)= 2.55, p= 0.02,
η2p= 0.302; Fig. 1g). Finally, to make sure that the used social
and asocial stimuli constitute separate perceptual inputs into the
learning mechanism, in the sense that generalization from one
cue to the other does not occur, animals trained with one cue in
the training phase were tested with the other cue in the test phase
(e.g. individuals trained with social cue and tested with asocial
cue, and vice-versa). Thus, following training, animals that
learned, from either the circle or the fish-shape learning groups,
were tested with either a congruent cue (circle-trained tested with
the circle or fish-trained tested with the fish) or an incongruent
cue (circle-trained tested with or fish-trained tested with the
circle). Thus, the specificity of each cue in associative learning, as
opposed to potential generalization across cues, was tested by
comparing success rates between congruent and incongruent cue
tests for both circle-trained and fish-trained animals. Animals
that were tested at probe trials with a congruent cue exhibited
greater success rates than those tested with an incongruent cue
(Fig. 1h), both for the circle-trained (Z 16= 2.56, P= 0.010,
Δp̂= 0.514, OR= 9.12) and fish-trained (Z 15= 2.41, P= 0.016,
Δp̂= 0.500, OR= 10.36) group. Also, being tested with a
congruent cue elicited higher than chance success rates (circle-
trained: p̂= 0.889, df= 9, Z= 2.33, P= 0.020, OR= 6.62; fish-
trained: p̂= 0.875, df= 8, Z= 2.12, P= 0.034, OR= 5.82), as
opposed to being tested with an incongruent cue (circle-trained:
p̂= 0.375, df= 8, Z= 0.71, P= 0.480, OR= 1.60; fish-trained:
p̂= 0.375, df= 8, Z= 0.71, P= 0.480, OR= 1.60). Together,
these results indicate a lack of generalization across cues in this
learning paradigm supporting the view that social and asocial CS
are triggering different perceptual mechanisms.

In summary, in zebrafish both social and asocial cues are
equally efficient as a CS in a classic conditioning paradigm,
despite zebrafish having an innate preference for the social cue,
and generalization across cues does not occur.

Brain regions associated with social and asocial classic con-
ditioning in zebrafish. The brain regions (see Table 1 for list of
regions studied and their abbreviations) associated with social
and asocial learning were determined using the expression of the

Fig. 1 Social and asocial classic conditioning in zebrafish. a Schematic representation of the plus-maze paradigm: 4 groups observed a CS (social or
asocial cue) paired with a US (food: bloodworms) in the same arm (paired treatments: SL and AL) hence being able to establish the CS-US association; or
in different arms (unpaired treatments: SC and AC) the controls of the experiment. b During the training phase animals increased significantly the
percentage of correct choices both in the social learning (SL, in red circles) and asocial learning (AL, in light red circles) treatments in comparison with the
respective unpaired treatments [in blue circles social unpaired control (SC) and in light blue circles the asocial unpaired control (AC)]. c In the probe test,
the cumulative duration of time spent in the RoI (heats maps provide illustrative examples of space use by representative individuals from each treatment)
indicates that learners (social and asocial) increased the time spent in the target arm (line inside each violin plot indicates the median). Pie graphs indicate
the proportion of learners, non-learners and non-retention animals in: d social; and e asocial conditions. f The ability of the animals to distinguish between
the social and asocial stimuli used in this experiment was tested by conditioning the animals to approach one stimulus and avoid other, independent of
their initial preference (in yellow triangles animals conditioned to approach asocial, in light pink squares individuals conditioned to approach social and in
black circles the average of all individuals). g The preference for the social and asocial stimuli [fish (yellow circle) or circle (gray square) static 2D picture,
respectively was assessed using a preference test. h To test social and non-social cue specificity in associative learning, animals exhibiting learning in a
two-choice paradigm with local food-reward paired either with the circle or the fish shape (p > 50% for rewarded location) were tested at probe trials with
either the cue they were trained (congruent) or the other cue (incongruent), where the significant preference for the congruent cue significantly contrasted
the lack of preference for the incongruent cue [*P≤ 0.05, ** P≤ 0.01]. Asterisks indicate statistical significance at p < 0.05 using planned comparisons.
Error bars report the standard error of the mean in the graphs of panels b, f, g, and h.
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immediate early gene c-fos, a marker of neuronal activation, by
in situ hybridization. For this purpose, 8 representative animals
from each group (i.e. with their behavior score closer to the mean
of their experimental treatment) have been selected. Because of
possible laterality effects the expression of c-fos was measured on
both brain hemispheres (noted below as left or right for each
brain region), and cell counts on each hemisphere of the same
brain region have been analyzed separately. We identified as brain
nuclei involved in social (SL) or asocial (AL) learned responses
those that presented significant differences in c-fos positive cells
between animals of the paired treatments (SL or AL) that were
able to acquire and recall the CS and the respective unpaired
control treatments (SC or AC, respectively). The following areas
showed increased activation associated with social learning:
olfactory bulb (OB) (left: X2

F(1)= 8.87, p= 0.022, η2p= 0.397;
right: X2

F(1)= 7.35, p= 0.022, η2p= 0.353), ventral nucleus of
ventral telencephalic area (vV) (left: X2

F(1)=6.42, p=0.048,
η2p= 0.322; right: X2

F(1)= 5.72, p= 0.048, η2p= 0.298), ventral
habenular nucleus (Hav) (left: X2

F(1)= 6.06, p= 0.04,
η2p= 0.310; right: X2

F(1)= 10.28, p= 0.012, η2p= 0.432) and
ventral medial thalamic nucleus (VM) (left: X2

F(1)= 6.20,
p= 0.038, η2p= 0.315; right: X2

F(1)= 7.46, p= 0.011,
η2p= 0.356) (Supplementary Data 2; Fig. 2a–h). On the other
hand, the left dorsal habenular nucleus (Hadl) and the right

anterior tubercular nucleus (ATNr) were differentially activated
during asocial learning (X2

F(1)= 6.86, p= 0.05, η2p= 0.337 and
X2

F(1)= 8.42, p= 0.028, η2p= 0.384, respectively; Supplemen-
tary Data 2; Fig. 2i–l).

In summary, despite the behavioral similarities between social
and asocial learning in zebrafish described in the previous section,
learning from a social CS is associated with the local activation of
different brain regions when compared to learning from an
asocial CS.

Brain functional networks associated with social and asocial
classic conditioning in zebrafish. Using the correlation matrices
of activity levels across the studied brain regions (i.e. matrices of
co-activation), we constructed weighted networks (see methods
below for details) describing the patterns of regional coactivations
for each of the four combinations of experimental conditions:
asocial learning (AL); social learning (SL); asocial control (AC);
and social control (SC).

First, we studied how regions differently integrate during social
(S) and asocial (A) learning by analyzing changes in their local
network neighborhoods. This was achieved by considering the
difference matrices between the learning and the control treatments
in response to exposure to the social and the asocial conditions.
More precisely, we computed the matrix ΔS=AS,L−AS,C, which
quantifies the changes between learning and control in the social
condition, and ΔA=AA,L−AA,C, which instead quantifies changes
between learning and control in the asocial condition.We found no
overall significant correlation between the overall restructuring of
the regional neighborhoods, quantified by module of the vector of
regional differences between the two conditions (i.e. the rows ∣ΔS

i∣
and ∣ΔA

i∣ corresponding to changes to the neighborhood of region
i; Fig. 3a). However, we identified a set of regions that display
significant changes in activity with respect to a random null model
(Fig. 3b). More in detail, a significantly (≥ 95%) large amplitude of
the regional changes was found for V LIl, Dmr, Dcr, and Ppar in
social learning and for Dcl, Al, ATNl, Hdl, Hcl, and VMr in asocial
learning, and a significantly small (< 5%) amplitude was found for
OBl, ATNl, PGZl, Vlr, PMr, PPpr, Havr, VMr, Hadr, Cilr, NLVr, for
social and for Dl, Vsl, CPl, Dr, Vcr, Vsr, Ar, Hadr in asocial learning.
The significance was constructed by repeatedly sampling N values
uniformly at random from the Δ matrices to form a principled
expectation for the amplitudes (Fig. 3b). We consider then the
changes in the structure of the regional neighborhoods by
computing the cosine similarity χ values between the rows
corresponding to the same region of the ΔS and ΔA matrices
(Fig. 3c). We find that the majority of regions do not display
significant changes with respect to a randomized version of the
neighborhood networks (see Methods). However, a few regions do
display statistically significant changes. In particular, we find that
regions Vll and VLl are significantly (p < 0.05, z <−1.5) dissimilar
between social and asocial learning conditions. Another set of
regions instead displays significant similarity between the two
conditions (p < 0.05, z > 1.5): Vdl, Vvl, Ddl, Al, LHl, DTNl, GCl, Vdr,
Dlr, ATNr, TPpr, CPr, DTNr, GCr, implying that their local
integration structure is conserved between conditions.

After having identified localized regional differences across
treatments, we asked whether the network structure differs at
intermediate scales (mesoscales) between treatments. This kind of
deviation would signal that different information integration and
elaboration strategies are used for different tasks. To this aim, we
detected the modular structure of functional networks for each
treatment using state of the art community detection techniques
(see Fig. 3d for the results of the community detection, and
Methods for the robustness analysis). The first question that we
can ask is whether the modular structure differs across

Table 1 Nomenclature of brain regions and their list of
abbreviations used in the present work.

Brain regions Abbreviations

Olfactory bulbs OB
Dorsal Telencephalic area D
Dorsal nucleus of ventral telencephalic area Vd
Central nucleus of ventral telencephalic area Vc
Ventral nucleus of ventral telencephalic area Vv
Lateral nucleus of ventral telencephalic area Vl
Central zone of dorsal telencephalic area Dc
Lateral zone of dorsal telencephalic area Dl
Medial zone of dorsal telencephalic area Dm
Posterior zone of dorsal telencephalic area Dp
Supracommissural nucleus of ventral telencephalic area Vs
Dorsal zone of dorsal telencephalic area Dd
Anterior part of parvocellular preoptic nucleus Ppa
Postcommissural nucleus of ventral telencephalic area Vp
Magnocellular preoptic nucleus PM
Posterior part of parvocellular preoptic nucleus PPp
Dorsal habenular nucleus Had
Ventral habenular nucleus Hav
Anterior thalamic nucleus A
Ventromedial thalamic nucleus VM
Ventrolateral thalamic nucleus VL
Ventral zone of periventricular hypothalamus Hv
Anterior tuberal nucleus ATN
Lateral hypothalamic nucleus LH
Dorsal zone of periventricular hypothalamus Hd
Central posterior thalamic nucleus CP
Periventricular nucleus of posterior tuberculum TPp
Periventricular gray zone of optic tectum PGZ
Caudal zone of periventricular hypothalamus Hc
Diffuse nucleus of the inferior lobe DIL
Dorsal tegmental nucleus DTN
Central nucleus of the inferior lobe CIL
Nucleus lateralis valvulae NLV
Griseum central GC
Corpus mamillare CM

The letters l and r were added as subscripts to identify the left and right hemispheres.
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Fig. 2 Neuronal activity associated with social (a–h) and asocial (i–l) classic conditioning in zebrafish assessed by in situ hybridization of the
immediate early gene c-fos. Representative photomicrographs of c-fos in situ hybridization in areas that present significant differences associated with
learning: OB b, Vv d, Hav f, VM h, Had j, and ATN l. Asterisks indicate statistical significance at p < 0.05 using planned comparisons followed by Benjamini
and Hochberg’s method for multiple comparisons p-value adjustment. The line within each violin plot indicates the median. Scale bars represent 40 µm.
See Table 1 for abbreviations of brain regions.
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treatments. For example, the two control (C) treatments are
characterized by a slightly larger number of communities5, with
respect to the learning (L) treatments4. It is more informative
however to investigate to what degree the various communities
are tightly linked within themselves with respect to each other. To
quantitatively characterize the differences among partitions, we
measured the ratio r (see Methods) of the total edge weight within
a community to the total weight the edges between communities.
If r ≥ 1, it means that communities are denser than the inter-
community medium, suggesting stronger segregation of activity
within the communities as opposed to the across them. We find

that the treatment asocial control (AC) has the highest r
(r= 2.45), followed by the social learning (SL) (r= 1.92), and
the asocial learning (AL) (r=1.75) treatments, highlighting the
presence of better defined communities and tighter segregation of
the functional activity within them in these treatments (Fig. 3d).
In contrast, the social control (SC) treatment displays a lower r
value (r= 1.2), indicative of higher integration across commu-
nities rather than segregation within them (Fig. 3d).

In addition to the overall balance between integration and
segregation, we can ask whether these functional communities—
or parts of them—are conserved across different treatments. We
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did this by comparing communities between partitions corre-
sponding to different treatments and looking for intersections
between them (see Methods). We first compared the two control
treatments (AC and SC). We found two conserved submodules
(intersections of communities): one comprising Vdl, Dcl, Vvl, Dill,
Al, Vcr, Dml, Vdr, Dmr (green module in Fig. 3e), and a second
one containing Vlr, Hdl, PGZl, VMr, PGZr, PMl, Hvr, Hvl, Hdr
(purple module in Fig. 3e). Interestingly, this second submodule
appears with some modifications also when comparing the social
and the learning treatments (SC, SL and AL, SL). Thus, we
considered it to represent a visual response module. Then, we
compared the two social treatments (SC and SL) to detect
conserved submodules involved in social information processing.
In this case, we found a single large, conserved submodule,
containing the regions VLr, Vlr, ATNr, VLl, Hdl, PGZl, VMr,
PGZr, Hvr, DTNr, Hvl, and Hdr. Note that this module contains a
large part of the second module conserved between the control
treatments (AC and SC), with the addition of regions VLr, ATNr,
VLl and DTNr (i.e. social integration module = orange module in
Fig. 3e, f). Finally, we compared the two learning treatments (AL
and SL) to detect conserved submodules involved in general
learning (i.e. retrieval of learned response in both social and
asocial learning) and found a single large, conserved submodule
containing regions VLl, GCl, PGZl, LHl, Hdl, PGZr, CMl, Hvr,
LHr, Hvl, and ATNl. Note again that this submodule contains a
large fraction of the second module found in the comparison
between controls (AC-SC), with the additional regions GCl, LHl,
CMl, LHr, and ATNl (i.e. general learning module = blue module
in Fig. 3e, f). In all cases, we found that the conserved submodules
include region VLl.

Discussion
In this study zebrafish learned equally well a CS-US pairing
using either social or an asocial CS, as there were no significant
differences between the social and asocial learning treatments
nor in learning acquisition during training phase neither in
retrieval during the probe test. Importantly, we confirmed that
zebrafish were able to discriminate between the social and
asocial cues (i.e. CSs) used in this study and, as previously
described, that they have a preference for the social cue34.
Therefore, social and asocial classic associative learning seem to
be equally efficient.

When we analyzed the levels of brain activation, quantified by
c-fos expression, we found that retrieval of social learning is
associated with increased activity in the olfactory bulbs (OB), the

ventral zone of ventral telencephalic area (Vv), the ventral
habenular nuclei (Hav) and the ventromedial thalamic nuclei
(VM), whereas retrieval of asocial learning is associated with a
decrease in activity in the dorsal habenular nuclei (Had) and in
the anterior tubercular nucleus (ATN). Interestingly, all the brain
regions associated with social learning have been previously
implicated in learning tasks. The OB has been described as an
important brain region for social learning. The cryptic cells (a
subtype of cells in olfactory bulbs) are recruited in kin
recognition35, and an increase of GABA and glutamate in mitral
cells is observed after training in social transmission of food
preference36–39. In our learning paradigm the CS is a visual cue
and the US can be perceived either by visual or chemical cues.
Thus, the increased activity of the OB cannot be explained as a
direct response to the visual CS in the probe test phase, but rather
as a conditioned response to it after successful pairing of the
chemical US with the CS during the training phase. Thus, the
expectation of food is apparently increasing the activity of the OB
in anticipation of a feeding event, suggesting a modulation of
olfactory perception by the social CS. The association of Vv with
social learning in zebrafish is not surprising given that the lateral
septum, which is its putative homolog in mammalian brains, has
been implicated in several learning processes, such as auditory
fear learning40,41, contextual learning40,42, and working
memory43. Other studies revealed the role of Vv in the processing
of social information, such as social orientation44, audience
effects45 and social exploration46. Together, this evidence is
congruent with our findings, where Vv is crucial to learning
related from social cues. The lateral habenula (LHb), which is the
mammalian putative homolog of the Hav47, has also been
implicated in learning and memory. For instance, inhibition of
the LHb led to deficits in spatial memory48, object recognition49,
spatial working memory50, aversive conditioning to cocaine51,
and complex conditioning task52. Moreover, social behavior is
also regulated by the LHb as evidenced by the decrease of c-fos
expression in the LHb in social isolation, by the reduction in c-fos
expression during social play53, and by the impair of social
behaviors by the activation of LHb or pre-frontal cortex (PFC)
neurons and PFC-LHb projections54–57. Finally, the VM, which is
considered as a thalamic nuclei in zebrafish58, belongs to the
cortico-basal ganglia-thalamic loop circuit in mammals, in which
the basal ganglia receive inputs from the cortex and transfers
them back to frontal and motor cortex via the VM59. This cir-
cuitry is also connected with LHb allowing animals to adjust the
salience and valence of stimuli.

Fig. 3 Brain networks associated with social and asocial learning. a Similarity of region neighborhoods between social |ΔS
i| and asocial learning |ΔA

i|,
where the color of each data point identifies X(ΔS

i, ΔA
i). b |ΔS

i| and |ΔA
i| for all brain regions; the blue color band identifies the interval between the 5th and

95th percentiles of the randomized distribution; For details on the statistical significance see Supplementary Tables 1 and 2. c Similarity X(ΔS
i, ΔA

i) values
for all brain regions. Error bars represent one standard deviation over and below the null mean value; regions marked with dots are those with ξ values
significantly different from random; the gray scale encodes the z-score of the region’s = ξ value with respect to the random null model; For details on the
statistical significance see Supplementary Table 3. d Detection of robust modules (aka communities) in the brain networks for each treatment; within each
treatment, network nodes were ordered and colored according to the community they belong to, and the degree of integration (lower r) or segregation
(higher r) of the networks is provided; in all cases the measured r values are significantly larger than expected (for statistical details see Supplementary
Fig. 3 and Supplementary Table 4), and there are differences in integration across treatments (for statistical details see Supplementary Fig. 4 and
Supplementary Table 5). e Conserved brain network submodules between treatments reveal a default mode network (green module), a visual response
module (purple module) a social integration module (orange module) and a learning module (blue module); regions indicated in bold font are those
highlighted by the analysis based on their egonetworks. f Schematic representation of how the identified modules are recruited to the different tasks: the
common modules present in the non-learning (i.e. unpaired US-CS) treatments (i.e. UA, US) are interpreted as a default mode network (green module; this
module “Disappears in comparison with the tasks” meaning that it is only present in the two control treatments and does not show up when fish are
engaged in one of the behavioral tasks) and a network responding to visual stimulation (purple module), given that the latter is also present across all four
conditions; the common modules between unpaired and paired US-CS (i.e. US, PS) treatments are interpreted as a social module (blue module), since the
commonality between these two treatments is the presence of a social stimulus; the common module between the two learning treatments (i.e. PA, PS) is
interpreted as a learning module (blue module), since the commonality between these two treatments is the US-CS pairing during the training trials.
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In contrast, retrieval of asocial learning in zebrafish is asso-
ciated with other brain regions, namely the dorsal habenular
nuclei (Had) and the anterior tubercular nucleus (ATN). The
Had, which is homologous to the medial habenula in mammals
(Ham), receives inputs mainly from the limbic system, and sends
outputs to the interpeduncular nucleus, which in turn regulates
activity dopamine (DA) and serotonin (5HT) neurons60–62.
Evidence in both mice and zebrafish supports our results that
suggest Had to be related to asocial learning. Ablation of Ham
induces deficits in long-term spatial memory54, complex learning
paradigms61. and fear learning63,64. In contrast, our findings
reveal a decreased expression of c-fos associated with asocial
learning, suggesting a decreased activity of an inhibitory circuit.
The ATN is homologous to the ventromedial hypothalamus
(VMH) in mammals, a brain region that has also been related to
learning processes with strong c-fos expression after fear
conditioning65. and recall of conditioned fear66. The role of VMH
in learning processes in mammals can be explained by the
afferents from the amygdala (BLA and MEA), a brain region
clearly shown to be involved in learning processes65. In summary,
social and asocial learning in zebrafish are associated with
changes in activity in different sets of brain regions known to be
involved in learning in other species.

We have also studied the structure of brain networks in rela-
tion to the retrieval of the two types of learning. The regional
similarity data also reveals a lack of correlation between social
and asocial learning, and a large amplitude of the change in the
neighborhood structure (i.e. implying more marked local changes
in network structure) for different regions in the two types of
learning (i.e. social: VLl, Dmr, Dcr, Ppar; asocial: Dcl, At, ATNl,
Hdl, Hcl, VMr). Furthermore, the community detection results
revealed a robust modularity of the brain networks across all
treatments, with the social learning treatment displaying a sig-
nificantly higher integration across communities than the asocial
one. Finally, we investigated the composition of shared sub-
modules in an attempt to frame and contextualize them. We offer
a hypothesis based on these results. The treatments AC-SC share
the visual response to a stimulus but include no learning on the
part of the individuals. We can imagine therefore that the shared
submodules will encode the simple reaction of the animal to the
appearance of a visual stimulus carrying no semantic meaning (as
the animal has not learned to associate it with food). The two
submodules should therefore code for the generalized attention
(AM) and the visual response mechanisms (VRM) (Fig. 3f). In
the comparison SC-SL, the commonality lies in the presence of a
social visual stimulus. We would expect therefore to see a
recruitment of the VRM with a potential additional recruitment
of other regions responsible for social recognition. From this
perspective, the single conserved submodule that we found in the
SC-SL supports this interpretation, being largely composed by the
VRM regions and a few additional ones, that we now denote as
social integration module (SIM) (Fig. 3f). Along the same line, the
AL-SL should highlight the submodule specific to learning (i.e.
retrieval) and reacting to the food stimulus, independently from
the type of visual stimulus. We find again a single large, conserved
submodule, that includes about 50% of the VRM regions plus a
new set of regions with no overlap with the SIM. Arguably, these
additional regions should be responsible for the learned
response and association with the food stimulus, and we denote
them as the learning module (LM) (Fig. 3f). Finally, the region
VLl constitutes a glaring exception, as it appears in all the sub-
modules that we described so far. This general presence might
suggest that it has a generic role in information integration across
different areas.

It should also be noted that, although there was very little
laterality in the level of activity of the nodes of the network (as

indicated by similar levels of activity between the left and the
right side in most brain regions that express differences in activity
associated with the retrieval of the learned response), there was a
strong lateralization in the functional connectivity across the
network, such that only a handful of brain regions are bilaterally
represented in each of the functional modules described above
(i.e. a large number of brain regions are represented in the
modules only by the left or right side). Functional brain later-
alization of different cognitive modules (e.g. perception/action,
emotion, and decision-making, e.g. 67) has been described for
humans and brain asymmetries and their behavioral effects have
been described throughout the animal kingdom68,69. Given the
eye-brain contralateral projections present in vertebrates, later-
alization of visual behaviors has been used to study brain later-
alization, from fish to mammals. Visual lateralization has been
found in different aspects of social behavior, with most fish
species tested so far, including zebrafish, expressing a left eye -
right hemisphere preference for inspection of social stimuli70–72.
In agreement with this behavioral lateralization, in our study, the
social module (SIM in Fig. 3f) is exclusively composed by brain
regions present in the right hemisphere. Similarly, the learning
module (LM in Fig.3f) is also lateralized, but in this case, it is
mostly composed by left-hemisphere structures. These results
suggest the occurrence of laterality in zebrafish brain function,
that may increase efficiency in information processing by
avoiding duplication of functions in the two hemispheres, hence
increasing neural capacity68,69.

In summary, here we show that social and asocial learning are
associated with localized differences in brain activity that are
paralleled by the segregation of brain modules that seem to serve
subsets of cognitive functions, such as a visual response module, a
social integration module and a learning (i.e. retrieval) module
that is shared between the two types of learning. Together, our
results provide evidence for the occurrence of a general-purpose
learning module that is apparently modulated by different pat-
terns of localized activity in social and asocial learning.

Methods
Animals. Zebrafish (Danio rerio) were 5 months old wild-type (Tuebingen strain)
males, bred and held at Instituto Gulbenkian de Ciência Fish Facility (Oeiras,
Portugal). Fish were kept in mixed-sex groups, at 28 °C, 750 µS, pH 7.0 pH in a
14L:10D photoperiod and fed twice a day (except on the day of the experiments)
with freshly hatched Artemia salina and commercial food flakes.

Ethics statement. All experiments were performed in accordance with the relevant
guidelines and regulations, reviewed by the Instituto Gulbenkian de Ciência Ethics
committee, and approved by the competent Portuguese authority (Direção Geral de
Alimentação e Veterinária, permit number 0421/000/000/2017).

Behavioral paradigm. One day before the experiment, fish were moved to the
home tanks (1.5L, 12.5 cm × 12.5 cm × 12.5 cm) where they only had visual and
chemical access to a mix shoal of 4 animals (2 familiar males and 2 familiar
females).

The experiment was subdivided into three phases: acclimatization, training and
probe test. In the acclimatization phase, after one minute in the start box, animals
were allowed to swim freely in the tank for 9 min, during which, they were
attracted to all arms of the plus-maze with bloodworms, so that they became
familiar with the whole maze. In the training phase, animals were trained in daily
sessions of 8 sucessive trials (2 min each) per session for 6 days. In the paired
groups, animals had the CS and the US presented together in the same arm, and
received a reward (bloodworm) when this arm was chosen (that changed on each
trial in a pseudo-randomized way, within and between individuals); when another
arm was chosen, animals stayed one minute in the chosen arm, and then they were
conducted to the right arm, using a hand net where they receive the reward. In the
unpaired groups, the animal spent 2 min in the chosen arm since the CS and US
were never presented together. In both groups, when individuals reached the RoI of
the chosen arm the start box was closed to prevent the animal changing its
decision. In the social treatments, the CS stimulus presented at the end of the arm
was a static, 2D photograph print-out of a zebrafish. In the asocial treatments a
digitally drawn circle print-out with the same visual target area and the same mean
color of the zebrafish-stimulus was used. After each training session, individuals
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returned to their home tank. In the probe test (24h after the last training trial),
animals were only exposed to the CS for 2 min The CS was then removed and the
animal remained in the tank for 30 min to achieve the peak of expression for
c-fos73.

A learning discrimination test was used to assess if fish can discriminate
between the fish and the circle stimuli. For this purpose, in a rectangular tank, we
presented one of the stimuli (same print-out of the social or asocial stimuli
described above) in one end and the other in the other end, and in a series of
training trials we have paired one of the stimuli with a food reward. Each fish was
randomly assigned to training trials to reward either the social or the asocial
stimuli. Then, in a probe trial we have tested the choice of fish between the two
stimuli to check if they have developed a preference for the rewarded stimulus,
which would indicate the ability to discriminate between the two used stimuli (fish
vs. circle).

A preference test was performed to assess if individuals prefer social to asocial
CS’s. For this purpose, we used a rectangular tank (5L, 30 cm × 15 cm × 15 cm)
with the stimuli presented on each side (e.g. social stimulus in the left and asocial
stimulus in the right side, in a randomized way between individuals; same print-
outs as described above were used). Individuals were placed in a start box for 2 min
with transparent partition, and the cumulative time spent in both RoI’s was
compared.

To test if the association of a food reward with either the circle or the fish shape
is specific for each cue, we trained wild-type zebrafish in a simple reward learning
paradigm. Individuals were introduced to a central compartment of a rectangular
arena (29.5 × 14.5 × 11 cm), constructed by removable transparent dividers, and
acclimatized to ambient conditions that included the projection of a white
background from computer monitors set at each end of the arena (Asus LCD,
VG248, Full HD1080, 144 Hz refresh rate). Following acclimation, at each trial
animals were presented with either the circle or fish shape (same images as those
used in the other experiments) against a white background on one monitor, while
the empty white background remained on the other. At this point, the dividers
were lifted so that animals could approach either monitor, followed by replacement
of the dividers, but only approach towards the side of the cue was instantly
rewarded by a food reward—a single bloodworm released by pipette. Following
receipt of the food reward, the projection of the shape was removed from the screen
and the single divider for that side was lifted to allow the animal access back to the
central compartment. After entering the compartment, the divider was replaced,
and animals were given a 1 min interval before repeating the trial again. Based on
learning plateaux thresholds established by previous work on similar learning
paradigms in zebrafish74,75, a total of 16 trials were performed. These were
separated in two blocks of 8 trials over 2 consecutive days and the side in which the
rewarded cue was presented was counterbalanced between experimental animals.
Learning was indicated by animals reaching preference for the cue location, over
the no-cue location or the no-choice option, on day 2. As such, learning criterion
was set at a success rate that statistically exceeded chance level between the three
options, at ≥ 5/8 trials (1-sample binomial test: p̂ > 1/3; Z= 1.75, P < 0.05). Overall,
50 animals were trained, out of which 33 reached learning criterion, 17 trained with
the circle and 16 with the fish shape, which amounts to a 66% learning success in
the sample population. Following training, animals that learned were exposed to a
single non-rewarded probe trial 24 h after their last training trial. This trial
included the same acclimation procedure, but fish from either the circle or the fish-
shape learning groups were tested with either a congruent cue (circle-trained tested
with the circle or fish-trained tested with the fish) or an incongruent cue (circle-
trained tested with or fish-trained tested with the circle). This trial tested for the
specificity of each cue in associative learning, as opposed to potential generalization
across cues, by comparing success rates between congruent and incongruent cue
tests for both circle-trained and fish-trained animals.

In all experiments, the behavior was recorded with a digital camera for
subsequent analysis using commercial video tracking software (EthoVisionXT 8.0,
Noldus Inc. the Netherlands). The extracted behavioral measures are included in
Supplementary Data 1.

Brain collection. Animals were sacrificed with an overdose of Tricaine solution
(MS222, Pharmaq; 500–1000 mg/L) and sectioning of the spinal cord. The brain
was macrodissected under a stereoscope (Zeiss; Stemi 2000) and immediately
collected to 4% PFA solution in 0.1M phosphate buffer (PB) and kept overnight at
4 °C. After cryopreservation (34% sucrose in 0.1M PB ON at 4 °C), the brains were
embedded in mounting media (OCT, Tissue tek) and rapidly frozen on liquid
nitrogen. The coronal sectioning was performed on a cryostat (Leica, CM 3050S) at
16 um, sections were collected onto SuperFrost glass slides and stored at −20 °C.

In situ hybridization for the immediate early gene c-fos. Chromogenic RNA
in situ hybridization (CISH) was carried out according to a standard protocol
available upon request from the lab of Professor Marysia Placzek, University of
Sheffield, briefly described below. For the generation of c-fos probes, a pBK-CMV
vector containing the c-fos cDNA (Genebank: CF943701) was cut with the
restriction enzyme BamHI (antisense) and EcoRI (sense) to generate templates for
in vitro transcription. Digoxigenin-labeled c-fos sense and antisense probes
(11277073910, Merck (Roche), UK) were then synthesized through in vitro tran-
scription of 1 mg template with T7 polymerases (M0251, New England Biolabs).

The sections were fixated in 4% PFA, washed in PBS, rinsed in 0.25% acetic
anhydride in 0.1 M tri-ethanolamine for 10 min and washed 3 times in phosphate
buffer saline (PBS). An incubation in pre-hybridization buffer (hybridization
solution without yeast RNA, minimum 3 h) was done in order to prepare the tissue
for receiving the probe diluted in hybridization solution (probe dilution: 1:40
~4 ng/ul final concentration). The hybridization buffer contained 50% formamide,
5 × SSC (pH 7.0), 2% blocking powder, 0.1% triton X-100, 0.5% CHAPS, 1 mg/ml
yeast RNA, 5mM EDTA, and 50 ug/ml heparin. The hybridization incubation was
performed at 68 °C for 24 h. Following hybridization, the sections were treated with
secondary antibody anti-dig-AP (1:1000, 11093274910, Merck (Roche), UK), after
a series of several washes decreasing concentrations of SSC, until 0.1× SSC. The
tissue was then mounted onto GlicerolGel (GG1, Merk) coated slides and left to
air dry.

Cell counting. The slides were imaged using a tissue scanner (NanoZoomer Digital
Pathology, Hamamatsu). A whole brain screening was performed to select the
brain nuclei with higher c-fos activity to be counted (see list in Table1). The brain
regions of interest were delimited based on the available zebrafish adult brain
atlas76 and on a series of DAPI-stained sections across the whole brain available in
the lab for visual guidance. The areas were manually drawn, and the signal was
automatically quantified using the Icy software (created by the Quantitative image
analysis unit at Institut Pasteur). The sum of the cross sections was used as an
individual measure for each area side.

Statistics and reproducibility. Experimental groups size was kept between 9 and
30 animals, which was determined as the minimum necessary to identify differ-
ences with higher effect sizes at a statistically significant confidence levels (p > 0.05),
for reducing false-report probability77 and simultaneously reducing the animal use
required when considering rates of exclusion based on learning and retention
abilities during training.

A chi-square test was used to compare proportions of learners, non-learners
and non-retention individuals, relative to the total amount of individuals in each
treatment, between social and asocial treatments, with the odds ratio (OR) used to
calculate effect size based on the rate of proportion differences. Non-parametric
linear regressions were performed to compare the learning curves across the 4
experimental treatments. To assess differences between the experimental
treatments during the probe trial, a non-parametric test on cumulative duration
was conducted with the location in the plus maze (target arm, front, left or right
arms) as within factor and social (social, asocial) and learning (learners, non-
learners) factors as between factors. Effect size was measured by the partial eta-
squared value (η p 2ηη2p), calculated via :

η2p ¼
F ´ df n

F ´ df n þ df d
ð1Þ

For the two-choice conditioning experiment used to test discrimination
learning, non-parametric linear regressions were used to compare learning curved
between animals trained with the asocial cue (circle) and those trained with the
social cue (fish shape), with η2p as a measure for effect sizes. For the local
interaction test used to examine cue preference, we compared the proportion time
in the region near each cue using a paired t-test, again with η2p as an effect size
estimate. For the two-choice appetitive discrimination-learning experiment, used to
test the specificity of each cue (circle or fish shape) in associative learning, we first
tested if success rates (i.e. proportion correct choice) differed across training trials
via a binary logistic regression with a logit function. For each training trial, we also
use one-sample binomial tests to examine if average success rates significantly
exceeded the 50% level of no preference, to identify learning of the correct choice.
Comparisons of average success rates between training blocks were also conducted
via two-sample binomial tests. Finally, two-sample binomial tests were also used to
compare success rates between animals tested with a congruent cue and those
tested with an incongruent cue during probe trials, with effects denoted by the
difference in success proportion (Δp̂). Effect sizes were measured by the OR, either
by congruent relative to incongruent treatments, or for each treatment compared to
chance choice (50%).

The effect of social learning on brain activity in the probe test was assessed by a
non-parametric test with laterality (number of c-fos positive cells on each nuclei on
the left and right side of each brain) as repeated measure and social and learning as
between factors area-by-area (OB, D, Vd, Vc, Vv, Vl, Dc, Dl, Dm, Dp, Vs, Dd, PPa,
Vp, PM, PPp, Had, Hav, A, VM, VL, Hv, ATN, LH, Hd, CP, TPp, PGZ, Hc, DIL,
CIL, DTN, NLV GC, CM). Planned comparisons followed by Benjamini and
Hochberg’s method for p-value adjustment were used across all annotated brain
regions, to assess the brain areas associated with social learning (social learning vs
social control) and asocial learning (asocial learning vs asocial control). All
statistical procedures described above were run on GraphPad-Prism v. 9.4.

Network analysis. Functional networks for brain connectivity are usually built
starting from vectorial information on the individual regions. In network neu-
roscience, this means computing a similarity measure (e.g. Pearson correlation)
between the timeseries of brain parcels in fMRI, or channels in EEG. In the case of
social learning experiments the correlations of number of positive cells for each
pair of brain nuclei, for within each experimental treatment was computed,
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however we have access to a single measure per region for each specimen. In
addition, the number of specimens is typically limited. In turn this makes the
estimation of the actual correlation (or similarity) between regions more
complicated.

To account for this, we take inspiration from standard bootstrapping and,
instead of defining a single network, we construct a set of possible networks leaving
out some of the specimen information’s.

More precisely, consider the case ofM specimens, each with one sample reading
xi for each of the N brain regions. Given a similarity metric ω, typically one would
consider the M-dimensional vectors xi , where i labels the regions, and then
compute the similarities

ωij ¼ ωðxi; xjÞ ð2Þ
for all pairs ij. The resulting weighted matrix Ω is then interpreted as the

adjacency matrix of a functional network.
For a given m<M, we will instead consider all the M

m

� �
combinations fγg of m

specimens and compute the corresponding functional graph Ωγ . We will refer to
the collection of graphs obtained in this way as a graph tower ΩΓ , where each of the
combinations can be considered as a graph layer. Similar constructions are used for
multilayer and multiplex networks with the notable difference that graph towers do
not have edges connecting the different layers.

The advantage of this construction is that each layer in the graph tower
represents a different instance of the network bootstrapping. In this way,
observables computable on a single layer can be bootstrapped across multiple ones.
This construction has naturally one parameter, the sampling number m, which
needs to be chosen on the basis of data-driven considerations or the robustness of
the resulting networks.

Correlation networks are usually fully connected weighted networks. It is
however common to sparsify them by retaining only edges that have a weight larger
than a certain weight threshold. Another common practice is to choose a target
density ρ for the graph and add edges to the network starting from the strongest
ones until the density is reached. Given a graph (layer) Ωγ, we will denote the
graph obtained using a threshold Ωγ at density ρ as Ωρ

γ. While the sparsification is
often required to highlight the network properties of the system and to filter out
weaker correlations, there is no commonly accepted method to choose such
thresholds. Typically, the adopted methods depend strongly on the specific
application and are developed ad-hoc. Overall, most existing methods rely either
on considerations on the data used to construct the correlation matrix (e.g. the
timeseries in neuroimaging), or on the local structure of the network (e.g. disparity
filter).

Here, we take a different route and leverage the graph tower structure to choose
the threshold value. We will work using the density as threshold, but the same
argument can be replicated using weights in a straight-forward manner. For each
edge ij, we can consider the set of edge weights {ωij}γ across all layers {γ}. Denoting
respectively µ(ωij) and σ(ωij) as the mean and standard deviation of the ωij over the
layers, we can associate to Ω a mean heterogeneity

ζðΩÞ ¼ hσðωijÞiðijÞ ð3Þ

and a mean coefficient of variation

χðΩÞ ¼ ðσ ωij
� �

μ ωij
� �Þ ðijÞ ð4Þ

Denoting as Ωρ
Γ the graph tower thresholded at density ρ, the two quantities

above can be computed as a function of the threshold density ρ. In Supplementary
Fig. 2a, b we report the dependence of ζ and χ. We find a clear change in the
heterogeneity patterns at around ρ0= 0.05. In particular, near ρ0 the mean
heterogeneity ζ is still minimal, while the coefficient of variation χ peaks before
starting to decrease again. In Supplementary Fig. 2c we report for comparison a
recent method for density thresholding proposed in78. This method identifies ρ0 as
the density that maximizes the quantity

J ¼ ðEg þ ElÞ=p ð5Þ

where Eg and El are respectively the global and local network efficiency79.
Interestingly, we find the threshold density identified by J is very close to the ρ0
identified by ζ and χ, suggesting that our construction based on the heterogeneity
patterns of ΩΓ captures a critical point in network structure. In the rest of the
paper, all the networks will be thresholded at this density ρ0.

We are interested in comparing how brain regions are linked to each other in
the various conditions and tasks. During different tasks, the same brain region
might be performing different functions by changing how it links to the other
regions, its local context (also called egonetwork). Given two conditions A and B
with associated matrices AA and AB, we can measure then the change in the local
environment of a region i by computing the amplitude and direction of the change.
The amplitude of the change can be quantified by considering the norm of the
difference between the row vectors associated to i in the two conditions

AiA ¼ ðAi0; : : :AiN � 1Þ ð6Þ

and

AiB ¼ AAi0; : : :ABiN � 1ð Þ: ð7Þ
That is, we calculated the vector difference between the two rows

4ABi ¼ jAAi� ABij ð8Þ
and then take its norm ∣ΔAB

i ∣. To quantify the direction of the change, we can
instead the cosine similarity between AA

i and AB
i :

χi A;Bð Þ ¼
∑
j
AA
ij A

B
ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
j
ðAA

ij Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
j
ðAB

ijÞ
2

rs ð9Þ

Communities were computed using the Leiden community detection method80

on the graph tower matrices, averaged over all the bootstrapping samples at fixed
density p = 0.07. To increase the robustness of the detection, for each treatment,
we repeated the community detection 100 times. From the 100 candidates
partitions we extracted the central partition as described in81 and associated the
resulting partition to the treatment under analysis.

To quantitatively characterize differences among partitions, we measure the
ratio r of total edge weight within a community with that of the edges between
communities. More specifically, for partition P with m communities we compute
the (m x m) matrix P, defined as:

Pαβ ¼ ∑i2a;j2βωij ð10Þ
Where

α; β ¼ 0; ¼m� 1 ð11Þ
label the modules of P, and ωij is the edge weight between regions I and j.
We then compute the ratio of average intra-community edge weights as follows:

r ¼ ðm� 1Þ∑ α Paa
2∑≠ β P α β

¼ ðm� 1Þ
2

TrP
Pj jj j1� TrP

ð12Þ
Which measures the ratio of the average weight on the diagonal of Pα, β to the

average off-diagonal weight.
We would also like to identify modules, or parts of modules, that are shared

across partitions corresponding to different treatments. One method to quantify
this is to study the overlap between pairs of modules: consider partitions

Px ¼ fC0x;C1x : : :Cmxgand Py ¼¼ fC0y;C1y:::Clyg ð13Þ
for treatments x and y; for each pair of modules (Ci

x, Cj
y), we compute the

intersection

Ji; jx; y ¼ Cix \ Cjy: ð14Þ
To establish significance, we employ a permutation test based on a null

distribution for the size of intersections p0(∣J∣): for each pair (Ci
x, Cj

y), we sample
uniformly at random 10000 pairs of node sets with cardinality respectively ∣Ci

x∣
and ∣Cj

y∣ and compute the size of their intersection ∣J∣. We then retain the
submodule

Ji; jx; yiff jJi; jx; yj ≥ μ ðjJjÞ þ 3σ ðjJjÞ ð15Þ
where μ(∣J∣) and σ(∣J∣) are the first two moments of p0(∣J∣).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in the current study have been submitted as supplementary files, with
source data for Figs. 1 and 2 found in Supplementary Data 1 (grouped by experiment).
Source data for Fig. 3 found in Supplementary Tables 1 – 5.

Code availability
The code for the network analysis is available at https://github.com/nplresearch/social-
asocial-learning and at Zenodo withhttps://doi.org/10.5281/zenodo.795437682.
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