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Simplicial models of social contagion
Iacopo Iacopini 1,2, Giovanni Petri3,4, Alain Barrat 3,5 & Vito Latora 1,2,6,7

Complex networks have been successfully used to describe the spread of diseases in

populations of interacting individuals. Conversely, pairwise interactions are often not enough

to characterize social contagion processes such as opinion formation or the adoption of

novelties, where complex mechanisms of influence and reinforcement are at work. Here we

introduce a higher-order model of social contagion in which a social system is represented by

a simplicial complex and contagion can occur through interactions in groups of different sizes.

Numerical simulations of the model on both empirical and synthetic simplicial complexes

highlight the emergence of novel phenomena such as a discontinuous transition induced by

higher-order interactions. We show analytically that the transition is discontinuous and that a

bistable region appears where healthy and endemic states co-exist. Our results help explain

why critical masses are required to initiate social changes and contribute to the under-

standing of higher-order interactions in complex systems.
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Complex networks describe well the connectivity of systems
of various nature1,2 and are widely used as the underlying
—and possibly multilayered3—social structure on which

dynamical processes4,5, such as disease spreading6, diffusion and
adoption of innovation7–9, and opinion formation10 occur. For
example, when modeling an epidemic spreading in a population6,
the transmission between infectious and healthy individuals is
typically assumed: (i) to occur through pairwise interactions
between infectious and healthy individuals, and (ii) to be caused
even by a single exposure of a healthy individual to an infectious
one. Such processes of simple contagion can be conveniently
represented by transmission mechanisms along the links of the
network of contacts between individuals.

When dealing instead with social contagion phenomena, such
as the adoption of norms, behaviors or new products, or the
diffusion of rumors or fads, the situation is more complex. Simple
epidemic-like contagion can suffice to describe some cases, such
as easily convincing rumors or domino effects11. In other situa-
tions, however, they do not provide a satisfactory description,
especially in those cases where more complex dynamics of peer
influence and reinforcement mechanisms are at work12. Complex
contagion mechanisms have been proposed to account for these
effects. As defined by Centola and Macy11: “a contagion is
complex if its transmission requires an individual to have contact
with two or more sources of activation”, i.e. if a “contact with a
single active neighbor is not enough to trigger adoption”. Com-
plex contagion can hence be broadly defined as a process in which
exposure to multiple sources presenting the same stimulus is
needed for the contagion to occur. Empirical evidence that con-
tagion processes including multiple exposure can be needed to
describe social contagion has been provided in various contexts
and experiments13–17.

Modeling of social contagion processes has been driven by
these considerations in several directions. Threshold models
assume that, in order to adopt a novel behavior, an individual
needs to be convinced by a fraction of his/her social contacts
larger than a given threshold11,16,18–21. The processes considered
in such models are usually deterministic. Another modeling fra-
mework for social contagion relies instead on generalizations of
epidemic-like processes, with stochastic contagion processes
whose rates might depend on the number of sources of exposure
to which an individual is linked to, i.e., with a complex contagion
flavor15,21–26. All these models are however still defined on net-
works of interactions between individuals: even when multiple
interactions are needed for a contagion to take place, in both
threshold and epidemic-like models, the fundamental building
blocks of the system are pairwise interactions, structurally
represented by the links of the network on which the process is
taking place.

Here, we propose to go further and take into account that
contagion can occur in different ways, either through pairwise
interactions (the links of a network) or through group interac-
tions, i.e., through higher-order structures. Indeed, while an
individual can be convinced independently by each of his/her
neighbors (simple contagion), or by the successive exposure to
the arguments of different neighbors (complex contagion), a
fundamentally different mechanism is at work if the neighbors of
an individual convince him/her in a group interaction. For
example, we can adopt a new norm because of two-body pro-
cesses, which means we can get convinced, separately, by each
one of our first neighbors in our social network who have already
adopted the norm. However, this is qualitatively different from a
mechanism of contagion in which we get convinced because we
are part of a social group of three individuals, and our two
neighbors are both adopters. In this case the contagion is a three-
body process, which mimics the simplest multiple source of

reinforcement that induces adoption. The same argument can
easily be generalized to larger group sizes.

To build a modeling framework based on these ideas, we for-
malize a social group as a simplex, and we adopt simplicial
complexes as the underlying structure of the social system under
consideration (see Fig. 1a, b). This simplicial representations is
indeed more suited than networks to describe the co-existence of
pairwise and higher-order interactions. We recall that, in its most
basic definition, a k-simplex σ is a set of k+ 1 vertices σ= [p0, …,
pk]. It is then easy to see the difference between a group inter-
action among three elements, which can be represented as a 2-
simplex or “full” triangle [p0, p1, p2], and the collection of its
edges, [p0, p1], [p0, p2], [p1, p2]. Just like a collection of edges
defines a network, a collection of simplices defines a simplicial
complex. Formally, a simplicial complex K on a given set of
vertices V, with jVj ¼ N , is a collection of simplices, with the
extra requirement that if simplex σ 2 K, then all the subsimplices
ν⊂ σ built from subsets of σ are also contained in K. Such a
requirement, which makes simplicial complexes a special type of
hypergraphs (see Supplementary Note 4), seems appropriate in
the definition of higher-dimensional groups in the context of
social systems, and simplicial complexes have indeed been used to
represent social aggregation in human communication27.
Removing this extra requirement would imply, for instance,
modeling a group interaction of three individuals without taking
into account also the dyadic interactions among them. The same
argument can be extended to interactions of four or more indi-
viduals: it is reasonable to assume that the existence of high-order
interactions implies the presence of the lower-order interactions.
For simplicity and coherence with the standard network
nomenclature, we call nodes (or vertices) the 0-simplices and
links (or edges) the 1-simplices of a simplicial complex K, while
2-simplices correspond to the (“full”) triangles, 3-simplices to the
tetrahedra of K, and so on (see Fig. 1a). Simplicial complexes,
differently from networks, can thus efficiently characterize
interactions between any number of units28,29. Simplicial com-
plexes are not a new idea30, but the interest in them has been
renewed29,31,32 thanks to the availability of new data sets and of
recent advances in topological data analysis techniques33. In
particular, they recently proved to be useful in describing the
architecture of complex networks34–36 functional37–39 and
structural brain networks40, protein interactions41, semantic
networks42, and co-authorship networks in science43.

Here, we thus propose a new modeling framework for social
contagion, namely a model of “simplicial contagion”: this
epidemic-like model of social contagion on simplicial complexes
takes into account the fact that contagion processes occurring
through a link or through a group interaction both exist and have
different rates. Our model therefore combines stochastic pro-
cesses of simple contagion (pairwise interactions) and of complex
contagion occurring through group interactions in which an
individual is simultaneously exposed to multiple sources of con-
tagion. We perform extensive numerical simulations on both
empirical data and synthetic simplicial complexes and develop as
well an analytical approach in which we derive and solve the
mean-field equations describing the evolution of density of
infected nodes. We show both numerically and analytically that
the higher-order interactions lead to the emergence of new
phenomena, changing the nature of the transition at the epidemic
threshold from continuous to discontinuous and leading to the
appearance of a bistable region of the parameter space where both
healthy and endemic asymptotic states co-exist. The mean-field
analytical approach correctly predicts the steady-state dynamics,
the position and the nature of the transition and the location of
the bistable region. We also show that, in the bistable region, a
critical mass is needed to reach the endemic state, reminding of
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the recently observed minimal size of committed minorities
required to initiate social changes44.

Results
The contagion model. In order to model a simplicial contagion
process, we associate a dynamical binary state variable x to each
of the N vertices of K, such that xi(t)∈ {0, 1} represents the state
of vertex i at time t. Using a standard notation, we divide the
population of individuals into two classes of susceptible (S) and
infectious (I) nodes, corresponding respectively to the values 0
and 1 of the state variable x. In the context of adoption processes,
the state I represents individuals who have adopted a behavior. At
each time t, the macroscopic order parameter is given by the
density of infectious nodes ρðtÞ ¼ 1

N

PN
i¼1 xiðtÞ. The model we

propose here, the so-called Simplicial Contagion Model (SCM) of
order D, with D∈ [1, N− 1], is governed by a set of D control
parameters B= {β1, β2, …, βD}, whose elements represent the
probability per unit time for a susceptible node i that participates
to a simplex σ of dimension D to get the infection from each one
of the subfaces composing σ, under the condition that all the
other nodes of the subface are infectious. In practice, with this
notation, β1 is equal to the standard probability of infection β that
a susceptible node i gets the infection from an infected neighbor j
through the link (i, j) (corresponding to the process S+ I→ 2I).
Similarly, the second parameter β2≡ βΔ corresponds to the
probability per unit time that node i receives the infection from a
“full” triangle (2-simplex) (i, j, k) in which both j and k are
infectious, β3 ¼ β2 from a group of size 4 (3-simplex) to which
it belongs, and so on. Such processes can be represented as
Simp(S, nI)→ Simp((n+ 1)I): a susceptible node, part of a sim-
plex of n+ 1 nodes among which all other n nodes are infectious,
becomes infectious with probability per unit time βn. Thanks to
the simplicial complex requirements that all subsimplices of a
simplex are included, contagion processes in a n-simplex among
which p < n nodes are infectious are also automatically con-
sidered, each of the n+ 1− p susceptible nodes being in a sim-
plex of size p+ 1 with the p infectious ones. Notice, however, that
this assumption can be dropped and the contagion model
extended to the case of hypergraphs45,46 (see Supplementary
Note 4). Figure 1c–h illustrates the concrete example of the six
possible ways in which a susceptible node i can undergo social
contagion for an SCM of order D= 2 with parameters β and βΔ.
Finally, the recovery dynamics (I→ S) is controlled by the node-

independent recovery probability μ (Fig. 1i). Notice that the
SCM of order D reduces to the standard SIS model on a network
when D= 1, since in this case the infection can only be trans-
mitted through the links of K.

Simplicial contagion on real-world simplicial complexes. To
explore the phenomenology of the simplicial contagion model,
we first consider its evolution on empirical social structures. To
this aim, we consider publicly available data sets describing face-
to-face interactions collected by the SocioPatterns collaboration47.
Face-to-face interactions represent indeed a typical example in
which group encounters are fundamentally different from sets of
binary interactions and can naturally be encoded as simplices.
The time-resolved nature of the data allows us to create simplicial
complexes describing the aggregated social structure, as described
in Methods. For simplicity, we only consider simplices of
dimension up to D= 2. We consider data on interactions col-
lected in four different social contexts: a workplace, a conference,
a hospital and a high school (see Methods for details on the
data sets).

We simulate the SCM over the simplicial complexes obtained
from the four data sets as described in Methods. In particular, we
start with an initial density ρ0 of infectious nodes and we run the
simulations by taking into consideration all the possible channels
of infection illustrated in Fig. 1c–h. We stop a simulation if an
absorbing state is reached, otherwise we compute the average
stationary density of infectious nodes ρ* by averaging the values
measured in the last 100 time-steps after reaching a stationary
state. The results are averaged over 120 runs obtained with
randomly placed initial infectious nodes with the same density ρ0.
Moreover, the different data sets correspond to different densities
of 1- and 2-simplices (see Supplementary Note 1). We thus rescale
the infectivity parameters β and βΔ respectively by the average
degree 〈k〉 and by the average number of 2-simplices incident on a
node, 〈kΔ〉. We finally express all results as functions of the
rescaled parameters λ= β〈k〉/μ and λΔ= βΔ〈kΔ〉/μ.

Figure 2 shows the resulting prevalence curves for the four data
sets (see also Supplementary Note 5). In each panel (Fig. 2b, d, f,
h), the average fraction of infected nodes ρ* in the stationary state
is plotted as a function of the rescaled infectivity λ= β〈k〉/μ for
simulations of the SCM with λΔ= 0.8 (black triangles) and λΔ= 2
(orange squares). For comparison, we also plot the case λΔ= 0,
which is equivalent to the standard SIS model with no higher-
order effects (blue circles). We observe two radically different
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Fig. 1 Simplicial contagion model (SCM). The underlying structure of a social system is made of simplices, representing d-dimensional group interactions
(a), organized in a simplicial complex (b). c–h Different channels of infection for a susceptible node i in the simplicial contagion model (SCM) of order D=
2. Susceptible and infected nodes are colored in blue and red, respectively. Node i is in contact with one (c, e) or more (d, f) infected nodes through links
(1-simplices), and it becomes infected with probability β at each timestep through each of these links. g, h Node i belongs to a 2-simplex (triangle). In g one
of the nodes of the 2-simplex is not infected, so i can only receive the infection from the (red) link, with probability β. In h the two other nodes of the 2-
simplex are infected, so i can get the infection from each of the two 1-faces (links) of the simplex with probability β, and also from the 2-face with
probability β2= βΔ. i Infected nodes recover with probability μ at each timestep, as in the standard SIS model
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behaviors for the two values of λΔ ≠ 0. For λΔ= 0.8, the density of
infectious nodes varies as a function of λ in a very similar way to
the case λΔ= 0 (simple contagion), with a continuous transition.
For λΔ= 2 we observe instead the appearance of an endemic state
with ρ* > 0 at a value of λc well below the epidemic threshold of
the other two cases. Furthermore, this transition appears to be
discontinuous, and an hysteresis loop appears in a bistable region,

where both healthy ρ*= 0 and endemic ρ* > 0 states can co-exist
(dashed orange lines): in this parameter region, the final state
depends on the initial density of infectious nodes ρ0.

The simplicial complexes used in these simulations correspond
to various social contexts and different densities of 1- and 2-
simplices, and yield a similar phenomenology. These empirical
structures however exhibit distributions of generalized degrees that
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Fig. 2 SCM of order D= 2 on real-world higher-order social structures. Simplicial complexes are constructed from high-resolution face-to-face contact data
recorded in four different context: a a workplace, c a conference, e a hospital and g a high school. Prevalence curves are respectively reported in panels b,
d, f and h, in which the average fraction of infectious nodes obtained in the numerical simulations is plotted against the rescaled infectivity λ= β〈k〉/μ for
different values of the rescaled parameter λΔ= βΔ〈kΔ〉/μ, namely λΔ= 0.8 (black triangles) and λΔ= 2 (orange squares). The blue circles denote the
simulated curve for the equivalent standard SIS model (λΔ= 0), which does not consider higher-order effects. For λΔ= 2 a bistable region appears, where
healthy and endemic states co-exist
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are not well peaked around their average values (see Supplemen-
tary Note 1), and do not allow us to systematically explore size
effects. To better understand the phenomenology of the simplicial
contagion model, we thus now explore its behavior on synthetic
simplicial complexes with controlled properties.

Simplicial contagion on synthetic simplicial complexes. A
range of models for random simplicial complexes have been
proposed so far, starting from the exponential random simplicial
complex, the growing and generalized canonical ensemble48–50

and the simplicial configuration models51 to the simplicial
activity-driven model52 generalizing the activity-driven temporal
network model53. While these yield Erdös−Rényi-like
models54,55 of arbitrary complexity, here we are interested in
models generating simplicial complexes with simplices of differ-
ent dimension in which we can control and tune the expected
local connectivity, e.g. the number of edges and “full” triangles a
node belongs to. We therefore propose a new model to construct
random simplicial complexes, the RSC model, which allows us to
maintain the average degree of the nodes, 〈k1〉, fixed, while
varying at the same time the expected number of “full” triangles
(2-simplices) 〈kΔ〉 incident on a node. The RSC model of
dimension D has D+ 1 parameters, namely the number of ver-
tices N and D probabilities {p1, …, pk, …, pD}, pk∈ [0, 1], which
control for the creation of k-simplices up to dimension D. For the
purpose of this study we limit the RSC model to D= 2, which
restricts the set of required parameters to (N, p1, p2), but the
procedure could easily be extended to larger D. The model works
as follows. We first create 1-simplices (links) as in the Erdös
−Rényi model56, by connecting any pair (i, j) of vertices with
probability p1. Similarly, 2-simplices are then created by con-
necting any triplet (i, j, k) of vertices with probability p2≡ pΔ.
Notice that simplicial complexes built in this way are radically
different from the clique complexes obtained from Erdös−Rényi
graphs54, in which every subset of nodes forming a clique is
automatically “promoted” to a simplex. Contrarily, in a simplicial
complex generated by the RSC model proposed here, a 2-simplex
(i, j, k) does not come from the promotion of an “empty” triangle
composed by three 1-simplices (i, j), (j, k), (k, i) to a “full triangle”
(i, j, k). This also means that the model allows for the presence of
(k+ 1)-cliques that are not considered k-simplices; therefore, it is
able to generate simplicial complexes having both “empty” and
“full” triangles, respectively encoding three 2-body interactions
and one 3-body interactions (as for instance in Fig. 1b). The
expected average numbers of 1- and 2-simplices incident on a
node, noted 〈k〉 and 〈kΔ〉, are easy to calculate (see Methods).
Therefore, for any given size N, we can produce simplicial
complexes having desired values of 〈k〉 and 〈kΔ〉 by appropriately
tuning p1 and pΔ. More details about the construction of the
model and the tuning of the parameters are provided in the
“Methods” section, while the agreement between the expected
values of 〈k〉 and 〈kΔ〉 with the empirical averages obtained from
different realizations of the model is discussed in Supplementary
Note 1.

We simulate the SCM over an RSC created with the procedure
described above, with N= 2000 nodes, 〈k〉≃ 20 and 〈kΔ〉 ≃ 6. As
for the real-world simplicial complexes, we start with a seed of ρ0
infectious nodes placed at random and we compute the average
stationary density of infectious ρ* by averaging over different
runs, each one using a different instance of the RSC model.
Results are shown in Fig. 3a, where the average fraction of
infected nodes, as obtained by the simulations, is plotted as a
function of the rescaled infectivity λ= β〈k〉 for a (D= 2) SCM
with λΔ= 0.8 (white squares), λΔ= 2.5 (filled blue circles) and
λΔ= 0 (light blue circles).

Despite the very different properties of the underlying
structure, the dynamics of the SCM on the RSC is very similar
to the one observed on the real-world simplicial complexes. For
λΔ= 0.8 the model behaves similarly to a simple contagion model
(λΔ= 0), with a continuous transition at λc= 1, the well-know
epidemic threshold of the standard SIS model on homogeneous
networks. When a higher value of λΔ is considered (λΔ= 2.5), the
epidemic can be sustained below λc= 1, and both an epidemic-
free and an endemic state are present in the region λc < λ < 1, with
appearance of a hysteresis loop (see the filled blue circles in
Fig. 3a). In this region, we obtain ρ(t→∞)= 0 for ρ(t= 0)=
0.01, while ρ(t→∞) > 0 for ρ(t= 0)= 0.4. The size-dependence
of the hysteresis loop is shown in Supplementary Note 2 to be
very small. The dependency from the initial conditions is also
further illustrated in Fig. 3b, in which the temporal dynamics of
single runs are shown. The various curves show how the density
of infected nodes ρ(t) evolves when initial seeds of infected nodes
of different sizes are considered. Each color corresponds to a
different value of ρ0, with brighter colors representing higher
initial densities of infected individuals. The figure clearly shows
the presence of a threshold value for ρ0, such that ρ(t) goes to the
absorbing state ρ(t)= 0 if ρ0 is smaller than the threshold, and to
a nontrivial steady state if the initial density is above the
threshold.

Mean field approach. In order to study more extensively this
phenomenology as λΔ and λ vary, and to further characterize the
discontinuous transition, we consider a mean field (MF)
description of the SCM, under a homogeneous mixing hypoth-
esis57. Given the set of infection probabilities B≡ {βω, ω= 1,…,
D} and a recovery probability μ, we assume the independence
between the states xi(t) and xj(t) 8 i; j 2 V, and we write an MF
expression for the temporal evolution of the density of infected
nodes ρ(t) as:

dtρðtÞ ¼ �μρðtÞ þ
XD
ω¼1

βωhkωiρωðtÞ 1� ρðtÞ½ �; ð1Þ

where, for each ω= 1, ⋯, D, kω(i)= kω,0(i) is the generalized
(simplicial) degree of a 0-dimensional face (node i), i.e., the
number of ω-dimensional simplices incident to the node i 49,50,
and 〈kω〉 is its average over all the nodes i 2 V. With this
approximation we assume that the local connectivity of the nodes
is well described by globally averaged properties, such as the
average generalized degree. We can immediately check that in
the case D= 1 we recover the standard MF equation for the SIS
model, which leads to the well-known stationary state solutions

ρ�½D¼1�
1 ¼ 0 and ρ�½D¼1�

2 ¼ 1� μ= βhkið Þ. The absorbing state

ρ�½D¼1�
1 ¼ 0 is the only solution for β〈k〉/μ < 1, i.e., below the
epidemic threshold. When β〈k〉/μ > 1, this state becomes unstable

while the solution ρ�½D¼1�
2 becomes a stable fixed point of the

dynamics. The transition between these two regimes is con-
tinuous at β〈k〉/μ= 1.

Let us now focus on a more interesting but still analytically
tractable case in which we extend the contagion dynamics up to
dimension D= 2, so that Eq. (1) reads:

dtρðtÞ ¼ �μρðtÞ þ βhkiρðtÞ 1� ρðtÞ½ � þ βΔhkΔiρ2ðtÞ 1� ρðtÞ½ �;
ð2Þ

where 〈kΔ〉≡ 〈k2〉. By defining as before λ= β〈k〉/μ and λΔ=
βΔ〈kΔ〉/μ, and by rescaling the time by μ, we can rewrite eq. (2) as:

dtρðtÞ ¼ �ρðtÞ ρðtÞ � ρ�2þ
� �

ρðtÞ � ρ�2�
� �

; ð3Þ
where ρ�2þ and ρ�2� are the solutions of the second-order equation
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1− λ(1− ρ)− λΔρ(1− ρ)= 0. We thus obtain:

ρ�2 ± ¼
λΔ � λ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ� λΔÞ2 � 4λΔð1� λÞ

q

2λΔ
: ð4Þ

The steady-state equation dtρ(t)= 0 has thus up to three
solutions in the acceptable range ρ∈ [0, 1]. The solution ρ�1 ¼ 0
corresponds to the usual absorbing epidemic-free state, in which
all the individuals recover and the spreading dies out. A careful
analysis of the stability of this state and of the two other solutions
ρ�2þ and ρ�2� is however needed to fully characterize the phase
diagram of the system.

Let us first consider the case λΔ ≤ 1. It is possible to show that ρ�2�,
when it is real-valued, is always negative, i.e., it is not an acceptable
solution. Moreover, ρ�2þ is positive for λ > 1 and negative for λ < 1.
In the regime λΔ ≤ 1 therefore, if λ < 1, the only acceptable solution
to dtρ(t)= 0 is ρ�1 ¼ 0; contrarily, for λ > 1, since ρ�2�<0 and ρ�2þ> 0,
Eq. (3) shows that dtρ(t) is positive at small ρ(t): the absorbing state
ρ�1 ¼ 0 is thus unstable and the solution ρ�2þ is stable. As ρ�2þ ¼ 0
for λ= 1, the transition at the epidemic threshold λ= 1 is
continuous. In conclusion, when λΔ ≤ 1, the transition is similar to
the one of the standard SIS model with λΔ= 0.

Let us now consider the case of λΔ > 1. Then, for
λ<λc ¼ 2

ffiffiffiffiffi
λΔ

p � λΔ, both ρ�2þ and ρ�2� are outside the real
domain, and the only steady state is the absorbing one ρ�1 ¼ 0.
Note that λc < 1, since λΔ > 1. For λ > λc, we thus have two
possibilities to consider. If λ > 1, we can show that ρ�2�<0<ρ

�
2þ.

Equation (3) shows then that, for small ρ(t), dtρ(t) > 0: as above,
the absorbing state ρ�1 ¼ 0 is unstable and the density of
infectious nodes tends to ρ�2þ in the large time limit; if instead
λc < λ < 1, we obtain that 0< ρ�2�< ρ�2þ. Then, still from Eq. (3), we
obtain that dtρ(t) < 0 for ρ(t) between 0 and ρ�2�, and that dtρ(t) >
0 for ρ(t) between ρ�2� and ρ�2þ. As a result, both ρ�1 ¼ 0 and ρ�2þ
are stable steady states of the dynamics, while ρ�2� is an unstable
solution. Most interestingly, the long time limit of the dynamics
depends then on the initial conditions. Indeed, if the initial
density of infectious nodes, ρ(t= 0), is below ρ�2�, the short time
derivative of ρ(t) is negative, so that the density of infectious
nodes decreases and the system tends to the absorbing state:
ρðtÞ �!

t!1 0. On the other hand, if the initial density ρ(t= 0) is

large enough (namely, larger than ρ�2�), the dynamical evolution
equation (3) pushes the density towards the value ρ�2þ, i.e.
ρðtÞ �!

t!1 ρ�2þ. Since ρ�2þ> 0, the transition at λc is discontinuous.

We illustrate these results by showing in Fig. 4a the solutions
ρ�1, ρ

�
2þ and ρ�2� as a function of λ and for different values of λΔ.

The vertical line corresponds to the standard epidemic threshold
for the SIS model (λΔ= 0). Dashed lines depict unstable branches,
as given by ρ�2�. We emphasize again two important points. First,
for λΔ > 1 we observe a discontinuous transition at
λc ¼ 2

ffiffiffiffiffi
λΔ

p � λΔ, instead of the usual continuous transition at
the epidemic threshold. Second, for λc < λ < 1 the final state
depends on the initial density of infectious nodes, as described
above: the absorbing state ρ�1 ¼ 0 is reached if the initial density ρ
(t= 0) is below the unstable steady-state value ρ�2�; on the
contrary, if ρ(t= 0) is above this value, the system tends to a finite
density of infectious nodes equal to ρ�2þ. In other words, a critical
mass is needed to reach the endemic state, reminding of the
recently observed minimal size of committed minorities required
to initiate social changes44.

Figure 4b is a two-dimensional phase diagram showing ρ�2þ for
different values of λ and λΔ. Lighter colors correspond to higher
values of the stationary density of infectious nodes, while the
dashed vertical line corresponds to the epidemic threshold of the
standard (without higher-order effects) SIS model, namely λ= 1.
For λΔ ≤ 1 (below the dashed horizontal line) the transition as λ
crosses 1 is seen to be continuous, while, for λΔ > 1, the transition
is clearly discontinuous along the curve λc ¼ 2

ffiffiffiffiffi
λΔ

p � λΔ (dash-
dotted line). The analytical values of ρ�2þ are also reported as
continuous red lines in Fig. 3a and compared to the results of the
simulations, showing in this way the accuracy of the mean field
approach just described. In addition, Fig. 3b shows that the
unstable solution ρ�2� accurately separates the two basins of
attractions for the dynamics, i.e., it defines the critical initial
density of infected ρ0 that determines whether the long-term
dynamics reaches the healthy state or the endemic one. Notice
that the mean field approach is in fact able to correctly capture
both the position of the thresholds and the discontinuous nature
of the transition for the SCM with λΔ > 1.

We finally note that, while a general solution for general D with
arbitrary parameters {βω} remains out of reach, it is possible to
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Fig. 3 SCM of order D= 2 on a synthetic random simplicial complex (RSC). The RSC is generated with the procedure described in this manuscript, with
parameters N= 2000, p1 and pΔ tuned in order to produce a simplicial complex with 〈k〉∼ 20 and 〈kΔ〉∼ 6. a The average fraction of infected obtained by
means of numerical simulations is plotted against the rescaled infectivity λ= β〈k〉/μ for λΔ= 0.8 (white squares) and λΔ= 2.5 (filled blue circles). The light
blue circles give the numerical results for the standard SIS model (λΔ= 0) that does not consider higher-order effects. The red lines correspond to the
analytical mean field solution described by Eq. (3). For λΔ= 2.5 we observe a discontinuous transition with the formation of a bistable region where healthy
and endemic states co-exist. b Effect of the initial density of infected nodes, shown by the temporal evolution of the densities of infectious nodes (a single
realization is shown for each value of the initial density). The infectivity parameters are set within the range in which we observe a bistable region (λ= β
〈k〉/μ= 0.75, λΔ= βΔ〈kΔ〉/μ= 2.5). Different curves—and different colors—correspond to different values for the initial density of infectious nodes ρ0≡ ρ
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10431-6

6 NATURE COMMUNICATIONS |         (2019) 10:2485 | https://doi.org/10.1038/s41467-019-10431-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


show that the phenomenology obtained for D= 2 is also observed
for specific cases with D ≥ 3. We consider indeed in the
Supplementary Note 3 two cases: D= 3 with β2= 0 and general
D > 3 with β1=⋯= βD−1= 0. In both cases, we show the
appearance of a discontinuous transition in the regime where the
simple contagion β1 is below threshold (i.e., β1〈k〉 < μ): similarly
to the case D= 2, this transition occurs as βD, which describes the
rate of the high-order contagion process, increases.

Discussion
In summary, the simplicial model of contagion introduced in this
work is able to capture the basic mechanisms and effects of
higher-order interactions in social contagion processes. Our
analytical results were derived in a mean field approximation and
indeed quantatively compared to the nondescript simplicial
complexes obtained in our random simplicial complex model
(akin to ER simplicial complexes55). However, the framework we
introduced is very general and the phenomenology robust, as seen
from the results obtained on empirical data sets. It would be
interesting to investigate the SCM on more general simplicial
complexes with for instance heterogeneous generalized degree
distribution or with community structures, and to consider
simplicial complexes with emergent properties such as hyperbolic
geometry58–60, or temporally evolving simplicial complexes52.
Furthermore, given that the SCM can be mapped on a model with
hypergraphs if the hyperedges of different types are carefully
chosen, it would be interesting to study the behavior of complex
contagion processes on more general classes of hypergraphs61,62.
Finally, we hope that the idea will be extended from spreading
processes to other dynamical systems, for instance to Kuramoto-
like models with higher-order terms. Developing and studying
such systems might allow to better take into account higher-order
dynamical effects in real data-driven models.

Methods
Data description and processing. We consider four data sets of face-to-face
interactions collected in different social contexts: a workplace (InVS15)63, a con-
ference (SFHH)64, a hospital (LH10)65 and a high school (Thiers13)66. In each case
face-to-face interactions have been measured with a temporal resolution of 20 s.
We first aggregated the data by using a temporal window of Δt= 5 min, and
computed all the maximal cliques that appear. Since we limit our study to the case
D= 2, we need to produce a clique complex formed by 1- and 2-simplices.
Therefore, we considered all the 2- and 3-cliques and weight them according to

their frequency. Note that while higher-dimensional cliques are not included in the
final simplicial complex, their sub-cliques up to size 3 are considered in the
counting. We then retained 20% of the simplices with the largest number of
appearances. The thresholded simplicial complexes obtained in this way are those
used in Supplementary Fig. 6. Their connectivity properties are summarized in
Table 1.

To reduce finite size effects, we augmented the thresholded simplicial complexes
as follows: for each data set we extracted the list of sizes of the maximal simplices,
also called facets, and the list of pure simplicial degrees of nodes. We then
duplicated these lists five times and used the extended lists as input for the
simplicial configuration model, described in ref. 51. The outputs of this procedure
are simplicial complexes with the same statistical properties as the input complex
but of significantly larger size. We used these augmented complexes as substrates
for the simulations shown in Fig. 2.

Construction of random simplicial complexes. The random simplicial complex
(RSC) model produces simplicial complexes of dimension D= 2 as follows. Given a
set V of N vertices we connect any two nodes i; j 2 V with probability p1∈ [0, 1], so
that the average degree, at this stage, is (N− 1)p1. Then, for any i; j; k 2 V, we add a
2-simplex (i, j, k) with probability pΔ∈ [0, 1]. At this point each node has an
average number 〈kΔ〉= (N− 1)(N− 2)pΔ/2 of incident 2-simplices that also con-
tribute to increase the degree of the nodes. The exact contribution can be calculated
by considering the different scenarios in which a 2-simplex (i, j, k) can be attached
to a node i already having some links due to the first phase of the RSC con-
struction. More precisely, the degree ki of node i is incremented by 2 for each 2-
simplex (i, j, k) such that neither the link (i, j) nor the link (i, k) are already present;
this happens with probability (1− p1)2. Analogously, if either the link (i, j) is
already present but not (i, k), or vice-versa, the addition of the 2-simplex (i, j, k)
increases the degree of i by 1. Since each case happens with the same probability
p1(1− p1) the contribution is therefore 2p1(1− p1). Overall, the degree ki increases
on average by 2(1− p1) for each 2-simplex attached to i. Finally, for p1, pΔ≪ 1, we
can thus write the expected average degree 〈k〉 as the sum of the two contributions
coming from the links and the 2-simplices, namely 〈k〉 ≈ (N− 1)p1+ 2〈kΔ〉(1−
p1). For any given size N, we can thus produce simplicial complexes having desired
values of 〈k〉 and 〈kΔ〉 by fixing p1 and pΔ as:

p1 ¼
hki � 2hkΔi

ðN � 1Þ � 2hkΔi
; ð5Þ
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ffiffiffiffiffi
λΔ

p � λΔ , where the system undergoes a discontinuous transition

Table 1 Statistics of real-world simplicial complexes

Data set Context 〈k〉 〈kΔ〉 〈k〉aug 〈kΔ〉aug

InVS15 Workplace 16.9 7.0 21.0 7.0
SFHH Conference 15.0 7.6 21.6 7.7
LH10 Hospital 19.1 17.1 25.7 17.5
Thiers13 High school 20.1 10.9 32.0 11.1

Average generalized degree of the four real-world simplicial complexes constructed from the
considered data sets (before and after the data augmentation)
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pΔ ¼ 2hkΔi
ðN � 1ÞðN � 2Þ : ð6Þ

Data availability
The SocioPatterns data sets were downloaded from https://www.sociopatterns.org/
datasets.

Code availability
The code and data sets are available at: https://github.com/iaciac/simplagion.
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