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Many complex systems find a convenient representation in terms of networks: structures made by
pairwise interactions (links) of elements (nodes). For many biological and social systems, elementary
interactions involve, however, more than two elements, and simplicial complexes are more adequate to
describe such phenomena. Moreover, these interactions often change over time. Here, we propose a
framework to model such an evolution: the simplicial activity driven model, in which the building block is a
simplex of nodes representing a multiagent interaction. We show analytically and numerically that the use
of simplicial structures leads to crucial structural differences with respect to the activity driven model, a
paradigmatic temporal network model involving only binary interactions. It also impacts the outcome of
paradigmatic processes modeling disease propagation or social contagion. In particular, fluctuations in the
number of nodes involved in the interactions can affect the outcome of models of simple contagion
processes, contrarily to what happens in the activity driven model.
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The use of a network representation has become common-
place for describing and studying many complex systems:
nodes represent the elements of the systems and links
represent pairwise interactions [1,2]. However, in many
contexts, representing interactions as pairwise does not tell
the whole story. Examples include collaborations among
groups of actors in movies [3], spiking neuron populations
[4,5], and coauthorships in scientific publications [6].
Let us consider the latter for illustration purposes: In a

network representation, a paper coauthored by n scientists
yields a clique of nðn − 1Þ=2 links, which is, however,
treated in the same way as nðn − 1Þ=2 papers authored by
pairs of scientists (or any combination of subgroups among
these scientists leading to the same number of links). While
this is equivalent for n ¼ 2, the number of coauthors of a
paper is often larger than 2. For instance, the average
number of authors of APS papers has steadily increased
from 2 to 6 between the 1940s and now [see Supplemental
Material (SM), Sec. I [7]]. In such cases (n > 2), simplicial
representations are more apt to preserve the information
observed in data. To take this into account, simplicial
descriptions have recently been adopted in models of
emerging geometry [8,9], null models for higher order
interactions [10,11], network inference [12], brain struc-
ture, and dynamics [4,13,14].
We recall that formally a (d − 1)-dimensional simplex σ

is defined as the set of d vertices σ ¼ ½x0; x1;…; xd−1�. A
collection of simplices is a simplicial complex K if for each
simplex σ all its possible subfaces (defined as subsets of σ)
are themselves contained in K (see SM, Sec. II [7], and
Ref. [15]). In the case of group interactions, this require-
ment can be considered trivially satisfied, as each group

interaction implies all the possible subinteractions. Finally,
the 1-skeleton of a simplicial complex is the collection of
all its edges, i.e., the underlying network.
Networks and interactions moreover evolve in time, and

the field of temporal networks is indeed very active [16,17].
In particular, severalmodels of time-evolving networks have
been put forward, using microscopic rules for the establish-
ment and endof interactions betweenpairs of nodes [18–20].
Among these, the activity driven (AD) temporal network
model [19] has attracted a lot of attention. In thismodel, each
agent (node) is assigned an activity potential that determines
at each time its probability to create pairwise interactions
with other agents selected at random. The ADmodel and its
extensions [21–24] have become a paradigm of temporal
networks and have been used to study the impact of the
network’s temporal evolution on dynamical processes
occurring on top of it [19,25].
Models of temporally evolving simplicial interactions

are, however, still missing. Here, we bridge this gap by
proposing a modeling framework for temporal group
activation data: the simplicial activity driven (SAD) model.
Our aim is to provide a simple framework that can serve as
a basis for richer temporal models including the simplicial
nature of interactions, and on which dynamical processes
can be studied analytically and numerically to shed light on
the impact of both simplicial and temporally evolving
interactions.
In its simplest version, the model considers N nodes,

whose interactions change over time as follows. (i) Each
node i is endowed with an activity rate ai taken from a
predefined distribution F. (ii) At each time step Δt, each
node i fires with probability aiΔt; when it fires, it creates an
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(s − 1) simplex (in networks’ terms, a clique of size s) with
s − 1 other nodes chosen uniformly at random. Each
activation hence yields sðs − 1Þ=2 interactions. (iii) At
the following time step, the existing simplices are erased
and the process starts anew.
In the framework of collaborations, nodes represent

scientists and the activity ai their propensity to create
collaborations: step (ii) corresponds to the creation of a
collaboration of s scientists who coauthor a paper. We
underline the main difference with the AD model in Fig. 1:
in the AD model, each active node creates binary inter-
actions with the chosen nodes (in the language of collab-
orations, s − 1 papers each with 2 authors) while, in the
SAD model, inactive nodes targeted by an active node
obtain links to all the other nodes in the simplex, creating a
coherent unit. The parameter s defines the size of the
collaborations and can be either fixed or a random variable
extracted at each activation from a distribution pðsÞ. As for
the AD model, the SAD model is Markovian: agents have
no memory of previous time steps, and it can be refined by
adding memory or community effects [21,24].
In the following, we first study this model from a

structural point of view, highlighting the differences
between considering the obtained system as a network
(given by its 1-skeleton) and taking into account its
simplicial nature. We also provide an analysis of a
paradigmatic dynamical process occurring on top of the
SAD model. Since the AD model has been widely studied
as a paradigm for temporal networks, we underline in each
case how the introduction of coherent units of s nodes as
building blocks yields radically different structural proper-
ties and impacts the properties of dynamical processes.
The comparison with the activity driven model can be

done in two ways: we can consider AD models involving
either the same number of nodes [node-matched AD model
(nAD)] or the same number of interactions [edge-matched
AD model (eAD)] as the SAD model at each time step (see

Fig. 1). In the former, for each activation with group size s
in the SAD model, we consider an AD activation with size
m ¼ s − 1; i.e., the activated node creates interactions with
s − 1 other nodes chosen at random: this leads to the same
total number of contacted nodes per activation in the nAD
and in the SAD model. In the eAD model, for each
activation with group size s, we consider instead an AD
activation with m ¼ ðs

2
Þ, hence preserving the total number

of interactions of each activation.
Structure.—Let us focus on the structural properties of

the SAD model aggregated over T time steps. We first
consider the 1-skeleton of the SAD model, to compare its
properties to AD networks, and then consider pure sim-
plicial properties—not reducible to a network approach.
In the aggregated SAD model, each node i is linked by

an edge to all the nodes with which it has interacted at least
once during T. The degree of i in the corresponding
aggregated network corresponds to the number of distinct
nodes with which i has interacted (in the interpretation of a
scientific collaboration network, the total number of dis-
tinct collaborators of a scientist).
Denoting by kTðiÞ the expected aggregated degree at time

T of node i with activity ai, we compute it by separating it
into two contributions. The first comes from node i’s own
activation events, which occur at each time step Δt with
probability aiΔt: after T time steps, i will have activated
∼Tai times; for fixed simplex size s, this means it will have
made Taim̄ interactions (m̄ ¼ s − 1). The second contribu-
tion comes from the activations of other nodes: every node
j ≠ i will have activated Taj times; in each activation of
j≠ i, i was selected with probability m̄=ðN−1Þ and, if
selected, provided with m̄ interactions. Hence, at time T
node i will have accumulated κTðiÞ interactions with

κTðiÞ ¼ m̄aiT þ
X
j≠i

m̄2Taj
N − 1

≃ m̄Tðai þ m̄haiÞ; ð1Þ

where the approximation holds for N ≫ 1. For any node
distinct from i, the probability not to have been involved in
any of these interactions is ½1 − 1=ðN − 1Þ�κTðiÞ, and hence,
finally the number of distinct nodes having interacted with
i is

kSADT ðiÞ ¼ ðN − 1Þ
�
1 −

�
1 −

1

N − 1

�
κT ðiÞ� ð2Þ

≃ N½1 − e−½Tm̄ðaiþhaim̄Þ�=N �; ð3Þ

where the approximation holds for large N and small T=N
(in the SM we also give the derivation for the aggregated
degree distribution [7]). In Fig. 2(a), we show the excellent
agreement between the prediction for the aggregated degree
averaged over all nodes, hkSADT ðiÞi, at fixed s, and numerical

(a)

(b) (c)

FIG. 1. SAD model. (a) At each time step, a node i activates
with probability aiΔt. Upon activation it creates a coherent unit of
s nodes [an (s − 1)-simplex], with links between all pairs. (b) In
contrast, in the standard AD model (nAD), only the s − 1 edges
stemming from the activated node are added. (c) In the eAD
model, ðs

2
Þ links stem from the activated node, conserving at each

interaction the number of links of the SAD model.
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simulations. We also compare it with the nAD and eAD
models, for which knADor eAD

T ðiÞ ¼ Nð1 − e−TmðaiþhaiÞ=NÞ
[19], with m ¼ m̄ for nAD model and m ¼ ðs

2
Þ for eAD

model.
Interestingly, kSADT depends on m̄2; thus, if the simplex

size s is allowed to fluctuate, the size of such fluctuations
will affect the aggregated degree (see Fig. S2 of the SM
[7]). This is in contrast with the nAD model, which has no
dependence on the second moment of s, while the eAD
model inherits it from the matching of the number of edges
created at each activation [since each activation creates
m ¼ sðs − 1Þ=2 edges, the total number of interactions and
the integrated degree depend on the fluctuations of s].
For the aggregated network degree, we thus observe a

similar behavior for the SAD and eADmodels. Figure 2(b),
however, highlights that the SAD model building mecha-
nism also leads to an important structural difference with
the eAD model: as each activation creates ðs

2
Þ interactions

that involve only s − 1 nodes, the size of the largest

connected component (GCC) in the SAD model integrated
until T grows with T much more slowly than in the eAD
model, for which each activation creates a star reaching ðs

2
Þ

nodes; in fact, it grows in the same way as in the nAD
model, despite creating more interactions at each step (for
s > 2, as for s ¼ 2 the three models are the same). Overall,
the structural properties of the SAD model, from the point
of view of its 1-skeleton, present thus both similarities and
important differences with AD models with the same
number of events.
Let us now investigate purely simplicial structural

properties of the SAD model. First, we compute the
average number k2ði; TÞ of 2-simplices to which a node
i belongs in the SAD aggregated until T, in a way similar to
the computation of kTðiÞ. We obtain (see SM, Sec. IV, for
details [7])

k2ði;TÞ¼
�
N−1

2

�
ð1−e−f½ðs−1Þðs−2Þ�=½ðN−1ÞðN−2Þ�gTðaiþm̄haiÞÞ:

ð4Þ

Note that k2ði; TÞ corresponds to the number of distinct
cliques of three nodes to which i has participated from 0 to
T, which is different from the number of triangles to which
i belongs in the 1-skeleton of the aggregated SAD model:
indeed, a triangle ði; j; kÞ can be obtained even if links
ði; jÞ, ði; kÞ, and ðj; kÞ are never present in the same (s − 1)-
simplex. We show in Fig. 2(c) that the average of k2ði; TÞ
over all nodes is correctly predicted by Eq. (4) (see SM,
Sec. IV, for a more extensive validation [7]). The figure also
shows that the average number of triangles to which a node
belongs grows faster with both s and T than hk2ði; TÞi,
highlighting the differences between simplices and trian-
gles and thus the importance of the simplicial nature of the
SAD model.
We moreover present in Fig. 2(d) the eigenspectrum

of the simplical Laplacian (see SM, Sec. V [7], and
Refs. [26,27]) of the aggregated SAD model, a cornerstone
of studies of how dynamical processes are affected by the
underlying structure [28–30]. The figure highlights how the
eigenspectrum differs, depending on whether we compute
the Laplacian on the 1-skeleton, on the aggregated SAD
simplicial complex, or on the clique complex obtained by
considering each clique of the 1-skeleton as a simplex.
These differences illustrate further how the SAD model
contains information not reducible to its 1-skeleton, i.e., to
a network.
To further our analysis, we now explore how dynamical

processes are impacted by the SAD model.
Dynamical processes.—We consider the paradigmatic

susceptible-infected-susceptible (SIS) model for disease
spreading [2]. In this model, nodes can be either susceptible
(S) or infectious (I). Infectious propagate the disease to
susceptibles at rate β whenever they are interacting,
and recover spontaneously at rate μ, becoming again

(a) (b)

(c) (d)

FIG. 2. Structural properties of SAD model. In all plots we use
N ¼ 2000 nodes and activities sampled from FðaÞ ¼ ða=a0Þ−α,
where α ¼ 2.1 and a0 ¼ 5 × 10−3. (a) Average aggregated degree
hkTi for the SAD model and corresponding nAD and eAD
models versus simplex size s, with T ¼ 10. Symbols, numerical
values; lines, theoretical predictions [for the SAD model, Eq. (3)
averaged over all nodes]. (b) Temporal growth of the aggregated
GCC size S for the SAD (solid lines), nAD (crosses), and eAD
(dashed lines) models for various fixed simplex size s. (c) Empty
symbols are the average hk2ði; TÞi over all nodes i of the number
of 2-simplices to which i belongs, in the SAD model aggregated
until time T, for various values of s and of T. Continuous lines are
the prediction [Eq. (4)] averaged over nodes. The filled symbols
give instead the average number of triangles to which a node i
belongs in the 1-skeleton of the aggregated SAD model.
(d) Eigenspectrum of the simplicial Laplacian L1 computed on
the aggregated SAD 1-skeleton (here with s ¼ 4), on the actual
aggregated SAD simplicial complex, and on the clique complex
of the 1-skeleton of the aggregated SAD simplicial complex [in
which each (kþ 1) clique of the 1-skeleton is promoted to a k-
simplex]. Aggregation time T ¼ 100.
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susceptible. In a homogeneous population, the epidemic
threshold λc separates an epidemic-free state at low values
of the parameter λ ¼ β=μ from an endemic state at high
values of λ.
To calculate the SIS epidemic threshold for the SAD

model, we use a temporal heterogeneous mean-field
approach similar to the one used for the AD model [19]:
nodes are classified according to their activity, and we
denote byNa the number of nodes with activity a; Ita and Sta
denote, respectively, the numbers of infectious and sus-
ceptible nodes with activity a at time t. We thus have
Na ¼ Sta þ Ita, N ¼ R

daNa is the total population, and
It ¼ R

daIta the total number of infectious at time t.
Let us consider the case of the SAD model with fixed

clique size s. The variation during a time step Δt of the
number of infectious is given by the following equation
taking into account the evolution of both interactions and
spreading process:

ItþΔt
a − Ita ¼ −μΔtIta þ βΔtSaaðs− 1Þ

Z
da0

Ita0
N

þ βΔtSa
Z

da0a0
Ita0
N

ðs− 1Þ

þ βΔtSa
Z

da0a0
Sa0

N
ðs− 1Þ

Z
da00

Ia00

N
ðs− 2Þ:

ð5Þ

The first term corresponds to the recovery of nodes with
activity a. The second term corresponds to susceptible
nodes with activity a that become active at time t (with
probability aΔt) and create a simplex of size s (with s − 1
other nodes) that includes infectious nodes with any
activity (hence, the integration over a0). The third term
stems from the fact that susceptible nodes with activity a
can be chosen as clique partners by infectious nodes with
activity a0 that become active (with probability a0Δt).
While these three terms also appear in the case of a
spreading process on an AD network, the last term is
specific to the SAD model: it describes the cases in which
susceptible nodes with activity a are chosen by a suscep-
tible with activity a0, which becomes active (with proba-
bility a0Δt) and creates a simplex that also includes an
infectious node with activity a00.
Straightforward computations detailed in the SM

(Sec. VI) yield then the epidemic threshold condition [7]

β

μ
>

2

sðs− 1Þhai þ ðs− 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2hai2 þ 4ðha2i− hai2Þ

p ; ð6Þ

to compare with the result ðβ=μÞ > 1=ðmhai þm
ffiffiffiffiffiffiffiffiffi
ha2i

p
Þ

for an AD model with parameter m.
If the sizes of the cliques formed in the SAD model are

extracted at random at each activation from a distribution
pðsÞ, the rhs of Eq. (5) needs simply to be integrated as

R
dspðsÞ, if the size s is independent of the activity a. The

epidemic threshold becomes

β

μ
>

2

hsðs − 1Þihai þ ffiffiffiffi
Δ

p ; ð7Þ

with Δ¼hðs−1Þðs−2Þihðs−1Þðsþ2Þihai2þ4hs−1i2ha2i
(see details in the SM, Sec. VI [7]). Notably, it depends not
only on the average clique size but also on the second
moment of pðsÞ, and vanishes as 1=hs2i if the clique size
fluctuations diverge (see Fig. S6 in the SM [7]). This is in
contrast with the case of the SIS model on the ADmodel, in
which fluctuations of the numbers of links created at each
time step would not change the epidemic threshold (m just
being replaced by its average).
Figure 3(a) displays the result of numerical simulations

of a SIS model on temporal eAD and SAD networks,
showing agreement with the theoretical values of the
epidemic threshold. We, moreover, compare in Fig. 3(b)
the epidemic threshold obtained in a SAD model with fixed
clique size s with the one obtained in the nAD and eAD
models. In the former case, the epidemic threshold is
smaller in the SAD model, which can be related to the
fact that the SAD model has more interactions than the
nAD network. In the latter case instead, the fact that
the sðs − 1Þ=2 interactions are created as cliques hampers
the spread on the SAD model with respect to the eAD

(a)

(b)

FIG. 3. SIS epidemic threshold for AD and SAD models.
(a) Epidemic prevalence versus λ ¼ β=μ: the epidemic transition
in the SAD model is delayed as compared with an SIS model
on the corresponding eAD model (here, N ¼ 1000, s ¼ 4,
T ¼ 20 000). Vertical lines correspond to the theoretical values
of the epidemic thresholds [Eq. (6) for the SAD model].
(b) Increasing the average connectivity of the underlying network
lowers the epidemic threshold in all models; for the s-regular
SAD model λc [Eq. (6)] is always larger than for the correspond-
ing eAD model. In both panels, node activities were sampled
from FðaÞ ¼ ða=a0Þ−α, where α ¼ 2.1 and a0 ¼ 5 × 10−3.
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network, leading to a higher epidemic threshold for the
SAD case (see SM, Table S1, for examples [7]).
To conclude, we have presented a new model for

temporal networks, based on the fact that the fundamental
building blocks of many social networks are coherent units
of individuals interacting as groups, rather than dyadic
interactions. Our simplicial activity driven model considers
indeed agents who create simplices with other agents,
yielding a simplicial complex once aggregated. We
have shown how this mechanism leads to fundamental
differences with respect to a well-known model in which
active agents create sets of dyadic interactions, and how the
structural properties of the SAD model differ from those of
its 1-skeleton, showing the necessity to take into account its
simplical nature and not to reduce it to a network
interpretation. These differences appear at the structural
level and also have strong consequences on how dynamical
processes unfold on these networks, as we have illustrated
on a paradigmatic epidemic model (we also show in
Sec. VII of the SM that a social contagion process
[31,32] on the SAD model displays a rich phenomenology,
very different with respect to an AD model [7]).
As noted in its definition, the SAD model is Markovian,

as the AD model: it does not yield non-Poissonian nor
bursty temporal patterns. However, thanks to this simplic-
ity, our model lends itself to analytical investigations of its
structural properties and of contagion processes, which has
allowed us to highlight the need to correctly take into
account the simplicial nature of interactions and the
fluctuations of the numbers of nodes involved in these
interactions. Moreover, it can serve as a starting point for
many refinements, such as adding memory effects, node
categories, and interacting probabilities depending on these
categories, or correlations between activity of an agent and
size of the simplicial complex it creates. Moreover, it would
be interesting to study further dynamical processes on the
SAD model and its variations. Finally, the SAD model
constitutes a first null model for the homology of temporal
complex systems with high-order interactions. We hope
that our work will stimulate research in such directions.
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