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Abstract

Tumors are defined by their intense proliferation, but sometimes cancer cells turn senescent and stop replicating. In the
stochastic cancer model in which all cells are tumorigenic, senescence is seen as the result of random mutations, suggesting
that it could represent a barrier to tumor growth. In the hierarchical cancer model a subset of the cells, the cancer stem cells,
divide indefinitely while other cells eventually turn senescent. Here we formulate cancer growth in mathematical terms and
obtain predictions for the evolution of senescence. We perform experiments in human melanoma cells which are
compatible with the hierarchical model and show that senescence is a reversible process controlled by survivin. We
conclude that enhancing senescence is unlikely to provide a useful therapeutic strategy to fight cancer, unless the cancer
stem cells are specifically targeted.
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Introduction

Cancer cells are characterized by their persistent proliferation,

but just as for normal cells [1] tumor cells can go senescent, halting

their growth [2,3]. The molecular basis for the induction of

senescence appears to be a combination of several mechanisms

such as telomerase shortening, DNA-damage and oxidative stress

[3]. It has been suggested that senescence should be present only in

pre-neoplastic cells [3] but there is evidence that senescence

markers increase during tumor progression [4]. This is puzzling

since it is usually assumed that tumors can only grow if senescence

is avoided. Recent experiments are challenging this conventional

view of cancer, showing that only a small fraction of cancer cells,

the cancer stem cells (CSCs) [5], actively drive tumor growth. The

implications of this finding for tumor cell senescence have hitherto

not been explored.

According to the CSC hypothesis, tumors behave in analogy

with normal tissues, whose growth is controlled by a small

population of slowly replicating stem cells with the dual capacity of

either self-renewal or differentiation into the more mature cells

required by the tissue. The crucial difference between tissue stem

cells and CSCs lies in their proliferation properties. Stem cells in

tissues tend to keep their number constant either deterministically

by enforcing asymmetric division, or stochastically by balancing

proliferation and depletion probabilities [6,7]. This restriction does

not hold for CSCs. The role of CSCs has important implications

for therapeutic approaches. According to the conventional view,

the success of a treatment is measured by the number of tumor

cells killed; in contrast, according to the CSC hypothesis, only the

CSC subpopulation matters in the end for complete eradication.

First evidences for the existence of CSCs came from hematological

tumors [5] and later from solid tumors such as breast cancer [8]

and melanoma [9–16]. The presence of CSCs in melanoma is

currently debated. It was argued that to obtain reliable estimates of

the number of tumor initiating cells one should use highly

immunocompromised mice for tumor xenografts [17]. Different

groups, however, reported conflicting results with slight differences

in assay conditions and mouse models [14,17]. Furthermore,

several putative CSC markers appears to be reversibly expressed in

melanoma [18] and in breast cancer [19].

In this paper, we analyze cell senescence during the growth of

melanoma cells both in vitro and in tumor xenografts. We find

that the fraction of senescent cells increases considerably after a

few months of cultivation, slowing down the growth of the cell

population. This process is, however, only transient: after some

time senescence almost disappears and growth resumes at the

initial rate. We also show that senescence is a reversible process

controlled by survivin: by overexpressing survivin in senescent

cells, we are able to decrease senescent markers and increase cell

proliferation. These results can be interpeted in terms of the

hierarchical cancer model where only CSCs replicate indefi-

nitely and senescence reflects the loss of proliferative capacity of

other cancer cells. To prove this point we sort cancer cells

according to a putative CSC marker, ABCG2, and show that

senescence is more prevalent for negative cells, suggesting that

CSC are able to rejuvenate an otherwise senescent cell

population.

To understand quantitatively the experimental results, we

propose a mathematical model for cancer growth that is

compatible with the existence of CSCs in melanoma, provides

an unambiguous interpretation of experimental data, and

explains quantitatively the occurrence of senescence in tumors.
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While in the stochastic cancer model, senescence is due to

spontaneous mutations of tumor cells, in the hierarchical model

only CSCs replicate indefinitely and senescence reflects the loss

of proliferative capacity of other CCs. These observations can be

recast in a mathematical framework using the theory of

branching processes, a generic model for a growing population

[20,21]. Branching processes were first proposed at the end of

the XIX century and found wide application in physics and

biology with examples ranging from nuclear reactions [20] to

evolution theory [21], tissue growth [6,22–24] and cancer

progression [25,26]. The main limitation of branching processes

is that they do not account for interactions between cells which

could be relevant for the growth of a tumor, especially in vivo.

Despite this shortcoming, our model allows for a good

description of the experiments, providing an indirect confirma-

tion of the CSC hypotesis for melanoma with important

implications for therapeutic strategies based on the induction

of senescence in cancer.

Results

Hierarchical model for cancer growth
Our theory has biologically motivated ingredients characteriz-

ing the probabilities for cells to duplicate, become senescent or die:

According to the CSC hypothesis, cells are organized hierarchi-

cally, with CSCs at the top of the structure. CSCs can divide

symmetrically with rate Rd giving rise to two new CSCs with

probability p2, two CCs with probability p0, or asymmetrically

with probability p1~1{p0{p2 giving rise to a CSC and a CC.

While CSCs can duplicate for an indefinite amount of time, CCs

become senescent after a finite number of generations M and then

eventually die rate q (Fig. 1). The model kinetics depends on the

combination E~p2{p0, the average relative increase in the

number of CSCs after one duplication, rather than on p0, p1 and

p2 separately. In normal tissues, the stem cell population should

remain constant which implies that E~0 [6,27], while in tumors

we expect Ew0.

The kinetics of the cell populations for this model can be solved

exactly. To this end, we first derive recursion relations linking the

average cell populations at each generation. Denoting by SN the

average number of CSCs after N generations, by CN
k the average

number of CCs, where k~1,:::,M indicates the ‘‘age’’ of the CCs

(i.e. the number of generations separating it from the CSC from

which it originated), and by DN the average number of senescent

cells, we obtain

SN~(1zE)SN{1

CN
1 ~(1{E)SN{1

::: :: :::

CN
k ~2CN{1

k{1

DN~(1{q)DN{1z2CN{1
M :

ð1Þ

These relations are derived considering that CSCs can only

originate from other CSCs either by a symmetric division – two

CSCs are generated with probability p2 – or by an asymmetric

one, in which case a single CSC is generated with probability

1{p2{p0. Hence each CSC generates an average of

2p2z1{p2{p0~1zE new CSCs. CSCs also generate CCs

(k~1) by asymmetric CSC divisions, with probability 1{p2{p0

or by symmetric CSC division with probability p0, yielding an

average of 1{p2{p0z2p0~1{E CCs. Two CCs are generated

by duplication of other normal cells with unit probability

(k~2:::M ). Senescent cells accumulate at each generation when

normal cells (with k~M ) lose the ability to duplicate and die

with probability q. Eqs. 2 can be solved explicitly. We consider

first an initial condition with CSC only (i.e. C0
k~D0~0) and

obtain

SN~(1zE)NS0

CN
k ~

SN 2

1zE

� �k{1
1{E
1zE

for Nwk

0 for Nƒ k

8><
>:

DN~
SN (1{E)

Ezq

2

1zE

� �M

1{
1{q

1zE

� �N{M
 !

for NwM

0 for Nƒ M

8>><
>>:

ð2Þ

Eqs. 2 implies that the average CSC population SN grows

exponentially fast, and that after a large number of generations

(i.e. for N&M ), all cells populations, and hence the size of the

tumor, are proportional to the CSC population. This result

confirms that the population of CSCs is the driving force behind

tumor growth. Note that the population of senescent cells is also

driven by the growth of CSCs and therefore cancer growth and

senescence are inextricably linked.

To interpret experimental data, it is important to consider the

case in which the initial condition is composed of a mixed

population of CSCs and CCs. The solution in this case can be

obtained as a linear superposition of the solution of Eqs. 2 and the

solution with initial conditions S0~0, C0
kw0 and D0

w0. For

simplicity, we consider the case of a uniform distribution for the

ages of CSCs: C0
k~D0~c, and obtain

ŜSN~0

ĈCN
k ~

2kc for Nvk

0 for N § k

(

D̂DN~

c(1{q)Nzc
2

1zq
(2N{(1{q)N ) for Nƒ M

c(1{q)N (1z
2

1zq
(

2

1{q

� �M

{1)) for Nw M

8>>><
>>>:

ð3Þ

Author Summary

It is commonly believed that cell senescence – the loss of
replicative capacity of cells – acts as a barrier for tumor
growth. Here we follow the evolution of senescence
markers in melanoma cells and find that while most cancer
cells eventually turn senescent, this is at root irrelevant for
the long-term growth rate of a tumor. To demonstrate this,
we construct a mathematical population dynamics model
incorporating cancer stem cells which is able to reproduce
quantitatively the experimental data. Our results support
the existence of cancer stem cells in melanoma and
explain why it is difficult to fight cancer by inducing
senescence in cancer cells. Only a fraction of the cells are
susceptible to senescence, but those cells are irrelevant for
tumor growth. A successful therapeutic strategy should
instead target cancer stem cells, which are, however, likely
to be strongly resistant to drug induced senescence.

Senescent Cells in Growing Tumors
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The complete solution for the total number of cells, corresponding

to an initial condition S0
w0 and C0

k~D0~c, is given by

nN
tot~SNzŜSNz

XM
k~1

(CN
k zĈCn

k)zDNzD̂DN ð4Þ

and is plotted in Fig. 2A, while in Fig. 2B we report the fraction of

senescent cells.

Eqs.2 represent only a transient contribution to the cell

population and does not influence the asymptotic fractions (i.e.

for N&M ) of senescent cells f ?
SC and CSCs f ?

CSC which are readily

obtained dividing the results in Eqs. 2 by the total number of cells

at each generation:

f ?
SC~

1{E
1zq

ð5Þ

f ?
CSC~

qzE
1zq

1zE
2

� �M

: ð6Þ

The asymptotic solutions are plotted in Fig. S1 as a function of E
for different values of q and M.

It is instructive to use the solution to compare how cells become

senescent in normal tissues and in cancers. In the long time limit,

the asymptotic fraction of senescent cells is equal to f ?
S ~

(1{E)=(1zq) and is independent of the number of duplications

M needed to induce senescence (see Fig. S1). For normal stem

cells, E~0 and the percentage of senescent cells is expected to be

large, reaching 100% in the limit of q~0, when senescent cells

never die. For cancer cells, Ew0 and the fraction of senescent cells

is smaller but still non-vanishing. Similarly, the CSC fraction is

given by f ?
CSC~

qzE
1zq

1zE
2

� �M

which is smallest for normal stem

cells and increases as a function of E in tumors (see Fig. S1).

Aggressive tumors such as melanoma should be characterized by

high values of E and therefore by relatively high values of the CSC

fraction. Beside asymptotic fractions, the model allows one also to

characterize the evolution of the populations, i.e. the time-

dependent evolution of the senescent cell fractions (see Fig. 2). The

results show that the level of senescence in tumors strongly

depends on the fraction of CSCs and on time.

Growth of mesenchymal stem cells
To quantitatively confirm that the model is able to predict the

growth properties of stem cells, we first compare its results with

experimental data for normal stem cells, and then turn to cancers.

It has been shown that long-term in vitro culture of mesenchymal

stem cells (MSC) induces replicative senescence with important

implication for the therapeutic application of MSC preparations

[28,29]. In particular, the authors show a rapidly increasing

fraction of cells that are positive to b{gal, a senescence marker;

after roughly 50 days, the fraction of senescent cells reaches 80%

of the population. By looking at the growth curves for cells

extracted from donors of different ages, the authors could not

establish a correlation between senescence and aging [29].

To validate our model, we have used it to fit the growth curves

reported in Ref. [28]. In order to compare the model with the

Figure 1. Branching processes for cancer growth. At each generation, CSCs can divide symmetrically, giving rise to two CSCs with probability
p2 or to two CCs with probability p0 , or asymmetrically with probability p1~1{p2{p0 giving rise to a CSC and a CC. Cancer cells can only divide a
finite number of times M (in the figure M~3), after that they become senescent. Senescent cells die with probability q at each generation.
doi:10.1371/journal.pcbi.1002316.g001

Senescent Cells in Growing Tumors
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experiments, we should first express the evolution equations as a

function of time rather than generation number. This is easily

done introducing the rate of cell division per day Rd and replacing

in Eqs.2–3 the generation index N by Rdt, where t is time

expressed in days. In this way, Eq.4 can directly be compared with

the growth curves reported in Refs. [28,29]. In particular, we use

Eq.4 for E~0, q~0 and c~0. Under this conditions the

expression reduces to a much simpler form

ntot(t)~
S02Rd t for t ƒ M=Rd

S02M (1zRdt{M) for tw M=Rd

(
ð7Þ

We then compute the CPD based on Eq. 14 and perform a two

parameters fit in terms of Rd and M (see Figs. 3 and S2).

We have also analyzed similar data reported in Ref. [29] for the

growth of MSC isolated from human bone marrow for the iliac

crest (BM) and from the femoral head (HIP) (see Fig. 2). Although

significant fluctuations between donors are revealed, the results

show in general a decrease of the parameter M with the age of the

donor (see Fig. 4), older people have fewer generations of

reproduction before senescence. The plot also shows for donors

of similar age that M is smaller for BM-MSC than for HIP-MSC,

suggesting that the former are more prone to become senescent.

On the other hand, the cell division rate fluctuates around the

value of Rd~0:5 divisions/day, as reported in Ref. [27], without

any apparent correlation with age.

Cancer growth and senescence
In recent publications, one of us identified aggressive subpop-

ulations expressing two stem cell markers, ABCG2 [9] and

CXCR6 [16], in human melanoma cell lines, making this tumor a

suitable candidate to test our theory. Here, we analyze the level of

expression of the senescence marker b{gal in three human

melanoma cell lines, WM115, IGR39 and IGR37 [9,16]. IGR39

and IGR37 cells have been sorted into two subpopulations

according to the expression of the ABCG2 marker [16]. In Fig. 5A

and Table S1, we report the level of the b{gal senescent marker

as a function of time for ABCG2 positive (ABCG2+) and negative

cells (ABCG22). In both cases, we observe an increase in the

percentage of b{gal positive cells after 80–90 days of growth

followed by a decrease to the initial level after 120 days (see

Table S1). While the data follow a similar trend for the two

subpopulations, the peak for IGR39 ABCG22 cells is much

higher, reaching 90% of the cells. In order to confirm that the

difference in the expression of the senescence marker is related to a

different proliferative behavior for the two subpopulations, in

Fig. 5B we report the long-term growth curves corresponding to

IGR39. The results show that ABCG2+ cells grow substantially

more than ABCG22 cells (i.e. 23 times more). Furthermore, the

Figure 2. Dynamics of cell fractions. (a) The growth of the cell population obtained in the model for E~0:7, q~0:1, M~20 and different values
of the initial fraction of CSCs f 0

CSC as a function of the number of generations N . (b) The evolution of the fraction of senescent cells corresponding to
the same parameters.
doi:10.1371/journal.pcbi.1002316.g002

Senescent Cells in Growing Tumors
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peak percentage of b{gal coincides in time with a marked slow

down in the growth (Fig. 5). When the level of b{gal expression

falls back to the initial value, growth is also restored (Fig. 5B).

These data can be described by our theoretical model, if we

assume that ABCG2+ and ABCG22 data are only distinguished

by a different initial fractions of CSCs f 0
CSC . Fitting simultaneously

the growth curves and the b gal concentrations with the model

(see Fig. 5 and Materials and Methods for details), we obtain

f 0
CSC~0:63+0:05% for ABCG22 and f 0

CSC~16+1% for

ABCG2+ cells. Hence, our model suggests that expression of

ABCG2 is strongly correlated with CSCs (almost a factor of thirty),

but only a relatively small fraction of ABCG2 expressing cells are

CSCs. Notice that the final CSC fraction is different from the

initial one: using the fit parameters we estimate f ?
CSC~0:2%. As

shown in Fig. 5A the fraction of senescent cells predicted by the

model is in good agreement with the experimental data, predicting

a large senescence peak for ABCG22 cells. Notice that we could

easily find parameters producing a clear peak in the b{gal
concentration also for ABCG2+ cells. Our multicurve fit, however,

is dominated by the (higher precision) growth curves and the

resulting best fit parameters yield no peak in the b{gal plot. For

ABCG22 cells, the peak in the theory curves arises after M
generations. The experimental peak in senescence and the

associated dip in doubling rate after *38 generations directly

implies a long-term memory of the initial preparation, embodied

by our senescence generation M, a parameter that we expect may

be smaller for other growth conditions and tumor types.

Senescence in the stochastic model of cancer growth
The peak in cellular senescence is quantitatively described by

the hierarchical model and it would be hard to reconcile this result

with the stochastic cancer model, where cancer cells are not

organized hierarchically. To illustrate this point, we reformulate

the stochastic model in mathematical terms assuming that

Figure 3. Growth curves of mesenchymal stem cells (BM). The growth of populations of MSC isolated from the bone marrow from the iliac
crest in terms of cumulative population doublings are fitted by the model. Experimental data are obtained from Ref. [28]. The best fit is obtained
varying M and Rd in Eq.7.
doi:10.1371/journal.pcbi.1002316.g003

Senescent Cells in Growing Tumors
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senescence can only occur as a result of random mutation. In this

model, we distinguish between two cell populations, cancer cells

(CC) and senescent cells. CC duplicate with probability 1{p{q,

die with probability q and become senescent with probability p,

while senescent cells do not duplicate but can die with probability

q. The average numbers of CC CN and senescent cells DN after N

generations follow recursion relations

CN~2(1{p{q)CN{1 ð8Þ

DN~(1{q)DN{1zpCN{1: ð9Þ

We can solve the recursion relations explicitly obtaining:

CN~½2(1{p{q)�NC0 ð10Þ

DN~
p(1{q)

1{2p{q

� �
(½2(1{p{q)�N{½1{q�N )C0, ð11Þ

where we have assumed for simplicity that D0~0. The solution

implies that the number of CC grows as long as 2(1{p{q)w1
and shrinks otherwise, yielding a condition for tumor progression.

Dividing CN and DN by the total population size CNzDN , we

obtain the relative fractions fCC and fSC of CC and senescent cells,

respectively. In the asymptotic limit (i.e. large N), we obtain

Figure 4. Effect of the donor age on cell senescence. The value of
the parameter M obtained in Fig. 3 as a function of the age of the
donor for MSC isolated from bone marrow from iliac crest (BM) and
femoral head (HIP). The decrease of M with age indicates that for older
donors cell senescence occurs more rapidly. HIP-MSC show a larger
value of M than MSC-BM. We report our estimates for the parameter Rd

in the inset, showing values compatible with Rd~0:5 reported in Ref.
(26) and no significant age dependence.
doi:10.1371/journal.pcbi.1002316.g004

Figure 5. Growth and senescence of IGR39 ABCG2+ and ABCG22 human melanoma cells. Panel A shows the fraction of b{gal positive
cells for ABCG2+ and ABCG22 cells. In both cases, senescence increases rapidly after 90 days; the fraction reaches higher values for ABCG22 cells.
After 100 days, however, the fraction drops down to the asymptotic values. Panel B shows the corresponding long-term growth curves, compared
with predictions of the model, using the best fit parameters, used also for solid lines in Panel A. Panels C–F display b{gal staining for ABCG22 (C–D)
and ABCG2+ cells (E–F) at different stages: at the beginning (C and E) and at the time of the fraction peak (D and F). The fractions of b{gal positive
cells (shown in green) is largest in panel D.
doi:10.1371/journal.pcbi.1002316.g005

Senescent Cells in Growing Tumors
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steady-state solutions

fCC~

1{2p{q

1{p{q{pq
for 1{2p{qw0

0 for 1{2p{qv0

8<
: ð12Þ

fSC~

p(1{q)

1{p{q{pq
for 1{2p{qw0

1 for 1{2pv0 and q~0

0 for 1{2p{qv0 and qw0

8>><
>>: ð13Þ

The approach to the steady-state is reported in Fig. 6A and the

steady-state solutions are plotted in Fig. 6B in the case q~0. These

results show that the fraction of senescent cells should evolve

rapidly towards a steady state in way that is incompatible with the

experiments, providing additional evidence supporting the exis-

tence of CSCs in melanoma. The present stochastic model is

clearly oversimplified and one could think of more elaborate

models involving heterongeneous cell populations without a

hierarchy. We do not see, however, how we can explain a peak

in senescence after 90 days without assuming the presence of at

least two distinct subpopulations one of which undergoes

senescence after this long interval.

Senescence in tumor xenografts
In Fig. 7, we report the evolution of the fraction of senescent

cells in human melanoma WM115 cells according to the b{gal
marker. Fig. 7 shows an increase in the fraction of cells expressing

this marker, reaching more than 40% after 80 days of cultivation.

We find a similar level of b{gal also in tumor xenografts after 60

days (Fig. 7D). This confirms that our finding of senescent

melanoma cells is not restricted to growth in vitro.

Hypoxia does not affect growth of melanoma cells
In order to confirm that the observed cell senescence in

xenografts (Fig. 7) is not due to hypoxia, we grow WM115 cells

under normal or hypoxic conditions (see Materials and methods).

Only a slight inhibition on cell growth was observed 48 hrs after

incubation under hypoxic condition. This behavior is explained by

the induction of the hypoxia inducible factor {1a (HIF{1a) after

18 hours of hypoxic conditions (see Fig. 3). HIF{1a is a

pleiotropic transcription factor typically activated in response to

low oxygen tension as well as other stress factors in normoxic

conditions. Upon activation HIF{1a mediates the transcriptional

activation of target genes involved in a variety of processes

comprising stress adaptation, metabolism, growth and invasion,

but also apoptotic cell death. While we cannot exclude that some

form of environmental stress factor affect our results, we conclude

that hypoxia is not a likely cause for the senescence we observe in

xenografts; our in vitro cells do not experience hypoxia.

Survivin reverses senescence
Since it has been recently shown that survivin allows cells to

escape senescence [30], we transfect IGR37 ABCG22 cells at the

peak of b{gal (corresponding to the 98th day for IGR37 cells, see

Table S1) with a survivin-GFP or GFP alone [31]. We then

quantify the resulting senescence with b{gal activity and visualize

cell proliferation with crystal violet assays (see supplement for more

details). In Fig. 8A, we show that the overexpression of survivin

induces a dramatic decrease of b{gal activity. Importantly, under

the same conditions survivin enhances cell proliferation as shown

Figure 6. Senescence in the stochastic model of cancer growth. A) Evolution of the fraction of senescent cells as a function of the number of
generations N as a function of p (compare with Fig. 2B for the CSC model) B) The asymptotic fractions of senescent cells and cancer cells as a function
of the probability p for a cell to become senescent. For pw0:5, all cells asymptotically become senescent and the tumor stops growing. (compare
with Fig. 1B for the CSC model).
doi:10.1371/journal.pcbi.1002316.g006

Senescent Cells in Growing Tumors
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by the colony size distributions (Fig. 8B), the number of colonies

and the fraction of area covered by colonies (see Table S2). The

effect of survivin is absent for unsorted IGR37 cells when the level

of b{gal is low (see Fig. 8B). Moreover, when the percentege of

b{gal positive cells is below the peak the effect is very small (see

Fig. 5). These data provide a further confirmation of the presence

of senescent cells in growing tumors.

Simulations of cancer treatments
It is illuminating to use the CSC model to simulate the effect of

a treatment on the progression of a tumor. We consider two

possible strategies: (i) try to stop tumor growth by stimulating cell

senescence, and (ii) eradicate the tumor by inducing cell death.

Case (i) can be described by decreasing the parameter M,

representing the number of generation needed for a CC to turn

senescent. The responses to treatment is summarized in Fig. 9A

showing that the tumor size stops growing for a short while,

but eventually the growth resumes at the previous rate. This is

due to the action of CSC, whose fractional population increases

dramatically in response to the treatment and sustains cancer

growth. Our model quantifies the common-sense statement that if

the cancer stem cells are the only parties that double forever, then

a treatment that does not remove them will be fruitless in the long

term. Case (ii) can be described by introducing a parameter p, as

the probability that a CC cell dies (before senescence). If we

assume that CSCs are drug resistant and therefore do not die, we

predict that the tumor size would initially shrink, but the growth

would starts again after some time (Fig. 9C), due to the persistent

growth of the CSC subpopulation (Fig. 9D) Again, the model

predicts that the only possible strategy to stop cancer growth is to

target CSCs.

Discussion

The present results have powerful implications for our picture of

cellular senescence in tumors. The stochastic cancer model

suggests that since cancer cells proliferate indefinitely, they must

have evaded senescence by some yet unknown biological

mechanism. Our results show instead that cancer cells in general

become senescent, but this fact is ultimately irrelevant for tumor

progression since long-term proliferation eventually resumes. This

finding can be explained by the hierarchical cancer model where a

subpopulation of CSCs drives tumor growth and the other cancer

cells turn senescent after a fixed number of duplications. The peak

in cell senescence should correspond precisely to the time at which

the initial population of cancer cells turn senescent slowing tumor

growth. At this point, CSCs are able to restart the growth process

by symmetric duplication leading eventually to the decrease of the

fraction of senescent cells as observed in the experiments. It would

be hard to reconcile our experimental data with the conventional

cancer model hypothizing that a random mutation would lead to

massive senescence roughly at the same time for all the different

cancer cell populations considered. The fact that CSCs do not

become senescent is probably a signature that they originate from

Figure 7. Cellular senescence in human melanoma WM115 cells. In panel A the presence of senescent cells in WM115 cells is quantified by
the fraction of b{gal positive cells which we report at the beginning of the growth, at its peak and in tumor xenograft. The mean is taken over five
independent determinations and the standard error is reported. Panel B shows b{gal staining (shown in blue) at the beginning (start), at peak and in
tumor xenograft after 60 days.
doi:10.1371/journal.pcbi.1002316.g007
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normal stem cells and are therefore already immortal. This

observation may have implications for therapeutic strategies trying

to stop tumor growth by inducing senescence: such an approach is

bound to fail unless senescence is induced in CSCs.

The data on the ABCG2 sorted population can be explained by

the hierarchical cancer model if we assume that ABCG2+ and

ABCG22 data are distinguished by a different initial fractions of

CSCs. A larger fraction of CSCs in ABCG2+ cells should reduce

the occurrence of senescence and increases proliferation with

respect to ABCG22 cells. Furthermore, the observation that both

cell populations eventually resume their growth at the same rate

suggests that some CSCs are also present in ABCG22 cells, whose

growth would otherwise stop. This implies that while ABCG2 is

able to select a CSC rich population, by itself it is not a clean

sorting criterion. This is in agreement with the results of Ref. [16]

showing that ABCG22 cells yield a tumor xenograft in

immunodeficient mice that is smaller than the one produced by

ABCG2+ cells. The fact that ABCG2 is not an absolute CSC

marker implies that its expression is reversible after sorting. We

have checked this by sorting ABCG2+ and ABCG22 cells after

139 days finding that both express ABCG2 (with percentage

0.92% and 0.45%, respectively). The same problems are likely to

affect putative CSC markers shown in the literature to be

reversibly expressed and hitherto considered incompatible with

the CSC model [18]. Similar observations in breast cancer cells

have been recently interpreted as a signature of stochastic

phenotypic switching, assuming that CC have a small probability

to revert to the CSC state [19]. The same data could possibly be

interpreted in our framework by assuming that the marker was not

perfect. It would be interesting to develop quantitative tools to

distinguish between phenotypic switching and imperfect markers.

The presence of CSC in melanoma is debated because

conflicting data are reported in the literature [14,17,18] showing

that slightly different assay conditions lead to different CSC

fractions, that can sometimes be relatively large [17]. There is in

fact no reason to believe that the CSC population must be small.

This idea comes from the analogy with tissue stem cells that

replicate homeostatically, keeping their population constant either

by asymmetric division or stochastically [6,7], leading to a

vanishing concentration of stem cells in the total cell population.

CSCs do not replicate homeostatically and therefore their

population grows exponentially. Changes in assay conditions can

change the duplication rate of CSC, leading for extreme

conditions (i.e. for example the use of matrigel, mice permissive

Figure 8. Effect of survivin on senescence. IGR37 ABCG22 cells were grown until the peak of b{gal (98 days see Table S1) and then transfected
with a plasmid containing cytoplasmic-survivin-GFP or GFP alone. The next day the cells were plated for b{gal activity (50000cells=35mm2 well) and
crystal violet (200 cells per well) assays. In panel A, we show the percentage of b{gal positive cells for untransfected, GFP and GFP-survivin cells. The
histogram shows the mean of five independent determination + S.E. Represenative images of b{gal staining (shown in green) are reported for GFP
and GFP-survivin cells. In panel B, we show the distribution of colony sizes from crystal violet assay for GFP and GFP-survivin cells, showing a marked
increase in proliferation. Such an increase is not detected for unsorted IGR37 cells, transfected at the beginning of the experiment, for which the
percentage of b{gal positive cells is already low.
doi:10.1371/journal.pcbi.1002316.g008
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conditions etc.) to a relatively large concentration of CSCs,

perhaps resolving previous controversies [14,17,18].

Materials and Methods

Cell lines
Human IGR37 cells were obtained from Deutsche Sammlung

von Mikroorganismen und Zellkulturen GmbH and cultured as

previously described [16]. IGR39 was derived from a primary

amelanotic cutaneous tumor and IGR37 was derived from an

inguinal lymph node metastasis in the same patient. Human

primary melanoma WM115 (ATCC CRL 1675) was cultured as

in previous work [9].

Flow cytometry
Cells were analyzed for fluoroscein isothiocyanate (FITC)

mouse anti-human ABCG2 (R&D Systems, Minneapolis, MN)

expression. All samples were analyzed using one- or two-color flow

cytometry with non-specific mouse IgG used (Invitrogen, Carls-

bad, CA) as isotype controls. For each flow cytometry evaluation, a

minimum of 5|105 cells were stained and at least 50000 events

were collected and analyzed (106 cells were stained for sorting).

Flow cytometry sorting and analysis was performed using a

FACSAria flow cytometer (Becton, Dickinson and Company, BD,

Mountain View, CA). Data were analyzed using FlowJo software

(Tree Star, Inc., San Carlos, CA).

Senescence associated b{gal assay
Expression of pH-dependent senescence associated b{gal

activity was analysed simultaneously in different passage of cells

using the Senescence galactosidase Staining Kit (Sigma) according

to the manufacturers protocol.

Tumor formation analyses and isolation of single cells
from melanoma biopsy

5|105 cells were injected subcutaneously into five-week-old

NOD-SCID mice (Charles River Laboratories, Boston, MA).

Animals were maintained on standard laboratory food ad libitum

fed and free access to water. Tumor mass was excised after two

months and digested with 0.2% collagenase type I (Gibco), 0.2%

bovine serum albumin (BSA; SIGMA, St. Louis, MO) for

30 minutes at 370C on an orbital shaker. Cells are maintained

in culture for no more than two passages.

Growth under hypoxic condition
WM115 cells were grown in standard medium under normal or

hypoxic conditions (99.8% CO2/0.2% O2) for up to 48 hours.

Figure 9. Simulated response to drugs in the CSC model. In panel A, we show the response of the model to a senescence inducing drug. The
strength of the treatment is controlled by the parameter M , that in normal conditions we set to be M~20. To simulate the effect of the drug, M is
reduced to M~10 for a weak treatment and M~2 for a strong treatment. The growth of the tumor is slowed down for a short period and then
restart as before. Panel B shows that the fraction of drug induced senescent cells rapidly decreases to the level of the control. This is due to the CSC
activity. In panel C, we show a simulation the effect of a cell death inducing drug. Here weak treatment corresponds to a probability p~0:2 for a CC
to die, while strong is simulated by setting p~0:7. The drug leads to a rapid decrease of the tumor size, measured in terms of cumulative population
doublings. After a few generations, however, the population starts to grow again. This is due to the CSC whose fraction increases as a response to the
drug (panel D). These simulations are performed using parameters characteristic of IGR39 cells.
doi:10.1371/journal.pcbi.1002316.g009
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Total RNA was extracted from WM115 cells or prostate cancer

cell lines (PC-3 used as control) [32] under normal and hypoxic

conditions. Reverse transcription (RT)-PCR reactions were done

as previously described [16]. The oligonucleotide primer sequenc-

es and gene-specific PCR amplification programs used are

following: sense 5
0
-CCTATGTAGTTGTGGAAGTTTATGC;

antisense 5
0
-ACTAGGCAATTTTGCTAAGAATG for 40 cycles

at 950C for 30 s, 600C for 15 s, and 720C for 30 s. The integrity of

each RNA and oligodeoxythymidylic acid-synthesized cDNA

sample was confirmed by the amplification of the b-actin

housekeeping gene. Ten microliter of each RT-PCR sample was

run on a 2% agarose gel and visualized by ethidium bromide

staining.

Survivin overexpression
200000 cells were plated on 6 multiwell and the day after

transfected by lipofectamin with cytoplasmic survivin-GFP

plasmid or GFP (both plasmids were a gift of Dr Wheatley,

[31]). 24 hours later the GFP-positive cells were counted by flow

cytometry. More than 95% of cells were GFP-positive. These cells

were immediately used for crystal violet or b{gal actosidase

assays.

Crystal violet staining cells and cluster analysis of the
colonies

Cells were plated on 6 multiwell and stained after 8 days.

Briefly, they were fixed with 3.7% paraformaldeide (PFA) for

5 minutes and then stained for 30 min with 0.05% crystal violet

solution. After two washings with tap water, the plates were

drained by inversion for a couple of minutes and then

photographed. To quantify cell proliferation, we threshold the

images and apply the Hoshen-Kopelman algorithm to identify

individual clusters (see Fig. 4 for a visual explanation of the

method). We then compute the number of colonies, the area

fraction covered by colonies (see Table S2) and the colony size

distribution (see Figs. 8B and S5). The last method is the most

accurate and complete, avoiding possible experimental artifacts

due to local cell detachments.

Growth curves
Long-term growth curves are obtained by splitting the cells at

each passage and rescaling the result of the counting by an

appropriate factor. Cells are counted using a burken chamber in

the presence of trypan blue. It is convenient to express the growth

curves in terms of cumulative population doublings (CPD),

expressing the number of times the populations has doubled.

CPD is directly related to the number of cells ntot(t) at time t by

the expression:

CPD(t)~ log (ntot(t)=ntot(0))= log 2; ntot(t)~ntot(0)2CPD(t) ð14Þ

where ntot(0) is initial number of cells.

Fitting experiments with the CSC model
In order to fit the data with model, the total number of cells can

be expressed as the sums of two terms ntot(t)~S0f (t)zcg(t)
derived from Eq. 2 and Eq. 3, respectively. In particular, we have

f (t)~
2
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Furthermore, we can also compare the model with the b{gal
concentration, assuming that it is equal to the fraction of

senescent cells. The experimental comparison involves the fit of

four curves in terms of the parameters M, Rd , E, q and c. Since

ABCG2+ and ABCG22 cells only differ by their relative fraction

of CSC, we use the same values of M, Rd , E, q for the two

subpopulations and vary only the parameter c. We thus perform

a multiple curve fitting in which the two growth curves and the

two b{gal curves are fitted simultaneously in terms of six

parameters (M, Rd , E, q, c(z) and c({)), where c(+) is the value of

c for ABCG2+ cells. To this end, we use the pyFitting software

(https://github.com/gdurin/pyFitting) developed by G. Durin.

The result is

Rd~0:38+0:04 ð17Þ

M~37:7+0:1 ð18Þ

E~0:71+0:01 ð19Þ

q~0:38+0:04 ð20Þ

c(z)=S0~0:13+0:01 ð21Þ

c({)=S0~4:1+0:3 ð22Þ

with a reduced x2 of 14:3. In Table S3, we report the covariance

matrix and the t-statistic.

We can express the parameters c(z) and c({) in terms of the

initial fractions of CSC as f 0
CSC~S0=(S0zc(+)(Mz1)) for

positive and negative cells, where the arbitrary scale S0 is set

equal to one in the fits. We obtain

f 0
CSC~0:63+0:05% for ABCG2{ ð23Þ

f 0
CSC~16+1:% for ABCG2z ð24Þ

Hence the ABCG2+ cells have more CSCs than ABCG22 cells,

as expected. We have also checked how much the choice of the

initial condition affect the results. For simplicity, we have imposed

a uniform distribution of C0
k (for kw0) to obtain a closed form

solution (Eqs. 2–3). To assess the robustness of our results, we have

compared the growth curves obtained under this assumption with

those obtained using the same fit parameters and C0
k imposed as

the steady-state solution of the model with the same parameters

but smaller M. The resulting curves are very close to each other

indicating that at least for this case there is a weak dependence on

the initial conditions.

ð16Þ
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Supporting Information

Figure S1 Asymptotic fractions of CSCs and senescent
cells in the model. The asymptotic fraction of CSCs (A) and

senescent cells (B) as a function of the proliferation parameter E
and for different values of the number M of duplications needed

by cancer cells to become senescent and of the probability of cell

death q. Unlike the fraction of CSC, the fraction of senescent cells

does not depend on M.

(TIFF)

Figure S2 Growth curves of mesenchymal stem cells
(HIP). The growth of populations of MSC isolated from the bone

marrow from the femoral hip in terms of cumulative population

doublings are fitted by the model. Experimental data are obtained

from Ref. [29]. Cell populations refer to donors with different

ages. The best fit is obtained varying M and Rd in Eq. 7.

(TIFF)

Figure S3 Hypoxia inducible factor. RT-PCR of HIF{1a
(145bp) of WM115 cells grown under normal or hypoxic condition

(from 18 to 48 hrs) and PC-3 cells as positive control.

(EPS)

Figure S4 Cluster analysis of crystal violet assay. A) To

analyze the crystal violet assay, we first photograph the multiwell

and isolate a single well. B) Using the image analysis software

Gimp we select by color the spots, eliminate the background and

threshold the remaining spots in order to obtain a two color image.

C) We apply the Hoshen-Kopelman cluster algorithm to identify

individual colonies, recolored here with random colors for

visualization purposes.

(TIFF)

Figure S5 Effect of survivin on senescence away from
the peak of b”gal. we show the distribution of colony sizes

obtained from crystal violet assay for untransfected, GFP and

GFP-survivin cells. In this experiment 500 cells were plated after

88 days of cultivation (see Table S2). We see a small effect due to

GFP and survivin.

(TIFF)

Table S1 Evolution of senescence marker. The evolution

of the percentage of b{gal positive cells for ABCG2 sorted

IGR39 and IGR37 cell populations.

(PDF)

Table S2 Crystal violet assays. A summary of the results

obtained with the crystal violet assay for GFP and GFP-survivin

transfected cells at different stages of the growth. We report the

total number of colonies and the fraction of area covered by

colonies.

(PDF)

Table S3 Fit covariance matrix. The covariance matrix and

the t-statistics of the joint fit of the growth curves and b{gal
concentration with the CSC model.

(PDF)
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