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We consider a population that experienced a first wave of infections, interrupted by strong, top-down,
governmental restrictions and did not develop a significant immunity to prevent a second wave (i.e., resurgence).
As restrictions are lifted, individuals adapt their social behavior to minimize the risk of infection. We explore
two scenarios. In the first, individuals reduce their overall social activity towards the rest of the population.
In the second scenario, they maintain normal social activity within a small community of peers (i.e., social
bubble) while reducing social interactions with the rest of the population. In both cases, we investigate possible
correlations between social activity and behavior change, reflecting, for example, the social dimension of certain
occupations. We model these scenarios considering a susceptible-infected-recovered epidemic model unfolding
on activity-driven networks. Extensive analytical and numerical results show that (i) a minority of very active
individuals not changing behavior may nullify the efforts of the large majority of the population and (ii) imperfect
social bubbles of normal social activity may be less effective than an overall reduction of social interactions.
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I. INTRODUCTION

The spreading of infectious diseases and human behavior
are fundamentally intertwined [1–6]. On one side, the un-
folding of epidemics might induce people to modify social
contacts, habits, and mobility. On the other, such changes
might drastically affect the course of outbreaks.

Behavioral change is a blanket term used to describe a wide
range of (re)actions. More in detail, these can be classified
into two main categories. The first consists of bottom-up,
self-initiated changes implemented by individuals according
to their perceived risk and susceptibility as well as to the
perceived barriers and benefits linked to each action [7–10].
These individual decisions vary from social distancing and
increased hygiene to the adoption of healthy diets and the
use of personal protective equipment such as face masks
[1,2]. The second category describes top-down governmen-
tal interventions aimed at interrupting chains of infection
banning (or limiting) large gatherings and mobility within
and across countries as well as strict lockdowns and cordon
sanitaire [1,2,6,11].

The literature on the subject provides a wealth of theo-
retical models developed to capture behavioral change and
characterize their effects on diseases [1,2]. These studies
differ according to the level of analysis, from single ho-
mogeneously mixed populations to individual-based contact
networks, and according to the mechanisms adopted to model
changes in behaviors. Several works tackle the problem by
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considering variations in individuals’ features or in diseases’
parameters [12–17], while others focus on changes in connec-
tivity patterns [4,18–21]. Across the board, such variations
are linked to (i) disease prevalence and/or (ii) individuals’
beliefs and (mis)information circulating in the system. The
first approach typically does not affect the threshold proper-
ties of the spreading. In fact, in this case, behavioral change
starts to be implemented only after the initial growth of the
infected population. Nonetheless, prevalence-induced behav-
ioral change can drastically reduce the final disease burden.
The second approach can also affect threshold properties
and thus modify the conditions necessary for a macroscopic
outbreak even in the case of simple, homogeneously mixed
populations [12,22].

Unfortunately, the COVID-19 pandemic highlights the im-
portance of behavioral changes across the various phases
of the emergency [6]. For example, after the first wave,
many countries gradually lifted the top-down measures im-
plemented to curb the spreading of the SARS-CoV-2 virus.
Such interventions have been largely induced by the local
spreading and in particular by the burden to the healthcare
systems. When they were relaxed, self-initiated behavioral
change (nudged by new regulations) became fundamental. In-
deed, evidence from serological studies and modeling efforts
indicated that the immunity resulting from the first wave was
very far from the one required for herd immunity [23–25].
In this context, we present a theoretical framework aimed
at investigating the effects of behavioral changes on dis-
ease resurgence on time-varying contact networks [26–28]. In
particular, we consider the following, unfortunately realistic,
scenario. We imagine a population that experienced a first
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wave of infections which due to strict top-down measures
was interrupted early. We imagine that interventions are lifted
and that people reduce their social interactions (with respect
to the usual baseline) either because mindful of the risk of
propagating the virus (if infected) or because concerned about
the risk of infection (if not infected). In doing so, we ex-
plore the effects on disease resurgence if such changes are
implemented only by a fraction of the population selected
(i) at random and (ii) according to the propensity individuals
have to establish social interactions. We adopt activity-driven
networks, a class of time-varying networks, to model the
temporal interactions between individuals [29–34]. Although
they are a simple approximation of real contact networks,
they capture an important property of human interactions: the
heterogeneity of human activity. In fact, evidence from a wide
range of real data sets capturing human interactions in various
contexts suggests that the propensity per unit time of people
to establish social connections (i.e., the activity) is highly
heterogeneous [29–31,35,36]. Here we first consider the basic
formulation of the model in which, at each time step, active
nodes create random connections with others [29]. In these
settings, we derive the analytical expression of the epidemic
threshold of a susceptible-infected-recovered model [37] un-
folding on top of the temporal networks as a function of the
parameters and mechanisms defining the behavioral changes.
In particular, we consider the case of partial adoption of such
changes and find a closed-form expression for the basic repro-
ductive number R0. If adoption is assigned in increasing order
of activity, an almost perfect level of conformity is required
to avoid disease resurgence. This highlights that the lack of
adoption of a small number of highly socially active individ-
uals may jeopardize large collective efforts. We then consider
a more realistic variation of activity-driven networks able to
capture the mesoscopic organization of real sociograms in
tightly connected groups (i.e., communities) [34,38]. In these
settings, we rely on numerical simulations to characterize the
effects of behavioral changes. In doing so, we consider two
different types of adaptive behaviors. The first is a reduction
of activity. The second is inspired by the concept of social
bubbles: Nodes keep their social propensity but they direct
it towards a small social group. We model this scenario by
increasing the probability of interactions within communities.
Results show that the presence of communities increases the
threshold, making it more difficult for a disease to spread.
Furthermore, behavioral changes aimed at reducing activity
have a much stronger effect on the spreading with respect
to those aimed at increasing the cohesiveness of small social
groups.

The paper is organized as follows. In Sec. II we introduce
activity-driven networks. In Sec. III we describe the spreading
of infectious diseases on this class of time-varying networks.
In doing so, we first describe the various mechanisms of
behavioral changes induced in the population and then charac-
terize their effects on the spreading of the disease. In Sec. IV
we summarize and present our conclusions.

II. ACTIVITY-DRIVEN NETWORKS

In activity-driven networks, the temporal interactions be-
tween N nodes are captured by two steps. The first is the

node activation defining the subset of nodes that, at each time
step, are active and willing to establish social interactions.
The second is the partner selection defining with whom each
active node will connect. Nodes’ activation is modeled by
assigning to each node an activity a. This quantity, extracted
from a distribution F (a), describes the rate at which each node
is active per unit time. Hence, the interevent time between
two activations of each node is distributed as a Poissonian
with average 1/a. Extensions of the activity-driven framework
to non-Poissonian activation patterns have been proposed
[32,39] but for simplicity are not considered here. As men-
tioned above, observations in several real networks suggest
that such a distribution is heterogeneous [29–31,35,36]. For
simplicity, in the following we assume F (a) ∼ a−α with ε �
a � 1 to avoid divergences. Several mechanisms have been
proposed for the second step [29–34,40]. Here we consider
two: random and community-based partner selection.

A. Random partner selection

In the basic formulation of the model, each active node
creates m random connections with others [29]. Connections
are done without recollection of past interactions. Thus, the
process is Markovian. In these simple settings, the network’s
temporal dynamics can be summarized as follows: (i) At each
time t , the network Gt is initially disconnected; (ii) each node
is active with probability a�t creating m random connections;
and (iii) each connection is deleted, time is incremented to
t + �t , and the process restarts from the first point. In other
words, each connection lasts for a �t duration (without loss of
generality, here we set �t = 1) and it is created randomly by
active nodes. Thus, at each time step, the network Gt is mostly
made up of disconnected stars centered around active nodes.
It can be easily shown that the distribution of the number
of connections of each node (i.e., the degree) in the aggre-
gated network obtained integrating links over several time
steps follows the distribution of the activity [29,41]. Hence,
heterogeneous activity patterns induce the formation of hubs
which are highly active nodes engaging over and over in social
interactions. However, since links are created at random, the
distribution of links’ weights in the time-integrated network
is homogeneous and thus very far from observations in real
networks [42–44]. In summary, this version of the model cap-
tures some important features of real systems and it allows for
analytical analyses of dynamical processes unfolding on its
structure at comparable timescales [21,29,45–50], but at the
same time it is a rough approximation of real social networks.

B. Community-based partner selection

This second approach considers a much more realistic
partner selection mechanism. In fact, social networks are orga-
nized in tightly connected groups (i.e., communities), which
emerge and evolve in time [38]. As a result, the vast majority
of connections take place within such circles of friends rather
than across them [42,43]. To capture this fundamental aspect
of social interactions, each node is assigned to a particular
community c. The size s of each community is extracted from
a distribution G(s) [34]. In these settings, the dynamics of the
network follows these steps: (i) At each time t , the network Gt
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is initially disconnected; (ii) each node is active with probabil-
ity a�t creating m connections; (iii) with probability η each
connection is done selecting at random one of the nodes in
the same community and with probability 1 − η selecting at
random in any other community; and (iv) each connection is
deleted, time is incremented to t + �t , and the process restarts
from the first point.

As done above, without loss of generality we set �t = 1.
The parameter η regulates the modularity of the emerging
network. For η = 0 (and in the case of community sizes
s � N) the network unfolds very similarly to the first model.
Instead, for η = 1 the network will be formed by completely
disconnected communities. The link creation dynamics is still
Markovian since no memory of past interactions is used to
inform the partner selection process.

III. BEHAVIORAL CHANGES INDUCED BY DISEASE
SPREADING ON ACTIVITY-DRIVEN NETWORKS

We study the spreading of an infectious disease unfolding
at a comparable timescale with respect to the evolution of con-
nections in the contact network. We consider the prototypical
susceptible-infected-recovered (SIR) epidemic model [37,51].
Thus, each node can be found in one of three compartments:
Healthy and susceptible individuals are in the compartment
S, infectious in I , and recovered in R. The disease propa-
gates via the connections between susceptible and infectious
nodes with a probability of infection, per contact, λ. Infected
nodes recover spontaneously with probability μ. Hence, we
consider the epidemic dynamics as Markovian. Modeling
frameworks able to account for non-Markovian features have
been proposed [52–54]. Such features have been shown to
affect the spreading. However, in the case of susceptible-
infected-susceptible (SIS) dynamics, recent results point to
the equivalence between the two given an adequate rescaling
of the parameters [55]. In the case of an outbreak without
residual immunity [i.e., R(t = 0) = 0], the epidemic threshold
in a memoryless activity-driven network can be obtained,
using a mean-field approach, studying the evolution of the
number of infected nodes with activity a. In particular, this
threshold reads [29]

λ

μ
>

1

m

1

〈a〉 +
√

〈a2〉
, (1)

which implies that the disease will be able to spread only
if R0 = m λ

μ
(〈a〉 +

√
〈a2〉) > 1. In this expression, we intro-

duced the basic reproductive number R0 as the number of
secondary infections generated by an index case in a fully sus-
ceptible population [37]. Interestingly, the threshold of a SIR
(for a SIS model the threshold is the same) model is driven by
the first and second moments of the activity distribution rather
than the time-aggregated properties of the graph.

In the case of activity-driven networks with communi-
ties, we do not have a closed expression for the threshold.
However, it is interesting to notice how the presence of com-
munities affects SIR and SIS models very differently [34]. In
fact, while in the case of permanent immunity (SIR) the repe-
tition of contacts within communities hampers the spreading,
it helps the diffusion of diseases able to reach an endemic state
(SIS). In other words, modularity pushes the threshold of SIR

models to higher values while facilitating the spreading of SIS
models, pushing the threshold to lower values. Similar results
have been obtained in the case of non-Markovian partners’
selection processes induced by memory of past interactions
[56,57]. These allow for the emergence of weak and strong
ties, imposing the repetition of a few connections that break
the symmetry between SIR and SIS epidemic models.

As mentioned in the Introduction, in this work we in-
vestigate the following scenario. A highly infectious disease
spreads in the network, but its course is halted by strict
top-down interventions. In this first wave, the large majority
of individuals has not been affected; thus the system is far
from herd immunity. As the measures are lifted, individuals,
maybe nudged by laws and regulations, implement behavioral
changes with the aim of protecting themselves and the others
and thus avoid, or mitigate, a second wave.

Rizzo et al. [21] have studied the implementation of behav-
ioral changes reducing the activity of susceptible individuals
by a factor γ and the activity of infected individuals by a
factor ψ . Here we extend this approach by studying the effect
of adoption rates. We consider that such changes in behavior
are implemented only by a fraction of nodes selected either at
random or as a function of the activity. In fact, as suggested
by the health-belief model [7,8], the adoption of behavioral
changes is influenced by the barriers associated with their
implementation. Very active people, maybe due to their oc-
cupation, might be more penalized by reducing their activity
and thus less likely to adhere. As clearly shown during the
COVID-19 pandemic however, the adoption of nonpharma-
ceutical interventions is a complex issue linked to age, gender,
education, socioeconomics factors, political view, religion,
and other beliefs [6].

As a second step, we further extend the literature exploring
the interplay between behavioral changes and the modularity
of the network. This corresponds to the fact that individuals
might keep the same activity but cut connections with people
outside their close-knit social circles. Also in this case, we
study the role of adoption considering only a fraction of nodes
engaging in any form of behavioral change.

A. Imperfect adoption

Following the order described above, we first consider a
scenario in which, as a way to reduce the risk of infection,
susceptible individuals reduce their activity by a factor γ

and infected individuals by a factor ψ . However, we assume
that only a fraction of the population is willing, or able, to
reduce the activity. For this reason, we first consider that the
propensity to implement behavioral changes is independent
of the node’s features and only a function of its status. Thus,
across all activity classes, only a random fraction p of suscep-
tible individuals and a fraction w of infected individuals will
reduce the activity. Assuming that nodes of the same activity
are statistically equivalent, we can write the evolution of the
number of infected nodes of activity class a as

dt Ia = −μIa + mλ(Na − Ia − Ra)aγp

∫
da′ Ia′

N

+ mλ(Na − Ia − Ra)ψw

∫
da′ Ia′a′

N
, (2)
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where Na = Sa + Ia + Ra holds for all activity classes, γp =
1 − p(1 − γ ), and ψw = 1 − w(1 − ψ ). The first term on the
right-hand side describes the recovery process. The second
captures susceptible nodes that become active and select as
a partner an infected individual in any other activity class.
The third term describes susceptible nodes that are selected
by active and infected nodes in any activity class. In the early
stages of the possible second wave, we assume Ia � Sa and
Ra � Sa and thus Na ∼ Sa. In other words, the first wave was
stopped well before the disease was able to affect a large
fraction of the population. In these settings we drop all the
second-order terms, obtaining

dt Ia = −μIa + mλNaaγp

∫
da′ Ia′

N
+ mλNaψw

∫
da′ Ia′a′

N
.

(3)
By integrating both sides over all activity classes we have

dt I = −μI + mλγp〈a〉I + mλψw	, (4)

where 	 = ∫
da Iaa and 〈an〉 = ∫

da F (a)an. To characterize
the evolution of I (t ) we then need to derive an equation for
	. In particular, multiplying both sides of Eq. (3) by a and
integrating across all activities, we obtain

dt	 = −μ	 + mλγp〈a2〉I + mλψw〈a〉	. (5)

The epidemic threshold can be obtained by studying the stabil-
ity of the system of differential equations defined by Eqs. (4)
and (5). Indeed, the disease will be able to spread only if the
largest eigenvalue of the Jacobian matrix J of the system is
larger than zero. Here J can be written as

J =
(−μ + mλγp〈a〉 mλψw

mλγp〈a2〉 −μ + mλψw〈a〉
)

and the threshold is

λ

μ
>

2

m

1

〈a〉(γp + ψw ) + √
(γp − ψw )2〈a〉2 + 4γpψw〈a2〉 .

(6)
This condition implies R0 = (λ/μ)T −1 > 1, where T is the
right-hand side Eq. (6). Notably, when γ = ψ = 1, it reduces
to the threshold of activity-driven networks without behav-
ioral changes. However, it is interesting to note how these two
reductions of activity rates do not imply a simple rescaling
of the threshold. Indeed, they introduce nonlinear terms in
the expression. Furthermore, for p = w = 1, the threshold
reduces to the expression obtained by Rizzo et al. [21] describ-
ing the case of perfect adoption. The threshold is symmetric in
γp and ψw, meaning that the effective reduction in activity of
susceptible individuals (γp) and of infected individuals (ψw)
can be switched without implying any change in the threshold.
It is important to note, however, that in the early stages of
the outbreak the number of susceptible individuals is much
larger than the number of infected individuals. Thus, since
reductions of activity come with high social costs, combina-
tions of parameters with lower values of ψw rather than γp are
desirable.

We can see these effects in Fig. 1(a), where we show R0

[calculated from Eq. (6)] as a function of γ and ψ . As ex-
pected, in the case of random adoption the epidemic threshold
is shifted towards lower values of γ and ψ with respect to

(a) (b)

(c)

FIG. 1. Analytical value of the basic reproductive number R0 in
different scenarios: (a) R0 as a function of γ and ψ as obtained in
Eq. (6) in the case of imperfect adoption independent of the nodes’
activity, with p = 0.75 and w = 0.8; (b) R0 as a function of p and w

as obtained in Eq. (6) in the case of imperfect adoption independent
of the nodes’ activity, with γ = 0.1 and ψ = 0.1; and (c) R0 as a
function of p and w as obtained in Eq. (20) in the case of adoption
dependent of the nodes’ activity, with γ = 0.1 and ψ = 0.1. The
inset highlights a small region of the phase space. In all figures we
set ε = 10−3, m = 2, α = 2.1, and μ = 10−2 and we indicate with
a solid red line the threshold R0 = 1. The parameters are set so that
when γ = 1 and ψ = 1 (i.e., without behavioral changes) (a) R0 = 2
and (b) and (c) R0 = 1.2.

perfect adoption (dashed line). This implies that larger re-
ductions of activity are required in order to stop the disease
from spreading. In Fig. 1(b) we show R0 as a function of p
and w for fixed values of γ and ψ . We observe that p and w

interpolate between two opposite regimes. By reducing their
values, the adoption of behavioral changes becomes increas-
ingly less significant. Consequently, R0 assumes values closer
to those described in Eq. (1), which captures a system without
behavioral changes. Conversely, by increasing the values of
p and w, the values of R0 become progressively closer to a
system with 100% adoption of behavioral changes.

We test the analytical solution derived in Eq. (6) by means
of numerical simulations. In particular, we consider a case in
which infected individuals reduce their activity more (due to
their illness status, for example) with respect to the susceptible
individuals by setting γ = 0.8 and ψ = 0.1. In Fig. 2(a) we
plot r∞ = R∞/N as a function of λ for different values of
p and w. The epidemic size grows with the infectiousness
of the pathogen and it decreases when a larger fraction of
individuals implement behavioral changes. As expected from
the theory, the final epidemic size obtained with 80% of
susceptible and infected individuals implementing behavioral
changes is very similar to the one obtained with only 10%
of susceptible and 80% of infected individuals engaging in
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(a) (b)

(c) (d)

FIG. 2. (a) Final epidemic size (r∞ = R∞/N) with 95% confi-
dence intervals and (b) normalized relative variance σr∞/σ max

r∞ for
different values of λ in the case of imperfect random adoption.
Vertical dashed lines indicate the analytical threshold derived from
Eq. (6) for the different values of p and w considered. (c) and (d) We
repeat the analysis in the case of imperfect adoption dependent on
the nodes’ activity for different values of p and w. In all figures, we
represent median and 95% confidence intervals obtained from 102

stochastic simulations for each point with the parameters μ = 10−2,
N = 106, m = 2, ε = 10−3, α = 2.1, i0 = I0/N = 0.01 (initial frac-
tion of infected seeds), γ = 0.8, and ψ = 0.1.

such changes. Taking into account that at the beginning of the
possible second wave the number of infected individuals is
much smaller than the number of susceptible individuals, and
given the high socioeconomic cost of isolating individuals,
a setting in which infected individuals reduce their social
interactions more is clearly desirable. In Fig. 2(b) we rep-
resent, for different combinations of parameters, the relative
variance σr∞ of the final epidemic size as a function of λ [13].
This is defined as σr∞ = √〈r2∞〉 − 〈r∞〉2/〈r∞〉. Because of the
critical behavior of the epidemic process we are considering,
the maximum σr∞ is reached at the threshold. As expected,
we observe that, for the different combinations of parameters
considered, the normalized relative variance peaks around the
theoretical threshold values, providing a numerical validation
of the analytical expression found previously.

B. Imperfect adoption depending on activity

We now consider the case in which the propensity of imple-
menting behavioral changes is linked to the activity. We can
imagine that, due to the higher barriers and costs associated
with the change in behavior, nodes with higher activity are
less prone to such changes. A natural example is individu-
als who due to the nature of their job cannot easily reduce
the number of their interactions. For simplicity, we assume
that only susceptible nodes with activity lower than or equal
to ap and infected nodes with activity lower than or equal
to aw implement behavioral changes. In other words, nodes
with activity higher than a given threshold will not change
their behavior. As mentioned above, adoption of behavioral
changes is a complex issue shaped by many factors. Thus,

our modeling approach here is just a simplified approximation
amenable to highlight the possible interplay between activity
and adoption rates. In these settings, the maximum fraction
x of individuals changing behavior is linked to the activity
cutoff value ax as follows:

x =
∫ ax

ε

F (a)da. (7)

In general, since the health status of each node affects the
type of behavioral change, the fraction of, say, infected nodes
adopting behavioral change is smaller that the respective x.

The equation regulating the change of number of infected
individuals in a specific activity class a at early stages of the
spreading can be written

dt Ia = −μIa + mλNaa[1 − θ (ap − a)(1 − γ )]
∫

da′ Ia′

N

+ mλNa

∫
da′[1 − θ (aw − a′)(1 − ψ )]

Ia′a′

N
, (8)

where θ (x − y) is a Heaviside step function equal to one for
x � y and zero otherwise. Integrating over all activities and
introducing � = ∫

da′[1 − θ (aw − a′)(1 − ψ )]Ia′a′, we get

dt I = −μI + mλ[〈a〉 + 〈a〉p(1 − γ )]I + mλ�, (9)

where we defined 〈an〉p = ∫ ap

ε
F (a)anda as the nth moments

of the group of nodes adopting behavioral changes. In order
to understand the early dynamics we need to get an equation
for �. To this end, we can multiply both terms of Eq. (8) for
[1 − θ (aw − a)(1 − ψ )]a and integrating across all activities
we obtain

dt� = −μ� + mλF[〈a2〉, γ , ψ, ap, aw]I

+ mλ[〈a〉 − 〈a〉w(1 − ψ )]�, (10)

where we defined

F[〈a2〉, γ , ψ, ap, aw] = 〈a2〉 − 〈a2〉p(1 − γ ) − 〈a2〉w(1− ψ )

+〈a2〉minap,aw
(1 − γ )(1 − ψ ), (11)

which is a modulation of the second moment of the activity
distribution. From this standpoint we can write the Jacobian
matrix of the system of differential equations. To simplify
further the notation, we define

αp = 〈a〉 − 〈a〉p(1 − γ ), (12)

αw = 〈a〉 − 〈a〉w(1 − ψ ). (13)

Therefore, the threshold behavior is encoded in the system of
differential equations

dt I = (−μ + λmαp)I + λm�, (14)

dt� = +λmFI + (−μ + λmαw )�. (15)

The disease will be able to grow only if the largest eigen-
value of the Jacobian matrix of this system is larger than zero.
The Jacobian matrix can be written as

J =
(−μ + λmαp λm

λmF −μ + λmαw

)
. (16)
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The eigenvalues k1,2 can be found by solving the charac-
teristic equation

k2 + k[2μ − λm(αp + αw )] + λ2m2(αpαw − F )

− μλm(αp + αw ) + μ2 = 0, (17)

leading to

k1,2 = 1
2 [−2μ + λm(αp + αw ) ± λm

√
(αp − αw )2 + 4F].

(18)
The threshold condition can be written as

λ

μ
>

2

m[(αp + αw ) + √
(αp − αw )2 + 4F]

. (19)

Substituting the values of F , αp, and αw with those from
Eqs. (11)–(13), respectively, we obtain the threshold as a
function of the activity moments

λ

μ
>

2

m[2〈a〉 − (1 − γ )〈a〉p − (1 − ψ )〈a〉w + √
�]

, (20)

where

� = 4〈a2〉 + (1 − γ )
[〈a〉2

p(1 − γ ) − 4〈a2〉p
]

+ (1 − ψ )
[〈a〉2

w(1 − ψ ) − 4〈a2〉w
]

+ 2(1 − γ )(1 − ψ )[2〈a2〉min(ap,aw ) − 〈a〉w〈a〉p]. (21)

We can verify that, if ap = aw = 1, we find again the result
of Eq. (6). In Fig. 1(c) we compare the effects of differ-
ent values of p and w on R0 in the case of activity-based
adoption using Eq. (7) to compute the corresponding values
of ap and aw. Very differently from the case of a random
adoption [Fig. 1(b)], almost perfect conformity to the behav-
ioral measures is needed to halt the spreading and push R0

below 1. Indeed, even if the majority of individuals reduce
their activity, the interactions of the most active nodes are
sufficient to sustain the spreading. This is in line with the
study of immunization strategies in activity-driven networks
[46]. In fact, the strategic immunization of a few central, most
active, nodes has been shown sufficient to halt outbreaks. This
implies that these nodes are indeed key to the unfolding of the
virus. In Figs. 2(c) and 2(d) we test the analytical solution by
means of numerical simulations. We plot r∞ and σr∞/σ max

r∞ as
functions of λ, for different values of p and w. Interestingly,
we observe that large differences in p and w result in very
similar attack rate profiles and thresholds. This confirms how
the spreading is controlled by the most active nodes that are
not compliant and how the efforts of a large majority of the
population might be in vain if a minority of highly active node
do not change behavior. Also, Fig. 2(d) confirms the validity
of the theoretical analysis. Indeed, in all scenarios considered,
the σr∞/σ max

r∞ estimated in the simulations are well peaked
around the analytical predictions.

C. Role of communities

Moving forward, we switch to the second, more realistic,
time-varying network model. Here the link creation mecha-
nism is a function of nodes’ membership to tightly connected
groups, i.e., communities. The analysis that follows is based
only on numerical simulations. Indeed, as mentioned above,

we do not have a closed-form expression for the threshold
of activity-driven networks with communities even in the ab-
sence of behavioral change [34]. The presence of a modular
structure allows us to study two different types of changes in
behaviors. The first is analogous to what we presented above:
As a way to protect themselves and others, nodes reduce their
social propensity. We label this activity reduction (AR). The
second takes inspiration from the idea of social bubbles [58].
Indeed, individuals might keep the same social propensity
but direct it only towards a limited group of people. To this
end, we hypothesize that nodes keep the same activity but
increment the share of intracommunity connections leading to
an increase in the modularity of the emergent social network.
We label this a modularity increase (MI).

1. Activity reduction

As done above, in this scenario we imagine that individuals
change behaviors by reducing their activity by a factor γ if
susceptible and by a factor ψ if infected. In Fig. 3(a) we
show the behavior of the epidemic size as a function of λ.
We set γ = 0.8, ψ = 0.1, and p = w = 0.6. We consider a
modularity η = 0.6 and for simplicity we set the size of each
community to be the same (s = 10). Thus 60% of links are
created within communities and each one is made up of ten
nodes. A few observations are in order. First, as seen before,
random adoption is characterized by a higher threshold and
a smaller final epidemic size with respect to the other case.
Therefore, when the most active nodes are not adapting their
behavior the system is more fragile to the spreading of a
virus. Such effects are observed both in the epidemic size
and in the epidemic threshold (see the inset). Second, we
plot as vertical lines the analytical thresholds computed in the
absence of communities from Eqs. (6) and (20). In both cases,
the presence of tightly connected groups of nodes increases
the threshold. This result is in line with past research showing
that high values of modularity slow down the spreading of SIR
(as well as susceptible-infected) models [34,42,43,59–61].

2. Modularity increase

The explicit membership to communities allows consider-
ing also another type of behavioral change where individuals
keep the same activity but reduce, as a way to lower the
infection risk, ties outside their close circle of friends (com-
munity). Therefore, the system moves towards isolated social
bubbles. In Fig. 3(b) we show the behavior of the epidemic
size as a function of λ. All the other parameters are set
equal to the previous case. In particular, the default (base-
line) value of modularity is η = 0.6. However, the fraction
of nodes implementing social distancing measures increases
the modularity according to their disease status: Susceptible
nodes are characterized by ηγ > η and infected nodes by
ηψ > η. In order to compare this scenario with the previous
one, we set parameters such that the variation of behaviors
has the same magnitude. More in detail, susceptible nodes
change their behavior by 20% (previously we set γ = 0.8,
implying a 20% reduction of activity) and infected nodes by
90%. Therefore, behavioral change induces ηγ = 0.68 and
ηψ = 0.96, which correspond to a reduction of links outside
communities of 20% and 90%, respectively. Also in this case,
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(a)

(b)

(c)

FIG. 3. (a) Epidemic size as a function of λ in the presence of
communities and behavioral change modeled with activity reduction.
We consider both the case in which adoption is assigned randomly
(red) and the case in which adoption is assigned in increasing order
of activity (blue). Vertical lines indicate the analytical threshold in
the absence of communities computed from Eqs. (6) and (20). In the
inset we represent the normalized relative variance σr∞/σ max

r∞ for dif-
ferent values of λ in the case of imperfect random and activity-based
adoption in the presence of communities. We set γ = 0.8, ψ = 0.1,
p = w = 0.6, η = 0.6, and s = 10. (b) Epidemic size as a function
of λ in the presence of communities and behavioral change modeled
with modularity increase. Also in this case we represent in the inset
the normalized relative variance σr∞/σ max

r∞ for different values of λ.
We set η = 0.6, ηγ = 0.68, ηψ = 0.96, and p = w = 0.6. (c) Ratio
between the final epidemic size obtained in the MI and the AR case
as a function of ηγ . We set λ = 0.6, η = 0.6, ηψ = 0.99, and p =
w = 0.6. In all figures, we represent median and 95% confidence
intervals obtained from 102 stochastic simulations for each point with
the μ = 10−2, ε = 10−3, α = 2.1, N = 105, and i0 = I0/N = 0.01
(initial fraction of infected seeds).

random adoption has a bigger impact on the spreading and
results in a larger epidemic threshold (see the inset).

By comparing the y scales of the two scenarios presented
in Figs. 3(a) and 3(b), it is clear that the reduction of activity
(AR) implies a lower epidemic size with respect to the in-
crease of modularity (MI). We further investigate this point in
Fig. 3(c). To compare these two very different kinds of behav-
ioral change, we fix all the parameters and we study the ratio
of the epidemic sizes as a function of modularity of suscepti-
ble nodes. In particular, we set λ = 0.6, η = 0.6, ηψ = 0.99,
and p = w = 0.6 and plot rMI

∞ /rAR
∞ as a function of ηγ . In

other words, we compare the epidemic size obtained when
60% of nodes reduce activity with what happens when they
increase network modularity. The first observation is that, in
the cases of both random and activity-based adoption, the MI
strategy leads to larger epidemic sizes. Indeed, the obtained
ratio rMI

∞ /rAR
∞ is always greater than one. However, while in

the case of random adoption increasing the modularity of sus-
ceptible nodes has a strong effect on the epidemic size (which
progressively decreases), this effect is not observed in the case
of activity-based adoption. This result further confirms how
the spreading patterns are largely controlled by nodes in high
activity classes that do not comply with the social distancing
measures.

In Fig. 4 we show the epidemic size for MI and AR as
a function of η. We set λ = 0.6 and study the variation of
the final fraction of the population affected by the disease
assuming that susceptible individuals reduce their behavior by
20% and infected individuals by 90%. As a result, in the case
of MI, the values of ηγ and ηψ change in such a way that
the probability of creating a link across bubbles (i.e., 1 − η)
is reduced by 20% and 90%, respectively. In Fig. 4(a) we
show random adoption and in Fig. 4(b) adoption as a function
of nodes’ activity. The plots confirm how MI is associated
with a large impact of the disease and how the differences
decrease as a function of modularity η. In fact, for small
values of modularity social bubbles are very loose and thus far
from being effective in controlling the spreading of the virus.
Behavioral changes induce a reduction of links between them,
but such connections are still too many and lead to a higher
burden of the disease with respect to an overall reduction
of activity. As noted above, the differences between the two
types of behavioral changes are more evident in the case of
random adoption. This highlights one more time the key role
of highly active individuals in driving the spreading.

IV. CONCLUSION

In this work we studied the effects of self-initiated be-
havioral change on disease resurgence using activity-driven
networks as a modeling framework for social interactions.
We imagined a population that experienced a first wave of
infections that was stopped early through strict top-down
interventions and did not develop significant immunity to
prevent a second wave. We focused on the reactions of
individuals that, when restrictions are lifted, may adopt
behavioral measures aimed at protecting themselves by re-
ducing or changing their social interactions. This scenario
is unfortunately extremely realistic. After the easing of the
strict measures established during spring 2020, most Western
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(a)

(b)

FIG. 4. Epidemic size as a function of η in the presence of
communities and behavioral change modeled with activity reduc-
tion (blue) and modularity increase (red) for (a) the case in which
adoption is assigned randomly and (b) the case in which adoption is
assigned in increasing order of activity. In both figures, we represent
median and 95% confidence intervals obtained from 102 stochastic
simulations for each point with the parameters μ = 10−2, ε = 10−3,
α = 2.1, N = 105, λ = 0.6, p = w = 0.6, s = 10, and i0 = I0/N =
0.01 (initial fraction of infected seeds). Furthermore, in both figures
we assume that the susceptible individuals reduce their behaviors by
20% and infected individuals by 90%.

countries faced a second wave of the COVID-19 pandemic in
the winter, hence a dramatic resurgence of the virus.

More in detail, we modeled behavioral change by reducing
the activity of susceptible and infected individuals and, having
in mind the idea of social bubbles, by increasing the share of
connections within tight social circles with respect to their
baseline. In doing so, we explored the effect of behavior
adoption by considering only a fraction of nodes engaging in
behavioral protective measures selected either at random or as
a function of their activity. In fact, the most socially active
nodes, maybe due to the nature of their job, cannot easily
modify their behaviors.

Considering first the simplest version of activity-driven
networks, where links are memoryless and random, we
derived the analytical threshold of a susceptible-infected-

recovered epidemic model. In doing so, we extended the work
done by Rizzo et al. [21] accounting for imperfect adoption.
Interestingly, in the case where nodes adapting their behav-
iors are selected randomly in the population, we found that
the expression for the basic reproductive number R0 is sym-
metrical with respect to a combination of activity reduction
and level of adoption of susceptible and infected individuals.
Given the high socioeconomic cost associated with isolating
large numbers of people, this finding underlines the impor-
tance of efficient test and trace systems to isolate infected
individuals, especially at the beginning of a possible second
wave when their number is relatively small. Furthermore, the
numerical simulations showed that, in the settings consid-
ered, the final epidemic size was mainly dependent on the
reduction in activity of the infected individuals. In the case
where adherence is assigned in increasing order of activity,
we found that an almost perfect level of adoption is needed
in order to prevent the disease from increasing again. This
effect is deeply connected to the high heterogeneity of human
interactions and it highlights that even small levels of a lack
of adoption by very active nodes may have a huge impact on
the spreading. This finding is in line with previous studies
of targeted immunization strategies on time-varying networks
which show how immunizing the most highly active nodes is
extremely effective in hampering the spreading of contagion
phenomena [22,28,46,62]. Interestingly, the critical role of a
small number of individuals and locations (i.e., superspread-
ers) has been reported and observed in several publications
focused on the COVID-19 pandemic [63–65]. Intense social
contacts, crowds, and environmental factors such as indoor
settings and poor ventilation have been identified as important
factors driving such events.

We then moved to even more realistic scenarios, taking into
account the tendency of people to cluster in tightly connected
groups. To this aim, we considered a modified formulation
of the activity-driven model in which nodes are assigned to
communities and tend to establish links inside their commu-
nity more often than with outside nodes [34]. In this setting,
we modeled behavioral change by considering two mech-
anisms: (i) reducing the activity of nodes and (ii) keeping
the same level of activity but limiting the contacts outside
communities and thus increasing the network’s modularity.
Using numerical simulations, we observed that the modularity
of the network increases the threshold with respect to the
previous case. This is in line with past observations on syn-
thetic and real time-varying networks [34,42,43,47,59,60,66].
Furthermore, random adoption is characterized by a higher
threshold and a smaller epidemic size with respect to the case
of adoption assigned in increasing order of activity. Finally,
we found that an activity reduction strategy is more efficient
than increasing the modularity across the range of parameters
studied. This finding highlights how imperfect social bubbles
might not be as effective as an overall reduction of social
activities. In real-world scenarios the impact of social bubbles
is affected by a range of variables and implementation details.
Indeed, a recent study conducted by calibrating an individual-
based epidemic model to the COVID-19 pandemic in Belgium
shows how strictness levels (i.e., which map to our concept of
modularity), intergenerational mixing in households, and the
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implementation of complementary measures such as contact
tracing among others factors affect their impact [67].

Of course, this work comes with limitations. First of all,
our contribution is only theoretical and limited by the set of
assumptions that were made. As such, it is not intended as a
precise representation of reality and especially of the current
pandemic landscape. Although we focused on some fun-
damental features of realistic epidemiological models (e.g.,
heterogeneity of contacts, modularity, and behavioral change),
we overlooked many others such as including several con-
nected populations, considering an age-structured population,
the complex nature of real self-initiated behavioral change,
and transmission dynamics which might include presymp-
tomatic or asymptomatic carries [1,2,7,8,65,68,69]. We have
limited ourselves to an exploration of the phase space rather
than fitting the parameters using real data. We have neglected
high-order complex temporal dynamics of real time-varying
networks such as real face-to-face networks [70–73] and
non-Markovian features of both connectivity patterns and epi-

demic processes [30,52–54]. We leave these extensions and
model calibration for future work.

In conclusion, our work contributes to the characterization
of self-initiated behavioral change in the context of disease
resurgence on time-varying networks. It highlights the impor-
tance of accounting for the heterogeneity of social activation
patterns when gauging the efficiency of adaptive strategies
aimed at hampering the spreading of infectious diseases on
temporal networks.
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