
Scaling of the fidelity susceptibility in a disordered quantum spin chain

N. Tobias Jacobson,* Silvano Garnerone,† Stephan Haas, and Paolo Zanardi‡

Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
�Received 17 March 2009; revised manuscript received 1 May 2009; published 26 May 2009�

The phase diagram of a quantum XY spin chain with Gaussian-distributed random anisotropies and trans-
verse fields is investigated, with focus on the fidelity susceptibility, a recently introduced quantum information
theoretical measure. Monitoring the finite-size scaling of the probability distribution of this quantity as well as
its average and typical values, we detect a disorder-induced disappearance of criticality and the emergence of
Griffiths phases in this model. It is found that the fidelity susceptibility is not self-averaging near the disorder-
free quantum-critical lines. At the Ising critical point the fidelity susceptibility scales as a disorder-strength
independent stretched exponential of the system size, in contrast with the quadratic scaling at the correspond-
ing point in the disorder-free XY chain. Along the line where the average anisotropy vanishes the fidelity
susceptibility appears to scale extensively, whereas in the disorder-free case this point is quantum critical with
quadratic finite-size scaling.

DOI: 10.1103/PhysRevB.79.184427 PACS number�s�: 64.70.Tg, 75.10.Pq, 03.67.�a, 75.10.Dg

I. INTRODUCTION

In the last few years, tools from the field of quantum
information theory have found extensive use in the study of
the phase diagrams of quantum systems. One such technique,
the fidelity approach to quantum phase transitions �QPTs�,
has been successfully applied to various systems possessing
quantum-critical points1–4 �see Ref. 5 for a review�. This
technique can be generalized to finite-temperature systems,6,7

classical phase transitions,8 and topological phase
transitions.9–14

In a recent letter15 we have studied the fidelity in the
context of disordered quantum systems. The physics peculiar
to disordered quantum systems is reflected in the properties
of the fidelity, a quantity not previously used to investigate
such systems. Here we study the scaling behavior and pro-
vide details concerning the zero-temperature phase diagram
of the disordered quantum XY model in a transverse field, a
prototypical model in the context of disordered quantum sys-
tems.

The paper is organized as follows. Section II is devoted to
defining the model, along with a review of known results
about its phase diagram and the basics of the fidelity ap-
proach. Section III presents the numerical results of our
study and discusses the main features of the fidelity for dis-
ordered quantum chains. Our conclusions are presented in
Sec. IV.

II. METHOD AND MODEL

It is known that disorder can have interesting effects on a
system’s phase diagram.16 In particular, Griffiths phases may
arise as a result of the randomness.17 Here we study the
disordered anisotropic quantum XY spin chain in a random
transverse field, a model where the disorder-free case can be
analytically solved18 and for which some exact results are
known in the disordered case.19,20 Its Hamiltonian is given
by

H = − �
i=1

L
1 + �i

2
�i

x�i+1
x +

1 − �i

2
�i

y�i+1
y + �i�i

z, �1�

where �i
�x,y,z� are Pauli matrices and the fields �i and

anisotropies �i are independent Gaussian-distributed random
variables. The average field and anisotropy are denoted by �
and �, respectively. The variance is taken to be the same for
both the field and anisotropy distributions.

The Jordan-Wigner transformation maps this system onto
quasifree spinless fermions.18 Neglecting the boundary term
and taking the system to be closed in the fermion index, we
obtain a Hamiltonian of the form

H = �
i,j=1

L

ci
†Aijcj +

1

2 �
i,j=1

L

�ci
†Bijcj

† + cjBijci� , �2�

where A and B are symmetric and antisymmetric real L�L
matrices, respectively. Explicitly, Aij =−�2�i�ij +�i,j+1
+�i+1,j�, A1L=AL1=−1 and Bij =� j�i,j+1−�i�i+1,j, B1L=�L
=−BL1.

The Hamiltonian may be rewritten in terms of the matrix
Z�A−B, which contains all information about the system.
Performing the polar decomposition of Z we obtain the ma-
trices � and T such that Z=�T, where � is a positive semi-
definite matrix and T is unitary. From the eigenvalues of �
one obtains the single-particle energy spectrum.21

For systems at zero temperature, the fidelity is simply the
absolute value of the overlap between ground states corre-
sponding to nearby points in parameter space. Near a
quantum-critical point the ground state changes rapidly for
small shifts in the tuning parameters, an effect which is re-
flected in a corresponding decrease of the fidelity.

The ground state fidelity can be cast in terms of the uni-
tary matrix T in the following way:22

F�Z,Z̃� =��det
T + T̃

2
� , �3�

where T and T̃ are, respectively, the unitary parts of the ma-

trices Z�Z�x� and Z̃�Z�x�� evaluated at the model param-
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eters x and x�. The corresponding fidelity susceptibility is
defined as23,24

��x� = lim
	x→0

− 2 ln F�x,x + 	x�
	x2 �4�

and can be written in terms of the unitary matrix T as

��x� =
1

8
	�xT	F

2 , �5�

where 	 · 	F is the Frobenius norm. For a derivation of Eq. �5�,
see the Appendix.

We evaluate the fidelity susceptibility using Eq. �5� by
performing a singular value decomposition of Z,

Z = U
V† = �U
U†��UV†� = �T ,

where U and V are unitary matrices. Note that the fidelity
susceptibility is defined for infinitesimally separated points
along any chosen direction in parameter space.

A. Disorder-free case

Before considering the effects of disorder in the XY chain,
let us first recall the behavior of the fidelity susceptibility
for the disorder-free case, where �i=� , �i=� ,
∀ i� �1, . . . ,L�.1 The system can then be found in one of
three phases. For 
�
�1 it is paramagnetic, and for 
�
�1
and ��0 ���0� the system is ferromagnetic along the x
direction �y direction�. The boundary between any two of
these phases is a quantum-critical line corresponding to a
second-order quantum phase transition. Here, we refer to the
transition driven by the magnetic field as the Ising transition
and to the transition driven by the anisotropy coupling as the
anisotropy transition. At the quantum-critical points there is
an avoided level crossing between the ground state and the
first-excited state. As shown in Figs. 1�a� and 1�b�, one ob-

serves a maximum of the fidelity susceptibility at both the
Ising and anisotropy critical lines.

Moreover, the finite-size scaling dimension of the fidelity
susceptibility in Figs. 1�c� and 1�d� shows it to be extensive
away from criticality and superextensive �scaling quadrati-
cally with L� at the critical points. This scaling behavior
holds for both the Ising and anisotropy critical lines. The
apparent subextensive scaling in the immediate vicinity of
the anisotropy critical point is a numerical artifact due to the
narrowing of the fidelity susceptibility peak as the system
size grows. The Ising transition does not show this behavior,
since the narrowing appears to occur more slowly than for
the anisotropy transition.

It has been shown,24 for translationally invariant systems,
that superextensive finite-size scaling of the fidelity suscep-
tibility implies a vanishing gap and therefore quantum criti-
cality. As a result, for clean systems the points in parameter
space corresponding to superextensive scaling of this quan-
tity mark quantum-critical regions. When randomness is in-
troduced, translational invariance is lost and hence super-
extensive scaling of the fidelity susceptibility does not nec-
essarily imply quantum criticality. As discussed before, we
find that locations of superextensive scaling reveal more gen-
eral behavior beyond quantum criticality, namely, Griffiths
phenomena.17

B. Random XY chain

The effects of disorder on the physics of quantum mag-
nets have been studied mainly using the strong-disorder
renormalization group �SDRG� technique.25–27 A different
approach has been used in the work of McKenzie and
Bunder,19,20 where the critical behavior of the disordered XY
chain has been studied using a mapping to random-mass
Dirac equations. The properties of the solutions of these
equations imply the disappearance of the anisotropy transi-
tion in the presence of disorder. Furthermore, Griffiths
phases are predicted to appear both around the Ising critical
line and the anisotropy �=0 line. These results, together with
the analysis performed by Fisher,26,27 are significant since
they analytically show the drastic effects that disorder can
have on the critical properties of a quantum system.

At fixed � the XY random chain is closely related to the
random transverse-field Ising chain �RTFIC�, which is an-
other prototypical model for disordered quantum systems.27

Since the RTFIC is representative of the universality class of
Ising transitions for all values of �, let us review what is
known for this model. The Hamiltonian of the RTFIC is H
=−�i=0

L−1�Ji�i
x�i+1

x +hi�i
z�, where Ji and hi are random cou-

plings and fields, respectively. The system is critical when
the average value of the field equals the average value of the
coupling. Using the SDRG one obtains that, at the quantum-
critical point, the time scale  and the length scale L are
related by ln L1/2. This results in an infinite value for the
dynamical exponent z at criticality.27 The distribution of the
logarithm of the energy gap � at criticality broadens with
increasing system size, in accordance with the scaling rela-
tion ln �−L1/2.28 In the vicinity of the critical point the
distribution of relaxation times is broad due to the presence
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FIG. 1. �Color online� The disorder-free case. �a� Fidelity sus-
ceptibility near the Ising transition, with �=1 and system size L
=500. �b� Near the anisotropy transition, with �=0.5 and system
size L=500. �c� Finite-size scaling dimension of the fidelity suscep-
tibility near the Ising transition, with �=1. The sizes considered
range from L=100 to 700, with �L	�. �d� Finite-size scaling of
the fidelity susceptibility near the anisotropy transition, with �
=0.5. The sizes considered range from L=100 to 600.
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of a Griffiths phase, characterized by a nonuniversal dynami-
cal exponent z depending on the distance from the critical
point. This dependence can be used as an indicator for the
Griffiths phase.

In Ref. 15 a study of the phase diagram of a random XY
spin chain in a random transverse field was performed using
the fidelity approach. There it was shown that superextensive
finite-size scaling of � signals the presence of a quantum
phase transition close to the Ising critical line, while the
minimum in � close to the anisotropy �=0 line is consistent
with the absence of a phase transition in that parameter re-
gion �see Figs. 2�a� and 2�b��.

The Griffiths phases of the model manifest themselves in
a nonuniversal dependence of the finite-size scaling dimen-
sion 	� of the fidelity susceptibility on the distance from the
disorder-free critical point �see Figs. 2�c� and 2�d��. The re-
lation between the dynamical scaling exponent z and the
scaling dimension of �,24

	� = 2z + 2 − 2	O, �6�

establishes the connection between the fidelity susceptibility
and the Griffiths phase. In Eq. �6� 	O is the scaling dimen-
sion of the relevant operator driving the transition. Equation
�6� implies a nonuniversal scaling dimension for the fidelity
susceptibility 	�, provided that the behavior of the unknown
scaling dimension 	O does not exactly cancel that of the
dynamical exponent. In the following we would like to study,
using other methods, the extent of the Griffiths phase for this
model. In particular, we would like to verify that the entrance
into a Griffiths phase is indeed reflected by a changing scal-
ing behavior of the fidelity susceptibility.

In our numerical analysis we consider system sizes L
� �100,200,300,400,500� and for each system size we
compute 104 disorder realizations. We take the external fields
�anisotropies� to be independent and identically distributed
Gaussian random variables with standard deviation � and
mean � ���. We consider the range of values �0.1, 0.2, 0.3,

0.4� for the standard deviation �. This disorder strength can
be considered strong with respect to the value of the other
parameters. We denote with �·�ave the arithmetic mean over
all 104 disorder realizations.

The width of the Griffiths phase for the XY model with
weak Gaussian disorder in the continuum limit is known due
to the work of McKenzie.19 Let us denote the distance from
criticality with �, where �=0 corresponds to the points in
parameter space where the pure system is critical. From Ref.
19 one can compute that near the Ising transition, where the
field � drives the transition, �= 
�
��−1�

�2 , while near the aniso-

tropy line �= ��1−�2�
�2 .

For the so-called commensurate case, which corresponds
to the Ising transition for this system since we have disorder
in both the field and anisotropy, McKenzie showed that the
disorder-averaged density of states ���E��ave /�0 diverges at
zero energy within the range 
�
�1 /2 away from the critical
point.19 Here �0 is the “high-energy” density of states. This
divergence implies that the gap distribution function P�	E�
also diverges at zero energy, since a large density of states
means a vanishingly small gap. Note that a diverging prob-
ability of having a vanishing gap does not necessarily imply
that the density of states is also divergent, since the gap
distribution only provides information about the position of
the first-excited energy level relative to the ground state en-
ergy. However, since a diverging gap distribution should be
expected to occur as a result of a divergence of the low-
energy density of states, we will use it to give a rough esti-
mate of the extent of the Griffiths phase.

For the incommensurate case, which includes the aniso-
tropy transition, ���E=0��ave /�0 is of the order of unity for
some range of parameters about �=0, implying effective
gaplessness, and ���E=0��ave /�0 is much smaller than unity
for 
�
�1, giving an effectively finite gap.19 Note that the
boundary of the Griffiths phase in this region is expected to
be less defined than near the Ising transition, since the zero-
energy density of states does not diverge at any value of �.

These results apply for the case of weak disorder, but we
consider a range of moderate to strong-disorder strengths. In
order to compare to the results of McKenzie for the Griffiths
phase extent, we propose a rough criterion for determining
the extent of the Griffiths phase using the gap distribution.
Assume that the Griffiths phase lies within the range of pa-
rameter values for which the distribution P�	E� has a maxi-
mum for 	E=0. At some point away from criticality the
distribution maximum moves away from zero, eventually be-
coming approximately Gaussian far from the disorder-free
critical point. We have determined the range of parameters
for which P�	E� has a maximum at zero gap. The width of
this range of parameters is independent of system size and
scales with the variance of the coupling or field distributions,
in accordance with the result of Ref. 19. However, this cri-
terion gives an extent several times larger than the McKenzie
value, around both the Ising and �=0 lines. This difference
may be due to strong disorder or, rather, the result of an
overestimation of the Griffiths phase extent since the distri-
bution P�	E� having a maximum at zero does not directly
imply a divergent zero-energy density of states. Nonetheless,
consistency between different estimations of the Griffiths
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FIG. 2. �Color online� �a� Average fidelity susceptibility near the
Ising transition for L=500, �=1, and �=0.3. �b� Average � near the
�=0 line for L=500, �=0.5, and �=0.3. �c� Scaling dimension of �
for the same set of parameters near the Ising line, considering L
� �100,200,300,400,500�. �d� Scaling dimension of � for the
same set of parameters near the �=0 line, considering L
� �100,200,300,400,500�.
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phase extent support the validity, at least qualitatively, of this
approach.

Figure 3 shows the gap distribution in the vicinity of the
�=0 line. For small anisotropies the distribution has a pro-
nounced peak at zero gap. Moving away from the anisotropy
line, the distribution develops a peak slightly away from
	E=0, and for larger anisotropies the distribution becomes
Gaussian with a vanishing probability of having zero gap.
Similar behavior holds for the Ising transition as the average
field � is adjusted away from the finite-size pseudocritical
point.

III. RESULTS

A. Average and typical values

In computing the average of some physical quantities,
namely, the arithmetic mean over many disorder realizations,
any rare but large values will significantly affect the result.
On the other hand, the geometric mean over disorder realiza-
tions gives a more representative measure of the typical val-
ues of the physical quantity. Recall that the arithmetic mean
provides an upper bound for the geometric mean when aver-
aging over a set of positive values and the two are equal only
when taking the mean of a constant set of values.

To observe the presence of large fluctuations in the fidel-
ity susceptibility, we plot in Fig. 4�a� the disorder-averaged
susceptibility as well as typical fidelity susceptibility in the
vicinity of the Ising critical point for a disorder strength �
=0.3. Notice that in the vicinity of the critical point the av-
erage becomes significantly larger than the typical value, in-
dicating that there are instances of large fidelity susceptibili-
ties that skew the arithmetic average toward a greater value.

Near the anisotropy line, as shown in Fig. 4�b�, there are
also regions where the average fidelity susceptibility be-
comes much larger than the typical value, but now the posi-
tions of largest difference do not correspond to a critical
point. Indeed, at the point �=0, which in the disorder-free
case is critical, the average-typical difference is much
smaller than it is at the two offset peaks. This is evidence for
the disappearance of the anisotropy transition as a result of
the disorder.

For translationally invariant systems, which are disorder
free, it has been shown that superextensive finite-size scaling
of the fidelity susceptibility implies quantum criticality.24

The disordered XY chain does not have translational invari-
ance, so locations of superextensive scaling do not necessar-
ily imply criticality. However, it is still useful to consider
finite-size scaling, since comparison to the disorder-free case
may suggest in what way the phase diagram changes as a
result of disorder. Figure 5 shows the finite-size scaling di-
mension of the typical fidelity susceptibility near the Ising
transition. The locations of the maxima of the typical fidelity
susceptibility and finite-size scaling dimension coincide and
are shifted from the pure pseudocritical point due to finite-
size effects. Also, the maximum scaling dimension obtained
with disorder is smaller than the pure case of quadratic scal-
ing in L, and this maximum value decreases with increased
disorder strength.

In Fig. 6, the finite-size scaling dimension of � around the
anisotropy line �=0 is shown for the same set of disorder
strengths. Notice that the scaling depends on distance from
the �=0 line and at �=0 the scaling is approximately exten-
sive, as it is when far from the anisotropy line. For suffi-
ciently small disorder and system size there may appear to be
only a single peak in the typical fidelity susceptibility at �
=0, suggesting that for these finite systems emergent critical-
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FIG. 3. �Color online� Gap distribution near the anisotropy line,
with �=0.5, �=0.3, and system size L=500. Plotted distributions
are for �=0.14, 0.18, 0.22, and 0.30.
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ity is still felt even though the quantum phase transition in
the thermodynamic limit disappears as a result of the disor-
der. However, increasing the system size reveals a double
peak with a peak offset which grows with the strength of the
disorder. In both the Ising and anisotropy regions, the width
of the parameter interval giving scaling dimensions larger
than a particular value scales approximately with the vari-
ance of the disorder distribution. This scaling behavior
agrees with that given by the previously mentioned gap dis-
tribution criterion for the Griffiths phase.

In Fig. 7 the disorder-averaged gap is plotted for the four
disorder strengths. The behavior of the gap corresponds
closely with that of the fidelity susceptibility, in that the av-
erage gap minima have the same location as the typical �
maxima. Note that the vicinity of the Ising critical line and
the �=0 line are regions of effective gaplessness which we
associate with quantum criticality or Griffiths phases.

An experiment on such a disordered system would con-
sider only one particular realization of disorder and as a re-
sult would not necessarily observe the disorder-averaged
value of an observable but rather a typical value. Here, we
would like to study whether a measurement of the fidelity
susceptibility for a large system coincides with the average
value and to do this we must see for what conditions � is a

self-averaging quantity.29 Consider the quantity R��x ,L�
=Var���x�� / ���x��ave

2 . We expect that R��x ,L� for fixed x will
scale as a power law in the system size L, R�Lb. If b=
−1 then we say � is self-averaging, if b�0 then � is weakly
self-averaging, and if b�0 then � is not self-averaging. In
Fig. 8 we indicate the regions for which � is self-averaging,
weakly self-averaging, and non-self-averaging for various
disorder strengths near the Ising transition as well as the �
=0 line.

B. Fidelity susceptibility distributions

1. Near the Ising line

Far from the Ising critical line, the distribution of the
fidelity susceptibility is Gaussian �see Fig. 9�. However, in
the vicinity of the Griffiths phase and the critical point the
distribution is non-Gaussian, developing a slowly decaying
tail toward large fidelity susceptibilities, as shown in Fig. 10.
This tail reflects the presence of rare but large fidelity sus-
ceptibilities and is expected to arise either in a Griffiths
phase or in a quantum-critical region.

Now we explore how the distribution of the logarithm of
the fidelity susceptibility changes as the system size is var-
ied, with all other parameters fixed. Far from the Ising tran-
sition the distribution of ln��� narrows with increasing sys-
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tem size, as shown in Fig. 11�a�. The position of the peak of
the distribution remains fixed for a rescaling �→� /L �see
Fig. 11�b��, but the width of the distribution decreases
slightly. Choosing a more general scaling assumption ln���
→L� ln�� /L�� allows for an improved collapse of the distri-
butions in this region, indicated in Fig. 11�c�. The fit param-
eter � essentially translates the distribution, while the param-
eter � adjusts the width. Such a scaling would imply a size
dependence �L� exp L−�, where � ,��0. However, for
asymptotically large system sizes this would lead to subex-
tensive scaling and would thus not be expected to hold for all
L. It appears that this apparent non-power-law scaling for the
range of sizes we have considered may be due to finite-size
effects and we speculate that an assumption of extensive
scaling would lead to an improved collapse for sufficiently
large system sizes.

At the Ising pseudocritical point the distribution P�ln ��
broadens significantly with increasing system size and a res-

caling ln���→L−� ln��� gives a good collapse for a value of
the fit parameter �=0.26 �see Fig. 12�. This collapse and
value of fit parameter hold for the pseudocritical points cor-
responding to all four disorder cases we have considered. A
rescaling of this kind suggests that the fidelity susceptibility
scales as a stretched exponential of the system size at the
critical point rather than quadratically as in the pure XY
chain. For the random transverse field Ising chain,28 it is
known that the energy gap vanishes as 	Eexp−�L at the
Ising critical point. Recalling the alternative expression for

the fidelity susceptibility �=�n�0

�n
�xH
0�
2


En−E0
2 ,23 we expect that
the first term in this series would dominate and that the fi-
delity susceptibility might scale as �1 / �	E�2. However,
this crude argument appears not to be consistent with the
scaling of the energy gap of the RTFIM, perhaps because of
a lack of universality in the power of L in the stretched
exponential.

2. Near the anisotropy line

Just like for the Ising case, far from the anisotropy line the
distribution P��� is well approximated as a Gaussian. Closer
to the �=0 line the distribution looks much like the distribu-
tion of ln ���� in the vicinity of the Ising line, becoming
non-Gaussian with a slowly decaying tail toward large values
of �. Figure 13 shows the distribution P�ln���� for �=0 and
noise strength �=0.3, and Fig. 14 shows the same quantity
for �=0.03, the value of average anisotropy coinciding with
the peak in the typical value of � for that magnitude of
disorder.

Considering the point �=0, as the system size increases
the distribution P�ln �� does not change width, so a rescaling
�→� /L gives a good collapse �see Fig. 15�. This scaling
also agrees with the extensive scaling of the average fidelity
susceptibility at �=0. Moving � away from this point in
either direction, soon the distribution begins to shift super-
extensively, as shown in Fig. 16. For all values of � in this
peak region, a rescaling of the form �→� /L� gives a good
collapse, where � is the fit value of the finite-size scaling
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dimension of the corresponding typical fidelity susceptibility.
Continuing to move � away from the peak in the typical
fidelity susceptibility, the distribution begins to narrow
slightly as in the off-critical Ising case. However, a rescaling
�→� /L appears to give a good collapse for � sufficiently
large in magnitude.

IV. CONCLUSION

In this work we have studied the effect of random trans-
verse fields and couplings on the phase diagram of the quan-
tum XY chain. By examining the finite-size scaling of the
typical fidelity susceptibility and the fidelity susceptibility
distribution for a range of disorder strengths and system
sizes, we find agreement with earlier analytic results pertain-
ing to the limit of weak randomness. The introduction of

disorder clearly removes the anisotropy quantum-critical
line, replacing it with an extended Griffiths phase. There, the
typical fidelity susceptibility’s finite-size scaling dimension
depends strongly on the average value of the anisotropy pa-
rameter and appears to become extensive at the line of van-
ishing anisotropy. At the Ising critical line, the stretched ex-
ponential scaling of the fidelity susceptibility distribution is
consistent with what is expected of an infinite randomness
fixed point, while a Griffiths phase is observed to form in the
vicinity. Remarkably, the scaling of the fidelity susceptibility
distribution at the Ising critical line is universal in that all
disorder strengths give the same scaling behavior. In the
Griffiths phase the fidelity susceptibility is not self-
averaging. However, self-averaging behavior returns suffi-
ciently far from the disorder-free critical lines. These detailed
results suggest that the fidelity susceptibility may be a useful
tool for the study of other disordered systems.
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APPENDIX

Here we derive an expression for the fidelity susceptibility
� in terms of the unitary matrix T,

F�Z,Z̃� =��det
T + T̃

2
�

= exp�Tr ln�1 + T†T̃

2
�1/2�

= exp�Tr ln�1 + T†�T + �T�
2

�1/2�
= exp�Tr ln�1 +

T†�T

2
�1/2�

= exp�Tr
1

2
ln�1 +

T†�T

2
��

� exp�Tr
1

2
�1

2
T†�T −

1

8
�T†�T�2�� , �A1�

where �T=�xTdx. This leads to

F�Z,Z̃� = exp�Tr
1

2
�1

4
T†�x

2Tdx2 −
1

8
T†�xTT†�xTdx2��

= exp�−
1

8
	�xT	F

2dx2 −
1

16
Tr�T†�xTT†�xT�dx2�

= exp�−
1

8
	�xT	F

2dx2 −
1

16
Tr�− �xT

†TT†�xT�dx2�
= exp�−

1

8
	�xT	F

2dx2 −
1

16
Tr�− �xT

†�xT�dx2�
= exp�−

1

16
	�xT	F

2dx2� , �A2�

where we have used the antisymmetry of T†�xT which im-
plies Tr�T−1�x

2T�=−	�xT	F
2 , with 	 · 	F the Frobenius norm.

From Eq. �4� it follows that

� =
1

8
	�xT	F

2 . �A3�
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