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Abstract—Large-scale dynamic interaction graphs can be challenging to process and store, due to their size and the continuous
change of communication patterns between nodes. In this work, we address the problem of summarizing large-scale dynamic graphs,
while maintaining the evolution of their structure and interactions. Our approach is based on grouping the nodes of the graph in
supernodes according to their connectivity and communication patterns. The resulting summary graph preserves the information about
the evolution of the graph within a time window. We propose two online algorithms for summarizing this type of graphs. Our baseline
algorithm £C based on clustering is fast but rather memory expensive. The second method we propose, named 1.C, reduces the
memory requirements by introducing an intermediate step that keeps statistics of the clustering of the previous rounds. Our algorithms
are distributed by design, and we implement them over the Apache Spark framework, so as to address the problem of scalability for
large-scale graphs and massive streams. We apply our methods to several dynamic graphs, and show that we can efficiently use the

summary graphs to answer temporal and probabilistic graph queries.

Index Terms—Graph summarization, dynamic graphs, clustering

1 INTRODUCTION

N a variety of application domains such as social net-

works, molecular biology, and communication networks,
the data of interest is routinely represented as a very large
graph with millions of vertices and billions of edges. This
abundance of data can potentially enable more accurate
analysis of the phenomena under study. However, as the
graphs under analysis grow, mining and visualizing them
becomes computationally challenging. In fact, the running
time of most graph algorithms grows with the size of the
input (number of vertices and/or edges): executing them on
huge graphs might be impractical, especially when the
input is too large to fit in main memory. The picture gets
even worse when considering the dyna’mic nature of most
of the graphs of interest, such as social networks, communi-
cation networks, or the Web.

Graph summarization speeds up the analysis by creating a
lossy concise representation of the graph that fits into memory.
Answers to otherwise expensive queries can then be com-
puted by using the summary without accessing the exact
representation on disk. Query answers computed on the
summary incur a minimal loss of accuracy. When multiple
graph analysis tasks are performed on the same summary,
the cost of building the summary is amortized across its life
cycle. Summaries can also be used for privacy purposes [9],
to create easily interpretable visualizations of the graph [13],
or to store a compressed version of the graph [15].
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In this paper we tackle the problem of building high qual-
ity summaries for dynamic graphs. In particular, we aim at cre-
ating summaries of a dynamic graph over a sliding window
of a given size w. At every new timestamp, as the graph
evolves, the time window of interest includes a new adja-
cency matrix and discards the oldest one that occurred w
timestamps ago.

We consider a general setting where each entry of the
adjacency matrix at every timestamp contains a number in
[0, 1]. This can be used to model interaction networks, where
the entry (i, j) of the adjacency matrix at time ¢ can indicate
the strength of the link or the amount of information
exchange between ¢ and j during the timestamp ¢. From the
classic dynamic graph standpoint, once an edge (i, j), with
weight 0 up to timestamp ¢, takes a weight > 0, it is consid-
ered to appear for the first time at ¢. Similarly an edge that
starts having weight 0 after ¢, can be considered to disappear
after time t.

In this paper we introduce a new version of the dynamic
graph summarization problem, by generalizing the definition
of LeFevre and Terzi [9] (discussed next) to the dynamic
graph setting in a streaming context.

Our main contributions can be summarized as follows:

e We introduce the problem of dynamic graph summari-
zation in a streaming context by generalizing the
problem definition for static graphs of LeFevre and
Terzi [9].

e We design two online, distributed, and tunable algo-
rithms for summarizing dynamic large-scale graphs.
The first one is inspired by Riondato et al. [15]
and is based on clustering. The second one over-
comes the memory requirements limitation of the
first one by using the micro-clusters concept from
Aggarwal et al. [3], adapted to our graph-stream
setting.
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e Our algorithms are distributed by design, and we
implement them over the Apache Spark framework
to address the problem of scalability for massive
graph streams.

e We experiment on several real-world and synthetic
dynamic graphs, showing that we can effectively
and efficiently use our summaries to answer tempo-
ral and probabilistic queries on the dynamic graphs.

The rest of the paper is organized as follows. In Section 2,
we provide a small survey of the related work. In Section 3,
we give the preliminary definitions and the formal problem
statement. In Section 4, we present the two algorithms in
full details. In Section 5, we discuss the distributed imple-
mentation on Apache Spark. In Section 6, we present our
empirical evaluation. Finally, we conclude our work in
Section 7 and we discuss future work.

A preliminary version of this work was presented in [22].
This work is enriched with technical details and extensive
description of our methods, and a presentation of the dis-
tributed version of our algorithms. Additionally, we extend
the evaluation with a query section that demonstrates the
usefulness of our results. Finally, we provide a description
of the synthetic datasets used in the experimental evalua-
tion, and the algorithm to generate them.

2 BACKGROUND AND RELATED WORK

As we are the first to study dynamic graph summarization
in a streaming context, there is no prior art on this exact
problem. However, we extend existing definitions for static
graph summarization and we adopt methods coming from
data stream clustering literature. Therefore, in the following
we cover these two areas of research.

Graph Summarization. LeFevre and Terzi [9] propose to
use an enriched “supergraph” as a summary. The super-
graph has an integer for each supernode (set of vertices)
and for each superedge (an edge between two supernodes),
which represent respectively the number of edges between
vertices in the supernode in the original graph, and between
the two sets of vertices connected by the superedge. From
this lossy representation one can infer an expected adjacency
matrix, where the expectation is taken over the set of possible
worlds (i.e., graphs that are compatible with the summary).
Thus, from the summary one can derive approximated
answers for graph property queries. Their method follows a
greedy heuristic resembling an agglomerative hierarchical
clustering with no quality guarantee.

Riondato et al. [15] build on the work of LeFevre and
Terzi [9] and, by exposing a connection between graph sum-
marization and geometric clustering problems (i.e., k-means
and k-median), they propose a clustering-based approach to
produce lossy summaries of given size with quality guaran-
tees. Their approach is based on minimizing the error while
reconstructing the original graph from the summary.

Navlakha et al. [13] propose a summary consisting of two
components: a graph of “supernodes” (sets of nodes) and
“superedges” (sets of edges), and a table of “corrections”
representing the edges that should be removed or added to
obtain the exact graph. Liu et al. [10] follow the definition
of [13] and present the first distributed algorithm for sum-
marizing large-scale graphs. A different approach followed
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by Tian et al. [20] and Liu et al. [11], for graphs with labeled
vertices, is to create “homogeneous” supernodes, i.e., to par-
tition the graph so that vertices in the same set have, as
much as possible, the same attribute values. In [20] the
authors propose SNAP, which summarizes graphs by gath-
ering groups of nodes that share the same categorical attrib-
utes. Furthermore, nodes inside groups are adjacent for all
types of relationships with the nodes of the same group
(attribute- and relationship-compatibility). A--SNAP further
extends SNAP and allows the users to control the size of
their summaries, by relaxing the homogeneity requirement
for the relationships. Zhang et al. [23] build on k-SNAP and
propose CANAL which automatically categorizes numeri-
cal attribute values by exploiting their similarities and the
link structure of the nodes of the graph.

The work by Adler and Mitzenmacher [2], Suel and
Yuan [17], and Boldi and Vigna [5] discuss techniques to com-
press the Web graph so as to reduce the bits used to encode
the links without any loss in information. Shah et al. [16]
approach the problem of graph summarization as a (lossless)
compression problem, and further extend it to dynamic
graphs. Adhikari et al. [1] propose a node-grouping technique
with diffusion-equivalent representation on dynamic graphs.
Other approaches by Tang et al. [19], Khan and Aggarwal [8]
and Qu et al. [14], include graph sketches, which are general
purpose synopsis that maintain structural and frequency
properties of graph streams or summarizing dynamic net-
works by capturing only some of the most interesting nodes
and edges over time. Sun et al. [18] propose an incre-
mental algorithm for dynamic tensor analysis which aims at
dimensionality reduction to produce compact summaries for
high-order and high-dimensional data.

Toivonen et al. [21] propose an approach for graph sum-
marization tailored to weighted graphs, which creates a
summary that preserves the distances between vertices. Fan
et al. [6] present two different summaries, one for reachabil-
ity queries and one for graph patterns. Hernandez and
Navarro [7] focus instead on neighbor and community
queries, and Maserrat and Pei [12] just on neighbor queries.
These proposals are highly query-specific, while our sum-
maries are general-purpose and can be used to answer dif-
ferent types of queries.

Data Stream Clustering. Aggarwal et al. [3] study the prob-
lem of clustering evolving data streams over different time
horizons. They use micro-clusters that provide spatial and
temporal information of the evolving streams that are used
for a horizon-specific offline clustering. Micro-clusters are a
temporal extension of cluster feature vectors introduced by
Zhang et al. [24] in their BIRCH method. Micro-clusters
maintain statistical information about the data locality of
the nodes. Their additivity property make them an ade-
quate choice for clustering data streams. The snapshots in
which the micro-clusters are stored, follow the Pyramidal
Time Frame, which is a technique used to store data at differ-
ent levels of granularity based on their arrival time.

As mentioned before, Shah et al. [16] deal with the prob-
lem of lossless dynamic-graph compression. Instead, we
tackle the problem of lossy summarization of dynamic
graphs. By contrast, our goal is to develop a summary that,
while small enough to be stored in limited space (e.g., in
main memory), can also be used to compute approximate

Authorized licensed use limited to: Politecnico di Torino. Downloaded on February 19,2020 at 14:45:20 UTC from IEEE Xplore. Restrictions apply.



362 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 2, FEBRUARY 2020

Node,,

Fig. 1. Order 3 tensor of dimensions N x N x w where N is the number
of nodes and w is the length of the window . One of the nodes of the
tensor (Node,) is highlighted.

but fast answers to queries about the original graph. The
summaries we produce have a simpler topology than the
input graph, and can be used as substitutes at the cost of
introducing an error. Our algorithms are distributed by
design with scalability as main goal. Differently from the
work by Liu et al. [10], the task distribution of our algorithm
does not create dependencies or requirements for hand-
crafted message-passing.

3 PROBLEM FORMULATION

In this section we first define the problem of static graph
summarization. We then present the problem of dynamic
graph summarization in tensors with sliding windows.

3.1 Static Graph Summarization

Given an undirected, simple, weighted graph G(V, £, n)
with V ={Vi,...,Vn}, a weight function n: E — [0,1], and
keN (k< N); a k-summary of G is an undirected, com-
plete, weighted graph G'(S, S x S, o) uniquely identified by
a k-partition of V, ie., S = {S1,..., S}, with U ;e g5 =V
and S; N S; = @if i # j. The function 0: S x S — [0, 1] main-
tains the average edge weight among the nodes contained
in two supernodes, and is given by

Zues’i,UESj 7](’LL7 ’U)

(85, 8)) = 151151

, for S; # 55,

and

Zu,vesi 7](’11,, ’U)

U(SﬁS{): |SZ||S771|

, for |S;| > 1.

In the case of |5;| = 1 we have (S, S;) = 0 by definition.
For ease of presentation, in the rest of the paper we define
the main concepts using the adjacency matrices of G'and ¢,
denoted as A¢ and Ay, respectively.

We can find as many k-summaries as the number of
k-partitions of the nodes V. Following LeFevre and Terzi [9],
the goal is to find the summary G’ that minimizes the recon-
struction error. That is, the error incurred by reconstructing
our best guess of the base graph G from the summary G”:

1] NN
RE(Ac|Ae) =553 0 D [Ac(Vi, Vi) = Agr (®(V2), @ (V)))],
i=1 j=1

where @ is the mapping function from nodes to the supern-
odes they belong to. For simplicity, in the formula above,
we use the entire adjacency matrix of the graph. However,

since the graphs we consider are undirected, we could also
have used the half (triangular) matrix.

Riondato et al. [15] show that the problem of minimizing
the reconstruction error with guaranteed quality can be
approximately reduced to a traditional k-means clustering
problem, where the elements to be clustered are the adja-
cency lists of each node. The resulting clusters are then used
as the supernodes.

3.2 Tensor Summarization

Given a window W = [t — (w — 1), t], where ¢ is a timestamp
of a potentially infinite temporal domain 7', we consider next
a time series of w = |W| static graphs as described before.
The time series of static graphs can be expressed as a time
series of adjacency matrices Ag: € [0,1]™", or as an order 3
tensor A} € [0,1]""", as depicted in Fig. 1. Similarly to the
static graph case, given £k < N we define as k-summary of
the tensor A}, the adjacency matrix Ag € [0,1]" which is
uniquely identified by a k-partition S = {5, ..., Sy} of V:

W
2t Pnes,tes; A (U, v,1)

Ag Si7 Si) = 5 fi SZ S‘, 1
a( i) w]S; 551 or 8; # 5, (1)
and
b AV (u, v, t
AG’(Si, 57) t=1 ZU,,NES, G ( ) ’ for |SZ| > 1. (2)

IS5 1

In the case of |S;| =1, we have Aw(S;,5;) =0 by defi-
nition. The reconstruction error for tensor summarization is
defined as follows:

: S SN SN AR (Vi Vi) — Aar (9(Vi), (V)]
RE(AY |Ag) = =L SR o g 0 L

(3)

3.3 Dynamic Summarization via Tensor Streaming
In the streaming setting we are given a streaming graph (an
infinite sequence of static graphs) and a window length w.
The goal is to produce a tensor summary for the latest w
timestamps.

More formally, we are given a graph stream G'(V, E, f),
described by its set of nodes V = {Vi,...,Vy}, edges E C
V x V and a function f: E x T — [0, 1]. This can be repre-
sented as a time series of adjacency matrices where each

adjacency matrix Ag: € [0,1]"". At each time stamp ¢ € T
we have a new adjacency matrix as input, which represents
the last instance of the dynamic graph. As time passes by, the
information contained in old adjacency matrices can become
obsolete and no longer interesting. Therefore, we define a
window W; of fixed length w, that limits our interest to the w
more recent instances of the dynamic graph. We refer to this
window as a sliding tensor window, which is updated at each
timestamp with the latest adjacency matrix while the oldest
adjacency matrix is removed. Fig. 2 shows the tensor win-
dow that indicates which timestamp are considered for the
summarization, for three successive timestamps.

At each time stamp ¢, we summarize the adjacency matri-
ces that are included in the tensor window, i.e., the tensor
Ag} €[0,1]™", where W, =[t— (w—1),t]. The tensor
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Fig. 2. Sliding tensor-window in three consecutive timestamps. At every
timestamp, the window slides one position to include the newest snap-
shot of the graph and remove the oldest one.

summary is defined as in Section 3.2 by minimizing the
reconstruction error of Eq. (3). Finally, the reconstructed
tensor Agf is computed from Egs. (1) and (2).

4 ALGORITHMS

In this section we first describe our baseline clustering-
based algorithm inspired by Riondato et al. [15], kC, which
is effective but memory expensive. Then, we show the more
memory efficient and scalable «C, which is based on the
idea of micro-clusters by Aggarwal et al. [3].

4.1 Baseline Algorithm: £C

Following Riondato et al. [15], we apply the k-means algo-
rithm to cluster the nodes of the graph and thus produce
the summary of the tensor that is currently inside the slid-
ing window of length w. Fig. 1 shows a tensor window of
length w, and highlights one of the matrices (Node;) that are
the input for the clustering algorithm. We treat each matrix
as a w x N vector for the purpose of clustering. After clus-
tering these vectors, each cluster represents a supernode of
the summary graph.

Algorithm 1 describes kC. For timestamp ¢ = 0, we ini-
tialize the tensor window (lines 1 & 2) and continue with
the computation of the summary (lines 4 to 9). The rest of
the algorithm (lines 3 to 10) describes the streaming behav-
ior of the algorithm for the following timestamps. A high-
level overview of the process is shown in Fig. 3a.

Since the algorithm needs to work in a high-dimensional
space, we prefer to use cosine distance rather than euclidean
distance to measure the distance between two data points [4].
This variant of k-means is also known as spherical k-means.
The input graph changes continuously, as a new adjacency
matrix arrives at each timestamp (line 4). Additionally, at

Data Points

Super-nodes

C-1

Node,

(a) kC approach: summarizing a tensor window to supernodes.
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each timestamp the tensor window slides to include the
newly arrived adjacency matrix (line 5), and exclude the old-
est one, as shown in Fig. 2.

Algorithm 1. kC

input: Graph G'(V, E) as Ag: € [0,1]"", number of
supernodes £, length w of window
output: Summary graph G'(S, 5 x ) as A, € [0,1]
function® : V — S
1¢t<0
2 A"« TInitialize the adjacency tensor window with zero
3 while true do
A «— Read input graph A
A" Slide window and update with A
C « k-means(A"")
® — Calculate mapping function from nodes to
supernodes

kk
7

N O U1

8 A « Calculate summary from C
// Equations (1) & (2)

9 report (Agﬁ(b)

t—t+1

Computational Complexity and Limitations. Computing the
cosine distance between two Nw-dimensional vectors requires
O(Nw) time. The clustering algorithm computes the distance
of each of the IV vectors to the center of each of the £ clusters.
Let the number of iterations for the k-means be bounded by /.
Thus, the computational complexity of the algorithm for a sin-
gle tensor window is O(N?wkI). The space requirement is
O(N*w + Nwk), where the first term accounts for the tensor
window, and the second for the clusters’ centroids.

We repeat the same procedure at each new timestamp
without taking into account that the tensor window is
updated with N? new values, and drops N? old values,
whereas (w — 2) N? values of the window remain unchanged.
Clearly, although it is desirable to leverage this fact, the base-
line algorithm described so far fails to do so. Indeed, £C sim-
ply discards the previous computation, and re-executes the
algorithm from scratch. In the next algorithm we show how
to take advantage of this optimization.

4.2 Micro-Clustering Algorithm: 4C
The key idea towards space-efficiency and scalability is to
make use of the clustering obtained at the previous

Data Points Micro-Clusters Super-nodes
uc,
So
Al HC,
uc,
t
A N-1 s
c-1
pCmC-1

(b) pC approach: Summarizing a tensor window by micro-
clusters.

Fig. 3. Overview of the clustering process of (a) kC algorithm and (b) .C algorithm. In the kC approach, every node is clustered to the supernodes. In
the .C approach at each timestamp, ¢ all the A! (highlighted with red) are clustered to the micro-clusters. The micro-clusters include statistical infor-
mation from the previous timestamps. Finally, the micro-clusters are clustered to the supernodes.
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timestamp, by updating it to match the new information
arrived, instead of recomputing it from scratch at every new
timestamp. To this end, we add an extra intermediate step
in between the input step and the final clustering that cre-
ates the supernodes, consisting in summarizing the input
data via micro-clusters. At any given time, the algorithm
maintains a fixed amount of micro-clusters ¢ that is set to be
significantly larger than the number of clusters %, and signif-
icantly smaller than the number of input vectors N. Each
micro-cluster (uC) is characterized by its centroid and some
statistical information about the input vectors it contains in
a concise representation (described further).

The centroid of the micro-cluster (uc) is an (Nw)-
dimensional vector that is the mean value of the coordinates
of the vectors it contains. The statistics of the micro-cluster
include the standard deviation (SD) of the vectors from the
centroid, and the frequencies F' of the nodes that are included
in the micro-cluster. In addition to the structure of the micro-
cluster, ©C also keeps the IDs of the nodes contained in the
last tensor window. For each node we also keep the time-
stamps (/D List) in which the node is contained in the micro-
cluster (within the period w of the current window).

Definition 1. A micro-cluster uC; is the tuple (F, pc, SD,
IDList), where the entries are defined as follows:

o [ is a vector of length w that gives the number of vec-
tors that are included in the micro-cluster i at each
timestamp in the current window.

e ucis the centroid of the micro-cluster, which is repre-
sented by a vector € [0, 1), The centroid is the mean
of the coordinates of all the vectors included in the
micro-cluster.

o SD represents the standard deviation of the distances
of all the vectors that are included in the micro-cluster
from its centroid in the latest timestamp.

e [DList is a list of tuples (NodelD, BitMap;p) that
stores the IDs of the nodes that are included in the
micro-cluster, along with a bitmap of length w that
represents the timestamps in which the node was
included in the micro-cluster. The least significant bit
represents the latest arrival. The sum of the bits of the
bitmaps with the same 1D in all existing micro-clusters
is constant and equal to w.

Algorithm 2 describes the different steps of uC for every
timestamp (lines 3 to 10). The input of the algorithm is an
adjacency matrix A+ that corresponds to the graph G' of the
current timestamp. Fig. 3b shows the tensor window of
length w and highlights one of the N vectors A, of the input
for the clustering algorithm. The algorithm does not keep the
input data that arrived in the previous w — 1 time stamps,
since it only uses statistical information that is stored in the
micro-clusters. Micro-clusters are initialized by executing a
modified k-means algorithm for the initial adjacency matrix
Agt, similar to what is described before. At this point the
seeds of the k-means algorithm are selected randomly from
the input vectors. The same procedure is followed at every
timestamp to reflect the changes in the sliding window
(line 4). Once the micro-clusters have been established, they
can be passed to the uC-maintenance phase (line 5) that is
explained in detail further. After the maintenance phase, the

micro-clusters can be clustered to the final clusters (line 6),
we calculate the mapping function from input nodes to clus-
ters (line 7) and the summary nodes (line 8). At the end of
every timestamp the algorithm outputs the summary graph
G’ and the mapping function ® (line 9).

Algorithm 2. uC

input: Graph G'(V, E) as Acr € [0,1]"", ¢, k, w
output: Summary graph G'(S, S x S) as A, € [0,1]
function® : V — S
1t<0
2 while true do
3 A < Read input graph A
nC «— uC-kmeans(A) // Algorithm 3
nC «— pC-maintenance(uC) // Algorithm 4
C «— C-kmeans(uC)
® — Calculate mapping from nodes to supernodes
Ag — Calculate summary from C'
// Equations (1) & (2)
report (Ag, D)
10 ¢t —t+1

kk
4

3 O U1 W~

\O

From input to micro-clusters. At each timestamp, N
new vectors arrive and get absorbed by the micro-clusters.
Algorithm 3 describes how the input is added to the micro-
clusters. First, ©C finds the closest micro-cluster to the cur-
rent input vector ¥, ie., uC* = min; dist(uCj, v*), where
dist is the cosine distance between two vectors, and uC; is
represented by its centroid (lines 3 to 3). The micro-cluster
updates the values of the centroids and calculates the dis-
tance from their previous value (shi ft), selecting the maxi-
mum shift and updating the values of the seeds (lines 3
to 3). If the maximum shift exceeds a predefined threshold
(cutoff), the process continues until either the centroids do
not change more than this threshold or the number of the
iterations exceeds a predefined value of iterations (line 3).
When the algorithm converges (line 3), the micro-cluster
absorbs the vector and updates its statistics (lines 3 to 3).
The statistics include the update of the IDList and its bit-
map array that represents the existence of a node in the
micro-cluster. Additionally, updates the values of F[0], the
standard deviation of the absorbed points and calculates
the centroid of the micro-cluster.

Algorithm 3 starts by selecting the seeds of the clusters
and dropping the oldest statistics in order to keep the most
recent ones. In the online phase of the algorithm, the seeds
of k-means are selected to be the values of the centroids of
the micro-clusters computed in the previous timestamp
(line 2). This way, the algorithm can converge faster given
that the edges between the nodes do not change signifi-
cantly. Additionally, we shift all the bitmaps of the /D List
by one position so that the least significant bit (Isb) is free to
be updated by the new arrivals. We also remove the least
recent value of I, we set SD = 0, and we shift the centroid
we of the micro-cluster to liberate the position for the new
centroid (lines 3 to 3). Fig. 4 shows the clustering process
from the input data to the micro-clusters, and the computa-
tion of the centroids for two consecutive timestamps.

Micro-Cluster Maintenance Phase. If the newly absorbed
vectors cause the micro-cluster to shift its centroid beyond a
maximum boundary, then the micro-cluster is split. We define
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Input Data Input to pC_.pcf0] Calculation of pC,.uc[0] pCtoC

~ ue, ucl0] wcl1] wel2]  FCo -
("~ pel0] pel1] pef2] ‘( /
|

AVG (AA) I | (
A — = ™~ s, |
L J \, N J \ o )
N N p N
_ wN s j“':1 :7

(a) Timestamp ¢

| |
e : >/ AR
Ay i\ - " W\ s(:-1 |
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Input Data Input to pC_.ucl0] Calculation of pC_.uc[0] pCtoC
o e “‘c’[z] ue[o] uel1] w2l KC, T
A" AVG(A, A A, [AVG (A, A) \\{/ s )
- \ 0
y : | ./
J .
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Fig. 4. Example of 1.C algorithm for two consecutive timestamps. In both figures, the input data that are clustered at each timestamp are those in red.
In black are the data that have been clustered in previous timestamps. After the input data are clustered to the micro-clusters, the statistical informa-
tion is updated and the micro-clusters pass on the maintenance phase. Finally, the micro-clusters are clustered to the supernodes.

the maximum boundary of a micro-cluster as the standard
deviation of the distances of the vectors that belong to the
micro-cluster from its centroid. Additionally, if a micro-
cluster has absorbed fewer vectors than a threshold, then it
is merged. If a micro-cluster needs to be absorbed, a new
micro-cluster should be split, in order to keep the total
number of micro-clusters g unaltered. Algorithm 4 describes
the maintenance phase of the uC algorithm. The input of
the maintenance algorithm are the micro-clusters uC, the
input matrix A4, the split threshold, and the merge threshold.
The micro-clusters with F[0] less than a threshold form the
ListMerge (line 4) whereas the ones with SD larger than a
threshold form the ListSplit list. The next step is to rank the
ListSplit (line 4) by non-increasing SD and select only the
top |ListMerge| elements to form the H list (line 4), which
contains all the micro-clusters that needs to be split. In
this way we ensure that we merge the same number of
micro-clusters as we split, so that the total number of micro-
clusters remains ¢. In the merge phase of the algorithm
(lines 4 to 4), all micro-clusters that exist in the ListMerge
are merged with the micro-cluster with the closest centroid.
From this process we get |ListMerge| empty micro-clusters
that are used in the split phase. Finally, in the split phase of
the algorithm (lines 4 to 4) each micro-cluster of the H list is
partitioned in two. One part of it remains in the original
micro-cluster and the other part is assigned to the micro-
cluster that remained empty from the merge phase of the
algorithm (lines 4 to 4).

From Micro-Clusters to Supernodes. The next step is to
assign the micro-clusters to the supernodes. uC does so
by using the k-means algorithm. The micro-clusters are
considered as weighted pseudo-points. The value of the
pseudo-point is the centroid of the micro-cluster, and the
weight is the F value (i.e., the number of vectors) stored
in each micro-cluster. The output of this step is a map-
ping from micro-clusters to supernodes that represents
the summary.

To complete the construction of the summary, we need to
assign each vector in the micro-cluster within the window
(which represents one node in the input tensor) to a super-
node. The supernode merges all the IDLists of the micro-
clusters in it. Recall that the IDList of each micro-cluster
contains the information of which vector is included in the
specific micro-cluster. Finally, each input node is assigned
to the supernode that contained it the most during the cur-
rent window, i.e., the assignment from node to supernode is
decided by majority voting. The mapping from vectors to
supernodes is described by the following formula:

(i) = arg max Z BitMap; j]t],
J t

where BitMap; ; is the BitMap of node i in supernode j.

Algorithm 3. C-kmeans

input: A, uC, iterations, cutoff
output: uC
1 foreach uC; € uCdo

2 pCjseed — puCi.ucl0]
3 Shiftall BitMaps of uC;.IDList
4 Shift uC;.F uC;.SD+ 0
5  Shift uC;.uc
6 rounds «— 0
7 mapper — {}
8 while shift > cutoffand rounds < iterations do
9 foreach A, € Ado
10 Index — 0O
11 min_dist «— cos_dist(uCy.seed, A;)
12 foreach j € 1,1 — 1] do
13 dist — cos_dist(uCj.seed, A;)
14 if distance < min_dist then
15 Index «— j
16 min_dist «— distance
17 1 Crnger absorbs vector A;
18 mapper|i] — (Index, min_dist)
19  maz_shift — 0
20 foreach uC; € uC do
21 uC;.centroid[0] — Update with average of the absorbed
points
22 shift — cos_dist(nC;.seed, nC;.centroid|0])
23 max_shift «— max(shift,max_shift)
24 uCi.seed — pCj.centroid|0]
25 if max_shift < cutoff or rounds > iterations then
26 foreach key € mapper do
27 Index — mapper[key[0]]
28 min_dist — mapper[key[1]]
29 UCrndes-ID List.append(key)
30 WCndew-SD + = min_dist?
31 /LC[,,,,{JQ;,,.F[O} — /,LC],,,dﬂ,..F[O] +1
32 UClndes-pcl0] — Calculate the average of the points
that belong to 1tCryder
33 else
34 round «— round + 1
35 returnuC'

Computational Complexity. Let q be the total number of
micro-clusters, then the cost of clustering N vectors is
O(gN?). To remove the oldest F; of all the micro-clusters,
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we need ¢ operations, and to update the bitmaps of all
micro-clusters we need a maximum of Nw operations. As a
result, uC needs O(gN? + Nw + q) operations for maintain-
ing the existing micro-clusters. The time complexity for
clustering the micro-clusters to the supernodes is O(kgN).

Each micro-cluster keeps an (Nw)-dimensional vector as
its centroid, and two w-dimensional vectors for the frequen-
cies and the standard deviation. Additionally, the IDList of
all ¢ micro-clusters has a maximum of O(wN) tuples. Con-
sidering ¢ micro-clusters, the overall space requirement of
the algorithm is O(quwN).

Algorithm 4. ;.C Maintenance

input: 4C, adjacency matrix A,
split threshold 60;, merge threshold 6,
output: Updated uC'
Initialization:
1 ListMerge —{nC;| F;[0] < 0}
// List of uCs to be merged when number of
vectors are less than 6,
2 ListSplit —{uC; | SD; > 65}
// Candidates of uCs tobe split when SD is
beyond the threshold 6,
ListSplit <+ Rank ListSplit by non-increasing SD
4 H — take top |List Merge| micro-clusters
// List of uCs tobe split of size |ListMerge]
Merge phase:
5 foreach pc; € ListMerge do
6  Find puc; closest to jic;
7 uCj«— Merge(uCj, nCj)
8  Update statistics of uCj
Split phase:
9 foreach uC; € H do
10 uCepypry — Pop the first empty micro-cluster of the
ListMerge
11 Assign seeds to uCepypy and pCj from pnC;.IDList
randomly
K-means algorithm:
12 while not converge do
13 foreach id € uC;.IDList do

[OV]

14 Assign A;q to the closest micro-cluster between uC;
and puCeppry

15 Update statistics for uCepy and pC;

16 return uC'

5 DISTRIBUTED IMPLEMENTATION

As described in the previous section, both £C and x«C have a
computational complexity which might become prohibitive
on large scale graphs and for large window sizes. Our solu-
tion to this problem is to distribute the computation on a
cluster of machines (CM).

The core of both algorithms is the online k-means algo-
rithm which requires, at each timestamp, to compute the
distances between all the input vectors and the centroids of
all (micro-)clusters. Each vector is assigned to the closest
(micro-)cluster, and the new centroids are computed as the
average of the vectors in each cluster. The algorithm is
repeated until it converges, or until it reaches the maximum
number of iterations.

Conceptually, the algorithm is composed by three parts:
(i) assignment of the vectors to the clusters, (ii) computation
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Fig. 5. The tensor data are partitioned horizontally to create the RDD and
each partition of it is processed by one executor processes.

of the new centroids of the clusters, and (iii) computation of
the distance between the old and the new centroids. In the
first part, the assignment of each vector to the clusters is
completely independent from each other, i.e., the computa-
tion is completely parallel, provided that the centroids of
the clusters are available to all the processes. Therefore, we
parallelize by partitioning the input vectors across the CM.
The second part of the algorithm requires all the results
from the first phase to proceed. This part is implemented by
exchanging messages between parallel processes. The third
and last part of the algorithm is fairly inexpensive and can
be executed locally.

For the implementation of the distributed algorithm we
use the Apache Spark framework.! The architecture of
Spark has a master process which is connected to several
executor processes. These executors can be distributed over
the CM. The main (driver) program runs in the master,
except for the parts of the algorithm that are explicitly dis-
tributed to the executors. Once the executors finish their dis-
tributed computation, the results are sent back to the
master, which resumes the execution of the serial parts of
the algorithm.

The basic abstraction in Spark is the Resilient Distributed
Dataset (RDD) that supports two types of operations: trans-
formations and actions. Transformations create a new RDD,
based on the existing one, whereas actions evaluate a func-
tion on the RDD, and return the result to the master pro-
gram. In our implementation, the first RDD is created by
the vectors to be clustered. On this dataset we apply a trans-
formation via the map() and the reduceByKey() functions to
compute the distance of all vectors from the centroids, to
assign the vectors to the clusters and to sum the values of
the points. Then we use actions, countByKey(), reduceByKey-
Locally() and collect(), to evaluate the results of the transfor-
mation, and return to the master the number of vectors of
each cluster and the sum of the values of the vector of each
cluster, which are combined to compute the centroid of
each cluster. Both transformations and actions are handled
by the Spark environment and therefore the algorithm does
not interfere with the exchange of messages between the
executors. The final part of the algorithm is executed locally
in the master, by keeping the previous centroids in memory.

Fig. 5 shows the way that the tensor is partitioned across
the CM. Since we cut the data horizontally, the clustering of
the vectors can be done independently at each executor.

1. http:/ /spark.apache.org
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Fig. 6. High-level overview of the distributed implementation of the £C algo-
rithm using parallelize(), map(), reduceByKey(), and collect() functions.

Fig. 6 shows the high level overview of one round of the pro-
cess. The process starts by parallelizing the vectors to be clus-
tered across the CM (sc.parallelize() function). Each executor
maintains a copy of the centroids of the clusters and a parti-
tion of the input data that needs to be clustered. When the
clustering of all the vectors in the partitions is finished (map()
function) each vector has been assigned the cluster id which
it belongs to. The next step is to calculate the new values of
the centroids of each cluster. This is done with the function
reduceByKey(). Finally, the new values of the centroids return
to the master process (collect() function) in order to calculate
the shift of the centroids of the previous round. The process
is repeated until the algorithm converges.

Algorithm 5. Distributed £C
input: Graph G'(V, E) as Ag: € [0, 1", number of
supernodes k, length of window w, cutoff
output: Summary graph (S, S x S) as AL, € [0,1]*,
function® : V — S

1t<—0
2 A" « Tnitialize the adjacency tensor window with 0
3 while true do
A «— Read input graph A
A" Slide window and update with A
foreach i € N do
pointsppp « sc.parallelize((A""[i].coords, A" [i].id)
centroids,; — random(A"", k)
while biggest_shift > cutoff do
points,gsign < pointsgpp.map(lambda x:
kmeans(z,centroids,;))
11 centroidppp « Points,ggn-reduceByKey()
12 centroids «+ centroid zpp.collect()
13 point.population « points;g,.countByKey()
14 biggest_shift « diff(centroids, centroids,;q)
15 centroids,;; < centroids
16  C « Cluster values from centroids
17 ® «— Mapping function from nodes to supernodes
18 Gt « Calculate summary from C
// Equations (1) & (2)
19  report (G, @)
20 t—t+1

O O 00 N O U1~

Algorithm 5 describes the distributed implementation of
Algorithm 1. The tensor data is used to create the RDD
(lines 6 & 7) that is distributed to the CM. The tensor is cut
horizontally and distributed to the machines as shown in
Fig. 5. Therefore, each machine is responsible for clustering

367

% points with the distributed k-means (lines 9 to 15). Lines
12 and 13 are responsible for evaluating the RDDs and
return the values to the main program. After the distributed
k-means converges, the algorithm continues by updating
the values of the clusters (line 16), calculating the summary
and the mapping function (lines 17 & 18) and finally reports
the summary for each timestamp (line 19). Fig. 6 also shows
the Spark functions that were used to implement the distrib-
uted k-means (lines 6 to 15).

Algorithm 6. Distributed ©C

input: Graph G'(V, E) as A € [0,1]"", number of
micro-clusters g, number of supernodes k, length of
window w, cuttoff
output: Summary graph G'(S, S x S) as A, € [0,1]
function® : V — S
1¢t+—0
2 while true do
3 A < Read input graph A
4 pointsppp « sc.parallelize((A[t].coords, Ali].id) for i in
range(N))
nC-centr g = random(A, q)
while biggest_shift > cutoff do
7 points,gsign, = pointsgpp.map(lambda z: uC-kmeans(z,
wC-centryq))
8 uC-centr «— points,s;,,.reduceByKeyLocally()
9 point.population « points,;s,.countByKey()
biggest_shift «— diff(uC-centr, nC- centrqq)
10 uC-centryy «— uC-centr;
11  pC «— update uC values from the centroids
12 uC + pC-maintenance(uC) // Algorithm 4
13 pC-pointsgpp «— sc.parallelize((uC|i].coords, nCl[i].F) for
i in range(q))
14 centryy < random(uC.centroid, k)
15  while biggest shift > cutoff do
16 nC-points,ggign < uC-pointsppp.map(lambda x:
C-kmeans(zx, centr,gq)
17 centr < pC-points,s;g, reduceByKeyLocally()
18 biggest_shift «— diff(centr, centr,)
19 centryy < centr
20 population «— For each cluster sum puC.F vectors
21  C < update C from the centr and the population
22 @ « Calculate mapping from nodes to supernodes
23 @ « Calculate summary from C' // Equations (1)

kk
7

o G1

& (2)
24  report (G', D)
25 t—t+1

Algorithm 6 describes the distributed version of
Algorithm 2. The algorithm can be divided in three parts.
The first part, lines 4 to 11, describes the distributed version
of clustering the input points to the micro-clusters. Line 12
refers to the maintenance Algorithm 4 and finally, lines 13
to 21 describe the distributed version of clustering the
micro-clusters to the supernodes. At the end of each time-
stamp, the algorithm reports the mapping function and the
summary graph (lines 22 & 23). In this algorithm we create
two RDDs, lines 4 and 13. In line 4 the RDD is created from
the input points that are clustered to the micro-clusters
using a modified k-means (lines 6 to 10). In line 13 the RDD
is created by the micro-clusters, that are finally clustered to
the supernodes (lines 15 to 20).
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TABLE 1
Dataset Names, Number of Nodes N, Number of Edges M,
and Density p

Graph N M 0
Synth2kSparse 2005 2522874 0.08
Synth2kDense 4257061 0.10
Synth4kSparse 4023 10646970 0.08
Synth4kDense 16537369 0.10
Synth6kSparse 6015 23505535 0.08
Synth6kDense 37415417 0.10
Synth8kSparse 8243 43979220 0.08
Synth8kDense 68386928 0.10
Twitter7k 7493 15698940 0.03
Twitter9k 9683 19380438 0.02
Twitter13k 13755 24981361 0.01
Twitter24k 24650 36015735 0.007
NetFlow 250021 7882015 1.576E-5

6 EXPERIMENTAL EVALUATION

6.1 Datasets and Experimental Setup

For our experiments we use a dataset extracted from Twitter
hashtag co-occurrences, Yahoo! Network Flows Data,? and a
synthetic dataset. Based on them we create 13 different data-
sets of various sizes and densities for 16 consecutive time-
stamps, which are summarized in Table 1.

Twitter Hashtag Co-Occurrences. We collected all hashtag
co-occurrences for December 2014 from Twitter that included
only Latin characters and numbers. Each hashtag represents
anode of the graph and the co-occurrence with another hash-
tag denotes an edge of the graph. A large fraction of the hash-
tags appears in the dataset only few times during the entire
month, making it extremely sparse. Therefore, we introduce
a minimum threshold of appearances of the hashtags during
the entire month. By changing the value of the threshold
(20000, 15000, 10000, 5000) we obtain four different datasets
with varying sizes and densities: Twitter7K, Twitter9K, Twit-
ter13k, and Twitter24k, respectively (Table 1). We collected
data for 16 days and separate it according to the day of
publication in 16 consecutive timestamps. The edges of the
graph are weighted and represent the number of times that
two hashtags co-occurred in a day, normalized by the maxi-
mal number of co-occurrences between any two hashtags
each day.

Yahoo! Network Flows Data. Provided by Yahoo Webscope
for Graph and Social Data, this dataset contains communi-
cation patterns between end-users. The nodes of the graph
are the IP-addresses of the users and the weights on the
edges are the normalized value of the sum of bytes that
have been exchanged between the nodes. The data are sepa-
rated in files of 15-minute intervals. For our experiments we
use the first 16 files from 8:00 to 11:30 of the 29th of April of
2008, to create our 16 consecutive timestamps. In our dataset
we include only IP-addresses that appear at least 100 times.

Synthetic Data. To evaluate the scalability of our methods,
we create a synthetic data-generator that can produce data
with varying size, structure, and density. The synthetic

2. https:/ /webscope.sandbox.yahoo.com/ catalog.php?datatype=g
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Fig. 7. Synthetic Dataset represented as a tensor. We create clusters in
the tensor to simulate frequent communication patterns for nodes inside
the same cluster and rare or no-communication patterns between nodes
of different clusters.

dataset is a 3-order tensor T € [0,1]"", where N corre-

sponds to the number of nodes of the dynamic graph and w
is the total number of timestamps that we produce. To simu-
late the dynamic graph we need to take into account that
each node can have frequent, rare or no communication
with the rest of the nodes of the graph. The weights of the
edges of the nodes with high communication will be higher
than for those with rare communication. For the nodes with
no communication, the edge does not exist and in the tensor
the weight will be zero. To simulate this behavior, we create
clusters in the tensor 7" as shown in Fig. 7. The values of the
intra-cluster edges (areas of the tensor that are highlighted
in colors in Fig. 7) are high and represent the nodes with the
frequent communication. The rest of the values, the inter-
cluster edges (white areas in Fig. 7), have lower or zero
value. Our synthetic data generator takes as input the
approximate number of nodes n (approximate size of the
dataset), the number of timestamps ¢, the number of clusters
C that exist in the tensor 7', and the sparsity of the dataset
sparsity (Algorithm 7). The number of nodes that exist at
each cluster C is given by a random number between the
values =24 and 24" (Algorithm 7 lines 1, 2). Conse-
quently, the sum of the nodes that exist in all clusters will
approximate the input value N (Algorithm 7 line 3). The
next step is to create the tensor 7" and initialize it with zeros
(line 4).

Lines 5 to 10 of Algorithm 7 describe the computation of
the weights of the intra-cluster edges. For each one of the
clusters of the tensor we choose a random value between
0.4 and 0.8 to assign to the centroid of the cluster (line 6). At
each timestamp the centroid of the cluster moves to some
direction by A, and consequently the values of the edges
change as well, so that we produce the dynamic communi-
cation patterns on the resulting graph. The A value is multi-
plied by (—1)’, where j is the number of the timestamp, to
avoid the movement of the centroids to only one direction
(line 8). To determine the weights of the intra-edges we add
to the value of the centroid of the cluster a random Gaussian
noise with mean 0.01 and a small deviation (line 9). There-
fore, the values of the intra-edges are similar to each other.

Finally, we take care of the inter-cluster communication
of the nodes (lines 11 to 16). For each cluster we choose with
how many of the rest of the clusters will communicate. This
number is the outcome of a function that returns integers
between 0 and —<— (line 12), where sparsity is the value

sparsity
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Fig. 8. Number of ©C versus Time (left plot) and Reconstruction Error
(right plot).

that can be tuned to create datasets with different densities.
The weights of the inter-edges get a non-negative random
Gaussian value with mean 0.001 (line 15) and small stan-
dard deviation. Therefore, the inter-edges have zero or very
low value weights.

Algorithm 7. Synthetic Data Generator

input: approximate number of nodes n, number of clusters
C, number of timestamps w, sparsity of the dataset
sparsity
output: Tensor
1 foreach i € range(C) do
2 N; < random("=34n i An)
3N < >N
4 Tensor « initialize with 0
5 foreach i € range(C) do
// Puts weights to the intra-cluster edges
6 C; «— random.uniform(0.4,0.8)
7 foreach j € range(t) do
8 Ci — Ci+ (—1YA
9 edgesc, — create_intra_edges(N;, Cj, j,0.01)
0 Tensor «— Tensor[j].update(edgesc,)
1 foreach i € range(C) do
// Putsweigh to the inter-cluster edges
12 connectionsc, +— mndom.int(o,m)
// Number of connections of each cluster with
the rest
13 mapli] « random(range(C), connectionsc,)
// Dictionary with connections between
clusters
14  foreach j € range(t) do
15 edgesc; «— inter_edges(mapli],0.001)
16 Tensor — Tensor.update(edgesc;)
17 return Tensor

1
1

For our experiments we produce eight different datasets.
For all the datasets we set C'= 500 and ¢ = 16. We produce
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(a) Twitter13k

369

datasets of four different sizes by setting the parameter N to
2005,4023,6015, and 8243. Additionally, for each N we pro-
duce a sparse and a dense dataset. The characteristics of
these datasets are also presented in Table 1.

Experimental Setup. We run our experiments on a cluster
of 400 cores. These cores are contained in a total of 720 cores
that are distributed uniformly across 30 machines, each one
having 24 cores Intel(R) Xeon(R) CPU E5-2430 @ 2.20 GHz.
Each worker node allocates 12 GB of memory and each
executor on the worker node uses 3 GB of memory.

6.2 Efficiency

We use kC and uC to summarize Twitter13k and NetFlow
datasets and we report the execution time as we increase
the number of supernodes of the summaries, the length of
the tensor window, and the number of the micro-clusters
(for 1C). We begin with the uC method and how the num-
ber of micro-clusters affect the efficiency of the algorithm.
In the left plot of Fig. 8 we report the execution time results
for different number of micro-clusters when we set the
number of supernodes to 150 and the tensor window to 9.
We see that the execution time increases with the number of
micro-clusters. The maintenance phase (Algorithm 4) is non
linear in the number of micro-clusters due to the overhead
added from the Spark operations when serializing the
results of the clustering of the vectors to the micro-clusters.
This can be seen from the curve in the left plot of Fig. 8. For
the rest of the experiments we decided to fix the number of
micro-clusters, doubling the number of supernodes.

Fig. 9a shows the results for the Twitter13k dataset as we
increase the number of supernodes from 50 to 250 (left plot)
and the size of the window from 3 to 15 (right plot). The
plot on the left uses window size 9 and the results of the
execution time refer to the timestamp 8 which is the first
one where the entire window is full of adjacency matrices
(timestamp 0 is the first timestamp of the algorithm that
contains one non-zero adjacency matrix). Our £C algorithm
is always faster than uC and almost linear with respect to
the number of supernodes, whereas the execution time of
uC increases much faster. This is due to the two level clus-
tering of the 1C and more specifically because the number
of micro-clusters is much bigger than the number of the
final clusters. However, the big advantage of our uC is
shown on the right plot of Fig. 9a where we compare the
two methods while we increase the size of the window.
Although kC is faster than uC, we see that it fails to execute
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Fig. 9. Efficiency results for Twitter13k and NetFlow datasets. The left plots of (a) and (b) show the execution time for different number of clusters.
The right plots (a) and (b) show the execution time for different window sizes.
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Fig. 10. Reconstruction error results for Twitter13k and NetFlow datasets. The left plots of (a) and (b) show the reconstruction error for different
number of clusters. The right plots of (a) and (b) show the reconstruction error for different window sizes.

for large windows (greater than 9) due to the linearly-
increasing memory requirements. This shows the advantage
of uC, which can produce results even when the size of the
window increases to 15, since its memory requirements
increase sub-linearly. Fig. 9b shows the results for NetFlow
data. In this case uC is always faster than the £C algorithm
due to the much larger fraction of N/q than in the Twit-
ter13k. Therefore, the overhead of uC due to the intermedi-
ate step of micro-clustering is not noticeable whereas the
overhead from the increasing the number of nodes reduces
the efficiency of the £C algorithm.

6.3 Reconstruction Error

We compute the reconstruction error, which represents the
sum of the differences of the weights of the edges between
the original graph and what can be reconstructed from the
summary graph, according to Eq. (3). Figs. 10a and 10b
show the results of the reconstruction error for Twitter13k
and NetFlow datasets while we increase the number of
supernodes (left plot) and the size of the window (right
plot). In both Figs. 10a and 10b the reconstruction error of
the kC method is decreasing while we increase the number
of supernodes and the size of the window. In contrast, the
reconstruction error of uC does not always decrease when
we increase the number of clusters or the size of the win-
dow. This is due to the micro-cluster structure, which
allows the input nodes to enter different micro-clusters at
each timestamp and therefore spikes on the behavior of the
communication patterns of the input data are reflected on
the summary. These spikes can be noticed in the left plot of
Fig. 10a and the right plot of Fig. 10b. On the other hand, £C
allows spikes of input data to be smoothed during the win-
dow and are not noticed in the reconstruction error. The
reconstruction error of uC is always smaller for Twitter13k,
whereas this is visible in NetFlow for small k£ and w. Finally,
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Fig. 11. Scalability: (a) Execution time results for different sizes of Twitter
data (Twitter7k, Twitter9k, Twitter13k, Twitter24k). (b) Execution time for
the synthetic datasets.

the reconstruction error decreases as we increase the num-
ber of micro-clusters while keeping fixed the number of
supernodes (right plot of Fig. 8).

6.4 Scalability

The last set of quantitative experiments present the scalabil-
ity of both algorithms for different number of nodes and for
different graph densities. For these experiments we use the
different versions of Twitter and synthetic datasets. Fig. 11a
shows that the kC method is always faster than 1 C, but fails
for the Twitter24k dataset due to its high memory require-
ments. However, we cannot give definitive trends on the
scalability of the two algorithms since the different versions
of the Twitter datasets have different densities. Fig. 11b
shows the execution time using synthetic datasets of two
different densities and four different graph sizes. In both,
sparse and dense datasets, kC is always faster than uC.
Moreover, the difference in execution time between the two
methods in the dense datasets is much larger than in the
sparse ones.

6.5 Queries

We now test our methods on approximately answering
interesting queries by using the generated summaries.
While our framework is general in nature, here we focus on
a specific class of queries that considers the tensor as a prob-
abilistic data structure. Moreover, we focus on queries that
have a time component which can be expressed as a sliding
window operator.

A probabilistic (or uncertain) graph G = (V, E,p) is an
undirected graph associated with a function p: E — [0,1]
associating each edge e with a probability p(e) that the edge
exists in the graph. We examine three problems in this set-
ting: edge density, node degree, and number of triangles on a
time window W = [1, w].

Edge Density. Given two subsets of vertices S; C V' and
Sy C V, where |S; N Sy| = 0, the expected edge density E[Es, s,]
between S; and S, is defined as the normalized sum of the
probabilities between the two subsets

E[[{(u,v) € E:ue S,ve S}
|511].S| .

E[Es, s, =

Clearly, if S; and S, are singletons (i.e, S; = {u} and
Sy = {v}), then E[Es, s,] reduces to the edge probability
p(u,v).

This quantity can be easily generalized to our setting, i.e.,
a tensor A(, by considering the expectations over the win-
dow W = [1,w]:
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TABLE 2
Edge Density Query for Different Sizes of S for k = 150, w = 9,
and ¢t = 9 fort Twitter13k
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TABLE 3
Node Degree Query for Different Sizes of S for k = 150, w = 9,
and t = 9 for Twitter13k

Method  |S| min  max mean median o  time Method |S| min max mean median o @ time
kC 20 4e—5 3182 138 4 46  0.05 kC 10 le—5 925 1.5 0.8 2.1 050
nC 20 4e—5 2643 95 29 28.5 0.05 nC 10 3e—6 334 0.9 0.5 1.3 0.50
kC 200 le—6 103 0.8 0.6 0.7 0.05 kC e2 le—5 52 0.5 0.4 04 017
nC 200 3e—6 58 0.4 0.3 04 0.05 nC e2 6e—6 24 0.3 0.3 02 0.17
kC 2000 1le—4 0.7 0.1 0.1 0.1 0.06 kC e3 6e—7 112 0.1 0.1 0.1 0.50
uC 2000 le—4 0.7 0.2 0.2 0.1 0.06 nC e3 9e¢—6 0.6 0.2 0.2 0.1 0.50

EwlEs s, 1-EwlEs, s,
We present statistics of the relative results (——: 2p————=) and the rela-
1:92

tive average execution time when we execute the same query 100,000 times.

E[{(u,v) € Bt :u € S1,v e SQ}”
w|S1[|Sz]

which is equal to

E[E ] _ Z?:l ZUESI,’UESQ AGt (u7 U)
WSS w|S:[|Ss|

The same query in the summary graph is defined as

ZueSl,veSz AG; ((D(u)» CI)(U))
|S1][S2| ’

E[ES, 5] =
where Ag is the ad]acency matrix of the summary of the
tensor window A}/, and @ is the mapping function from
nodes to supernodes.

Node Degree. Given a subset of vertices S C V' the expected
node degree is defined as E[Dg] of the nodes of S:

E[Ds] = E[[{(u,v) : u € S,v € V}],

which in the case of the window W =
A} is defined as

[1,w] over a tensor

L E{(u,v) s u e S;ve VY]

D) = .

which is equal to

%I%[DS] _ Z?:l ZuES,;}eV AGt (uv U) )

The same query is defined for the summary graph as:

S Ag(@(u),

ueSweV

E[Dg] = (1))

Probabilistic Triangles. Given a tensor Ay, over a time win-
dow W we define a triangle a triplet of vertices {u,v,2} € V
iff each of the three edges e, = (u,v),es = (v, 2), e3 = (u, 2)
exists in at least one timestamp of W. The probability that
the edge e; exists in at least a timestamp of W is

Pley, W) =1—J](1 = A, (1))

teW

Then, we can define the probability of the triplet of vertices
{u, v, z} being a triangle as

We present statistics of the relative results (‘”Eu]#) and the relative

average execution time when we execute the same query 100,000 times.

3

HP e, W),

=1

Ptrtanql( u, v, Z

and therefore the expected number of triangles in the tensor

Al
g Ptriangles(u7 v, Z)

u,z€Aq,

Results. We execute the queries edge density and node
degree for three different sizes of samples S of the Twitter13k
dataset. For each size of sample we execute the same query
100000 times, each one using a different random sample of
nodes. For both methods we present the relative values of
the query with respect to the Values of the query on the orig-
By (Es s, )~ EwlEs, s, and [Ew [D]-Ew[Ds]

Eyw(Es, s, ]Ew [Ds]
the 100000 results for each query and sample size, we report
the minimum, maximum, mean, median and the standard
deviation of the relative results for both methods. The last
column presents the relative average execution time, i.e.,
the query time execution in the summary graph divided by
the one in the original graph.

Table 2 presents the relative results for the query edge
density. We see that as the sample size increases the fraction
of the median value decreases significantly. For sample size
S = 20 the relative error between kC and the query on the
original graph is 4 whereas for uC is 2.9. However, for sam-
ple size S = 200 and S = 2000 the relative error decreases to
0.6 and 0.1 for kC and to 0.3 and 0.2 for uC. The relative
average execution time is between 0.05 and 0.06, which
means that the query in the summary graphs runs 20 times
faster than the queries in the original graph for both meth-
ods. The average execution time for the sample size S={20,
200, 2000} are {0.02, 0.2, 23} seconds for the original graph
and for both methods C and uC are {0.0001, 0.01, 1.5} sec-
onds, respectively.

Table 3 presents the results for the query node degree. As
the set size S = {10,100, 1000} increases, the fraction of the
median value decreases from 0.8 to 0.1 for kC and from 0.5
to 0.2 for uC. The relative execution time, as described
above, is between 0.5 and 0.17 which means that the query
on the summary graph for both £C and uC runs 2 to 6 times
faster than on the original graph. The average execution
times on the original graph for S = {10,100,1000} are
{0.0009, 0.02, 0.08} seconds while in the summary graphs for
both methods are {0.0005, 0.005, 0.05} seconds.

inal graph, i.e., ! . From
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TABLE 4
Results for the Probabilistic Triangles Query for k£ = 500, w =9, andt =9

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 2, FEBRUARY 2020

Gravh Query Result Computation time (sec) Relative error

ra — —
P Original kC uC Original kC uC ‘ori)g,ﬁ,;jc‘ ‘m(i-;ql.tc ‘

Synth2kSparse 17843.99 19373.60 14380.57 30878 174 181 0.08 0.19

Synth4kSparse 185890.24 204059.95 214144.52 257124 175 171 0.09 0.15

Synth6kSparse 634455.22 705767.37 755808.25 900939 171 170 0.11 0.19

We present the query result and the computational time on the original graph and on the summaries for kC and uC algorithms. Finally, we present
the relative error of kC and j1C with respect to the original graph query result.

Table 4 shows summarized results for the query probabi-
listic triangles. We report the results of the queries in the
original graph and in the two summaries that are produced
by kC and uC. We also report the computation time for the
calculation of the query and the relative error between the
original and the summary result. For our experiments we
use the entire graph so that we do not alter any of the prop-
erties of the graphs which are important for the calculation
of the triangles. Due to the computational complexity of the
query on the original graph, we could not calculate it on the
real-world data, but only for the smallest of the synthetic
datasets. The execution time is two orders of magnitude
faster when computing the query on the summary graphs
and the relative error of the queries remain small (between
0.15and 0.19).

7 CONCLUSIONS AND FUTURE WORK

This work introduces the problem of dynamic graph sum-
marization via tensor streaming and propose two distrib-
uted scalable algorithms. Our baseline algorithm kC based
on clustering is fast, but rather memory expensive. Our uC
method reduces the memory requirements by introducing
an intermediate step that keeps statistics of the clustering of
the previous rounds, while paying a small cost in terms of
execution time.

Extensive experiments on several real-world and syn-
thetic graphs show that our techniques scale to graphs with
millions of edges and that they produce good quality sum-
maries with small reconstruction error. We further evaluate
our methods by approximately answering probabilistic tem-
poral queries with good accuracy in small computational
time. As future work we consider extending our current set-
ting to dynamic graphs where also new nodes are inserted
into the existing structure.
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