
Rewiring What-to-Watch-Next Recommendations to Reduce
Radicalization Pathways

Francesco Fabbri
Universitat Pompeu Fabra & Eurecat

Barcelona, Spain
francesco.fabbri@eurecat.org

Yanhao Wang
East China Normal University

Shanghai, China
yhwang@dase.ecnu.edu.cn

Francesco Bonchi
ISI Foundation, Turin, Italy
Eurecat, Barcelona, Spain
francesco.bonchi@isi.it

Carlos Castillo
ICREA & Universitat Pompeu Fabra

Barcelona, Spain
chato@icrea.cat

Michael Mathioudakis
University of Helsinki

Helsinki, Finland
michael.mathioudakis@helsinki.fi

ABSTRACT
Recommender systems typically suggest to users content similar to
what they consumed in the past. If a user happens to be exposed to
strongly polarized content, she might subsequently receive recom-
mendationswhichmay steer her towardsmore andmore radicalized
content, eventually being trapped in what we call a “radicalization
pathway”. In this paper, we study the problem of mitigating radi-
calization pathways using a graph-based approach. Specifically, we
model the set of recommendations of a “what-to-watch-next” rec-
ommender as a d-regular directed graph where nodes correspond
to content items, links to recommendations, and paths to possible
user sessions.

We measure the “segregation” score of a node representing rad-
icalized content as the expected length of a random walk from
that node to any node representing non-radicalized content. High
segregation scores are associated to larger chances to get users
trapped in radicalization pathways. Hence, we define the problem
of reducing the prevalence of radicalization pathways by selecting a
small number of edges to “rewire”, so to minimize the maximum of
segregation scores among all radicalized nodes, while maintaining
the relevance of the recommendations.

We prove that the problem of finding the optimal set of rec-
ommendations to rewire is NP-hard and NP-hard to approximate
within any factor. Therefore, we turn our attention to heuristics,
and propose an efficient yet effective greedy algorithm based on
the absorbing random walk theory. Our experiments on real-world
datasets in the context of video and news recommendations confirm
the effectiveness of our proposal.

CCS CONCEPTS
• Information systems→Web applications; •Theory of com-
putation→ Random walks and Markov chains.
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1 INTRODUCTION
“What-to-watch-next” (W2W) recommenders are key features of
video sharing platforms [55], as they sustain user engagement, thus
increasing content views and driving advertisement and monetiza-
tion. However, recent studies have raised serious concerns about
the potential role played by W2W recommenders, specifically in
driving users towards undesired or polarizing content [29]. Specif-
ically, radicalized communities1 on social networks and content
sharing platforms have been recognized as keys in the consumption
of news and in building opinions around politics and related sub-
jects [30, 48, 53]. Recent work highlights the role of recommender
systems, which may steer users towards radicalized content, eventu-
ally building “radicalization pathways” [30, 47] (i.e., a user might be
further driven towards radicalized content even when this was not
her initial intent). In this paper, we study the problem of reducing
the prevalence of radicalization pathways in W2W recommenders
while maintaining the relevance of recommendations.

Formally, we model a W2W recommender system as a directed
labeled graph where nodes correspond to videos (or other types of
content) and directed edges represent recommendation links from
one node to another2. In this scenario, each video is accompanied
by the same number d of recommendation links, and thus every
node in the graph has the same out-degree d . Moreover, each node
has a binary label such as “harmful” (e.g., radicalized) or “neutral”
(e.g., non-radicalized). The browsing activity of a user through the
W2W recommendations is modeled as a random walk on the graph:

1FromMcCauley andMoskalenko [35]: “Functionally, political radicalization is increased
preparation for and commitment to intergroup conflict. Descriptively, radicalizationmeans
change in beliefs, feelings, and behaviors in directions that increasingly justify intergroup
violence and demand sacrifice in defense of the ingroup.”
2For ease of presentation, we focus on video sharing platforms. We note that the same
type of recommendations occurs in many other contexts such as, for instance, news
feeding platforms as shown in our experiments (see Section 5).
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after visiting a node (e.g., watching a video), the user moves to one
of the d recommended videos with a probability that depends on
its visibility or ranking in the recommendation list. In this setting,
for each harmful node v , we measure the expected number of
consecutive harmful nodes visited in a randomwalk before reaching
any neutral node. We call this measure the “segregation” score of
node v: intuitively, it quantifies how easy it is to get “stuck” in
radicalization pathways starting from a given node. Our goal is
to reduce the segregation of the graph while guaranteeing that
the quality of recommendations is maintained, where the quality
is measured by the normalized discount cumulative gain [4, 24]
(nDCG) of each node. An important challenge is that the underlying
recommendation graph has intrinsically some level of homophily
because, given that the W2W seeks to recommend relevant videos,
it is likely to link harmful nodes to other harmful nodes.

We formulate the problem of reducing the segregation of the
graph as selecting k rewiring operations on edges (corresponding
to modifications in the lists of recommended videos for some nodes)
so as to minimize the maximum of segregation scores among all
harmful nodes, while maintaining recommendation quality mea-
sured by nDCG above a given threshold for all nodes. We prove
that our k-Rewiring problem is NP-hard and NP-hard to approxi-
mate within any factor. We therefore turn our attention to design
efficient and effective heuristics. Our proposed algorithm is based
on the absorbing random walk theory [34], thanks to which we
can efficiently compute the segregation score of each node and
update it after every rewiring operation. Specifically, our method
finds a set of k rewiring operations by greedily choosing the opti-
mal rewiring for the special case of k = 1 – i.e., the 1-Rewiring
problem, then updates the segregation score of each node. We fur-
ther design a sorting and pruning strategy to avoid unnecessary
attempts and thus improve the efficiency for searching the optimal
rewiring. Though the worst-case time complexity of our algorithm
is quadratic with respect to the number of nodes n, it exhibits much
better performance (nearly linear w.r.t. n) in practice.

Finally, we present experiments on two real-world datasets: one
in the context of video sharing and the other in the context of news
feeds. We compare our proposed algorithm against several base-
lines, including an algorithm for suggesting new edges to reduce
radicalization in Web graphs. The results show that our algorithm
outperforms existing solutions in mitigating radicalization path-
ways in recommendation graphs.

In the rest of this paper, we first review the literature relevant
to our work in Section 2. Then, we introduce the background and
formally define our problem in Section 3. Our proposed algorithms
are presented in Section 4. The experimental setup and results are
shown in Section 5. Finally, we conclude this paper and discuss
possible future directions in Section 6.

2 RELATEDWORK
A great deal of research has been recently published about the
potential created by unprecedented opportunities to access infor-
mation on the Web and social media. These risks include the spread
of misinformation [1, 50], the presence of bots [16], the abundance
of offensive hate speech [33, 37], the availability of inappropriate
videos targeting children [40], the increase in controversy [18] and

polarization [20], and the creation of radicalization pathways [47].
Consequently, a substantial research effort has been devoted to
model, detect, quantify, reduce, and/or block such negative phe-
nomena. Due to space limitations, we only discuss the existing
studies that are the most relevant to our work here – in particular,
algorithmic approaches to optimizing graph structures for achiev-
ing the aforementioned goals [7, 8, 19, 21, 23, 25–28, 38, 49, 51, 54].

A line of research deals with limiting the spread of undesirable
content in a social network via edge manipulation [25–28, 49, 51,
54]. In these studies, the graph being manipulated is a network of
users where the edges represent connections such as friendship
or interactions among users. In contrast, we consider a graph of
content items (e.g., videos or news), where the edges represent
recommendation links. Moreover, these algorithmic methods are
primarily based on information propagation models, while our
work is based on random walks.

Another line of work aims at reducing controversy, disagreement,
and polarization by edgemanipulation in a social network, exposing
users to others with different views [7, 8, 19, 21, 23, 38]. Garimella
et al. [19] introduce the controversy score of a graph based on random
walks and propose an efficient algorithm to minimize it by edge
addition. Musco et al. [38] introduce the Polarization-Disagreement
index of a graph based on Friedkin-Johnsen dynamics and propose a
network-design approach to find a set of “best” edges that minimize
this index. Chen et al. [7] define the worst-case conflict risk and
average-case conflict risk of a graph, also based on Friedkin-Johnsen
dynamics, and propose algorithms to locally edit the graphs for
reducing bothmeasures. Chitra andMusco [8] analyze the impact of
“filter bubbles” in social network polarization and how to mitigate
them by graph modification. Interian et al. [23] define a polarization
reduction problem by adding edges between users from different
groups and propose integer programming-based methods to solve
it. Another related line of work proposes to model and mitigate the
disparate exposure generated by people recommenders (e.g. who-
to-follow link predictions) in presence of effects like homophily and
polarization [9, 14, 15, 45]. These studies also deal with networks
of users, while in our case we consider a network of items.

The work probably most related to ours is the one by Haddadan
et al. [21], which considers a graph of items (e.g., Web pages with
hyperlinks) and defines the structural bias of a node as the dif-
ficulty/effort needed to reach nodes of a different opinion. They,
then propose an efficient approximation algorithm to reduce the
structural bias by edge insertions. There are three main differences
between this and our work. First, two-directional edge manipula-
tions (from class A to B and also from B to A) are considered by
Haddadan et al. [21], but one-directional edge manipulations (from
harmful to neutral nodes only) are considered in our work. Second,
they consider inserting new links on a node, which better fits the
case of Web pages, but we consider rewiring existing edges, which
better fits the case of W2W recommenders. Third, they define the
structural bias of the graph as the sum of the bubble radii of all
nodes, while we define the segregation of the graph as the worst-
case segregation score among all harmful nodes. We compare our
proposed algorithm with theirs in our experiments.

A recent line of work introduces the notion of reachability in
recommender systems [11, 13]. Instead of rewiring the links, they
focus on making allowable modifications in the user’s rating history
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to avoid unintended consequences such as filter bubbles and radi-
calization. However, as the problem formulation is different from
ours, their proposed methods are not applicable to our problem.

Finally, there are many studies on modifying various graph char-
acteristics, such as shortest paths [42, 43], centrality [3, 10, 12, 36,
44, 52], opinion dynamics [2, 5], and so on [6, 31, 41, 56], by edge
manipulation. We can draw insights from these methods but cannot
directly apply them to our problem.

3 PRELIMINARIES
Let us consider a setV ofn items and amatrix S ∈ Rn×n , where each
entry suv ∈ [0, 1] at position (u,v) denotes the relevance score of an
item v given that a user has browsed an item u. This expresses the
likelihood that a user who has just watched u would be interested
in watching v . Typically, a recommender system selects the d most
relevant items to compose the recommendation list Γ+(u) of u,
where the number of recommendations d is a design constraint
(e.g., given by the size of the app window). We assume that the
system selects the top-d items v w.r.t. suv and that their relevance
score uniquely determines the ranking of the d items in Γ+(u). For
each v ∈ Γ+(u), we use iu (v) to denote its ranking in Γ+(u). After
a user has seen u, she/he will find the next item to see from Γ+(u),
and the probability puv of selecting v ∈ Γ+(u) depends on the
ranking iu (v) of v in Γ+(u). More formally, puv = f (iu (v)), where
f is a non-increasing function that maps from iu (v) to puv with∑
v ∈Γ+(u) puv = 1.
This setting can be modeled as a directed probabilistic d-regular

graph G = (V ,E,M), where the node set V corresponds to the set
of all n items, the edge set E comprises n ·d edges where each node
u ∈ V has d out-edges connected to the nodes in Γ+(u), andM is an
n×n transition matrix with a value of puv for each (u,v) ∈ E and 0
otherwise. A user’s browsing session is thus modeled as a random
walk on G starting from an arbitrary node in V with transition
probability puv for each (u,v) ∈ E.

We further consider that the items in V are divided into two
disjoint subsets Vn and Vh (i.e., Vn ∩ Vh = ∅ and Vn ∪ Vh = V )
corresponding to “neutral” (e.g., not-radicalized) and “harmful” (e.g.,
radicalized) nodes, respectively.

The risk we want to mitigate is having users stuck in a long
sequence of harmful nodes while performing a random walk. In
order to quantify this phenomenon we define the measure of segre-
gation. Given a set S ⊂ V of nodes and a node u ∈ V \ S , we use a
random variable Tu (S) to indicate the first instant when a random
walk starting from u reaches (or “hits”) any node in S . We define
EG [Tu (S)] as the hitting length of u w.r.t. S , where the expectation
is over the space of all possible random walks onG starting from u.
In our case, we define the segregation score zu of nodeu ∈ Vh by its
expected hitting length EG [Tu (Vn )] w.r.t.Vn . The segregation Z (G)
of graphG is defined by the maximum of segregation scores among
all nodes inVh – i.e., Z (G) = maxu ∈Vh zu . In the following, we omit
the argument G from Z (G) when it is clear from the context.

Our main problem in this paper is to mitigate the effect of seg-
regation by modifying the structure of G. Specifically, we aim to
find a setO of rewiring operations onG , each of which removes an
existing edge (u,v) ∈ E and inserts a new one (u,w) < E instead,

such thatZ (GO ) is minimized, whereGO is the new graph after per-
forming O on G. For simplicity, we require that u,v ∈ Vh ,w ∈ Vn ,
and puv = puw . In other words, each rewiring operation changes
the recommendation list Γ+(u) ofu by replacing one (harmful) item
v ∈ Γ+(u) with another (neutral) itemw < Γ+(u) and keeping the
ranking iu (w) ofw the same as the ranking iu (v) of v in Γ+(u).

Another goal, which is often conflicting, is to preserve the rel-
evance of recommendations after performing the rewiring opera-
tions. Besides requiring only a predefined number k of rewirings,
we also consider an additional constraint on the loss in the quality
of the recommendations. For this purpose we adopt the well-known
normalized discounted cumulative gain (nDCG) [4, 24] to evaluate
the loss in the quality. Formally, the discounted cumulative gain
(DCG) of a recommendation list Γ+(u) is defined as:

DCG(Γ+(u)) =
∑

v ∈Γ+(u)

suv
1 + log2(1 + iu (v))

Then, we define the quality loss of Γ+(u) after rewiring operations
by nDCG as follows:

L(Γ+(u)) = nDCG(Γ+(u)) =
DCG(Γ+(u))

DCG(Γ+0 (u))
(1)

where Γ+0 (u) is the original (ideal) recommendation list where all
the top-d items that are the most relevant to u are included.

Let o = (u,v,w) be a rewiring operation that deletes (u,v) while
adding (u,w) and O be a set of rewiring operations. For ease of
presentation, we define a function ∆(O) ≜ Z (G) −Z (GO ) to denote
the decrease in the segregation after performing the rewiring oper-
ations in O and updating G to GO . We are now ready to formally
define the main problem studied in this paper.

Problem 1 (k-Rewiring). Given a directed probabilistic graph
G = (V ,E,M), a positive integer k ∈ Z+, and a threshold τ ∈ (0, 1),
find a set O of k rewiring operations that maximizes ∆(O), under the
constraint that L(Γ+(u)) ≥ τ for each node u ∈ V .

The hardness of the k-Rewiring problem is analyzed in the
following theorem.

Theorem 3.1. The k-Rewiring problem is NP-hard and NP-hard
to approximate within any factor.

We show the NP-hardness of the k-Rewiring problem by reduc-
ing from the VertexCover problem. Furthermore, we show that
finding an α-approximate solution of the k-Rewiring problem for
any factor α > 0 is at least as hard as finding the minimum vertex
cover of a graph. Therefore, the k-Rewiring problem is NP-hard
to approximate within any factor. The proof of Theorem 3.1 can be
found in Appendix A.

3.1 Absorbing RandomWalk
We now provide notions from the absorbing random walk the-
ory [34] on which our algorithms are built.

The k-Rewiring problem asks to minimize segregation, which
is defined as the maximum hitting length from any harmful node
to neutral nodes. Specifically, in the context of k-Rewiring for the
given probabilistic directed graph G = (V ,E,M), we equivalently

2721



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Fabbri et al.

consider a modified transition matrixM as follows:

M =
[
Mhh Mhn
0 I

]
In the matrixM above, each neutral node has been set to be absorb-
ing, i.e., its transition probability to itself is set to pii = 1 and 0 to
other nodes (see the bottom row ofM). Intuitively, no random walk
passing through an absorbing node can move away from it [34]. For
each harmful node, its transition probabilities remain unmodified
(see the top row of M) and thus the node remains transient (i.e.,
non-absorbing).

The fundamental matrix F can be computed from the sub-matrix
Mhh as follows [34]:

F = (I −Mhh )
−1

where the entry fuv represents the expected total number of times
that the random walk visits node v having started from node u.
Then, the expected length of a random walk that starts from any
node and stops when it gets absorbed is given by vector z:

z =
[
(I −Mhh )

−1

0

]
1 (2)

where 1 is an n-dimensional vector of all 1’s. Here, the i-th entry zi
of vector z represents the expected number of random walk steps
before being absorbed by any absorbing node, assuming that the
random walk starts from the i-th node.

Given that the absorbing and transient nodes are set to corre-
spond exactly to the neutral and harmful nodes, respectively, the
values of z correspond exactly to the expected hitting length as
used to define segregation. Hence, the k-Rewiring problem asks
to choose a set of k rewiring operations to minimize the maximum
entry Z = max1≤i≤n zi of vector z.

4 ALGORITHMS
Since k-Rewiring is NP-hard to approximate within any factor, we
propose an efficient heuristic. The heuristic is motivated by the
following observation: despite the NP-hardness of k-Rewiring, its
special case when k = 1, which we call 1-Rewiring, is solvable
in polynomial time. Given an optimal 1-Rewiring algorithm, k-
Rewiring can be addressed by running it k times.

We begin our presentation of algorithms by showing a brute-
force algorithm for finding the optimal solution of 1-Rewiring
(Section 4.1), as well as a way to speed it up via incremental updates
(Section 4.2). Subsequently, we propose our optimal 1-Rewiring
algorithm that improves the efficiency of the brute-force algorithm
by faster rewiring search (Section 4.3). Finally, we present how our
1-Rewiring algorithm is used for k-Rewiring (Section 4.4).

4.1 Brute-Force Algorithm for 1-Rewiring
Given a graph G and a rewiring operation o, we use ∆(o) to denote
the decrease in Z after performing o on G. We present a brute-
force algorithm to find the rewiring operation o∗ that maximizes
∆(o). The algorithm has three steps: (1) enumerate the set Ω of all
feasible rewiring operations for G and a given threshold τ ; (2) get
∆(o) for each o ∈ Ω by computing Z using Eq. 2 on G before/after
performing o; (3) find the operation o that has the largest ∆(o) as
the optimal solution o∗. In the brute-force algorithm, since the

number of existing edges is O(dn) and the number of possible new
edges to rewire is O(n) for each existing edge, the size of Ω is
O(dn2). In addition, the old and new values of Z can be computed
by matrix inversion using Eq. 2 in O(n3) time. Therefore, the brute-
force algorithm runs in O(dn5) time. As all feasible operations are
examined, this solution is guaranteed to be optimal.

The brute-force algorithm is impractical if the graph is large,
due to the huge number of feasible operations and the high cost of
computing Z . We introduce two strategies to improve its efficiency.
First, we update the vector z incrementally for a rewiring opera-
tion. Second, we devise efficient strategies to avoid unnecessary
computation when searching for the optimal rewiring operation,
leading to our optimal 1-Rewiring algorithm.

4.2 Incremental Update of Vector z
We analyze how the fundamental matrix F and vector z change after
performing a rewiring operation o = (u,v,w). Two edits will be
performed onG for o: (1) the removal of an existing edge (u,v) ∈ E
and (2) the insertion of a new edge (u,w) < E to E.

The two operations update the transition matrix M to M′ as
follows:

M′ = M + eg⊤

where e is an n-dimensional column vector that indicates the posi-
tion of the source node u:

ej =

{
1 if j = u
0 otherwise

and g⊤ is an n-dimensional row vector that denotes the changes
in the transition probabilities. Specifically, for the removal of (u,v)
and insertion of (u,w), the probability puv of (u,v) is reassigned
to (u,w). We denote the probability as po = puv . Formally,

дj =


−po if j = v
+po if j = w
0 otherwise

Thus, operation o = (u,v,w) on the fundamental matrix F yields
an updated fundamental matrix F′:

F′ = ((I −Mhh ) − eg
⊤)−1 = (F−1 + (−1)eg⊤)−1

By applying the Sherman-Morrison formula [46], we can avoid the
computation of the new inverse and express F′ as:

F′ = F −
Feg⊤F

1 + g⊤Fe
(3)

Accordingly, the new vector z′ is expressed as:

z′ = z −
Feg⊤F

1 + g⊤Fe
1 (4)

The denominator of the second term in Eq. 4 can be written as:

1 + g⊤Fe = 1 − po (fwu · 1w ∈Vh − fvu )

where 1w ∈Vh is an indicator that is equal to 1 if w ∈ Vh and 0
otherwise. Because, as mentioned in Section 3, we restrict ourselves
to rewiring withw < Vh , the above expression is simplified as:

1 + g⊤Fe = 1 + po fvu .

Meanwhile, the numerator of the second term in Eq. 4 is written as:

Feg⊤F1 = −fu (zw · 1w ∈Vh − zv )po
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Algorithm 1: Optimal 1-Rewiring
Input :Graph G = (V , E, M), fundamental matrix F, segregation

vector z, threshold τ
Output :Optimal rewiring operation o∗

1 Initialize Ω ← ∅, o∗ ← NU LL, ∆∗ ← 0;
2 foreach node u ∈ Vh do
3 Find node w ∈ Vn s.t. (u, w ) < E and suw is the maximum;
4 foreach node v ∈ Vh with (u, v) ∈ E do
5 Add o = (u, v, w ) to Ω if L(Γ+(u)) ≥ τ after replacing

(u, v) with (u, w );

6 Sort nodes in Vh as ⟨h1, . . . , hnh ⟩ in descending order of zh ;
7 foreach o ∈ Ω do
8 Compute ∆(h1, o) using Eq. 5;
9 if z′h1 > zh2 then
10 ∆(o) ← ∆(h1, o);
11 else
12 Find the largest j > 1 such that z′h1 < zhj ;
13 Compute ∆(hi , o) for each i = 2, . . . , j ;
14 ∆(o) ← zh1 −maxi∈[1, j ] z′hi ;

15 if ∆(o) > ∆∗ then
16 o∗ ← o and ∆∗ ← ∆(o);

17 return o∗;

where fu is the column vector corresponding to u in F, zw and zv
are the entries of z for u and v , respectively. As previously, because
w < Vh , we have that Eq. 4 is simplified as:

z′ = z −
fuzv

1/po + fvu
.

For any harmful node h, we calculate its decrease ∆(h,o) in segre-
gation score after performing o = (u,v,w) as:

∆(h,o) = zh − z
′
h =

fhuzv
1/po + fvu

(5)

The optimal 1-Rewiring we present next is based on Eq. 5.

4.3 Optimal 1-Rewiring Algorithm
We now introduce our method to find the optimal solution o∗ of
1-Rewiring, i.e., the rewiring operation that maximizes ∆(o) among
all o ∈ Ω. The detailed procedure is presented in Algorithm 1, to
which the fundamental matrix F and segregation vector z are given
as input. The algorithm proceeds in two steps: (1) candidate gener-
ation, as described in Lines 2–5, which returns a set Ω of possible
rewiring operations that definitely include the optimal 1-Rewiring,
and (2) optimal rewiring search, as described in Lines 6–16, which
computes the objective value for each candidate rewiring to identify
the optimal one. Compared with the brute-force algorithm, this
method reduces the cost of computing ∆(o) since it only probes a
few nodes with the largest segregation scores. In addition, it can
still be guaranteed to find the optimal solution, as all rewiring
operations that might be the optimal one have been considered.
Candidate generation. The purpose of this step is to exclude
from enumeration all rewiring operations that violate the quality
constraint. Towards this end, we do not consider any rewiring
operation that for any node u will lead to the discount cumulative

Algorithm 2: Heuristic k-Rewiring
Input :Graph G = (V , E, M), threshold τ , size constraint k
Output :A set O of k rewiring operations

1 Compute the initial F and z based onM;
2 Acquire Ω using Lines 2–5 of Algorithm 1;
3 Initialize O ← ∅;
4 for i ← 1, 2, . . . , k do
5 Run Lines 6–16 of Algorithm 1 to get o∗ = (u∗, v∗, w∗);
6 O ← O ∪ {o∗ };
7 Update G , M, F, and z for o∗;
8 Delete the existing rewiring operations of u∗ from Ω and add

new possible operations of u∗ to Ω;
9 if Ω = ∅ then
10 break;

11 return O ;

gain (DCG) of u below the threshold τ . According to Eq. 5, we
find that ∆(h,o) of node h w.r.t. o = (u,v,w) is independent of
(u,w). Therefore, for a specific node u, we can fixw to the neutral
(absorbing) node with the highest relevance score suw and (u,w) <
E so that as many rewiring operations as possible are feasible. Then,
we should select the node v where (u,v) ∈ E will be replaced. We
need to guarantee that L(Γ+(u)) ≥ τ after (u,v) is replaced by
(u,w). For each node v ∈ Γ+(u), we can take suv and suw into
Eq. 1. If L(Γ+(u)) ≥ τ , we will list o = (u,v,w) as a candidate.
After considering each node u ∈ Vh , we generate the set Ω of all
candidate rewiring operations.
Optimal rewiring search. The second step is to search for the op-
timal rewiring operation o∗ from Ω. We first sort all harmful nodes
in descending order of their segregation scores as ⟨h1,h2, . . . ,hnh ⟩,
where hi is the node with the i-th largest segregation score. Since
we are interested in minimizing the maximum segregation, we can
focus on the first few nodes with the largest segregation scores
and ignore the remaining ones. We need to compute ∆(o) for each
o ∈ Ω and always keep the maximum of ∆(o). After evaluating
every o ∈ Ω, it is obvious that the one maximizing ∆(o) is o∗. Fur-
thermore, to compute ∆(o) for some operation o, we perform the
following steps: (1) compute ∆(h1,o) using Eq. 5; (2) if z′h1 > zh2 ,
then ∆(o) = ∆(h1,o); (3) otherwise, find the largest j such that
z′h1
< zhj , compute ∆(hi ,o) for each i = 2, . . . , j; in this case, we

have ∆(o) = zh1 −maxi ∈[1, j] z′hi
Time complexity. Compared with the brute-force algorithm, the
size of Ω is reduced from O(dn2) to O(dn). Then, sorting the nodes
inVh takesO(n logn) time. Moreover, it takesO(1) time to compute
∆(h,o) for each h and o. For each o ∈ Ω, ∆(h,o) is computed O(n)
times in the worst case. Therefore, the time complexity isO(dn2) in
the worst case. However, in our experimental evaluation, we find
that ∆(h,o) is computed only a small number of times. Therefore,
if computing ∆(o) takes O(1) time in practice, then the anticipated
running time is O

(
n(d + logn)

)
, as confirmed empirically.

4.4 Heuristic k-Rewiring Algorithm
Our k-Rewiring algorithm based on the 1-Rewiring algorithm is
presented in Algorithm 2. Its basic idea is to find the k rewiring
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operations by running the 1-Rewiring algorithm k times. The first
step is to initialize the fundamental matrix F and segregation vec-
tor z. In our implementation, instead of performing the expensive
matrix inversion (in Eq. 2), F and z are approximated through the
power iteration method in [34]. Then, the procedure of candidate
generation is the same as that in Algorithm 1. Next, it runs k iter-
ations for getting k rewiring operations. At each iteration, it also
searches for the the optimal rewiring operation o∗ = (u∗,v∗,w∗)
among Ω as Algorithm 1. After that, G, M, F, and z are updated
according to o∗ (see Eq. 3 and 4 for the update of F and z). Since
the existing rewiring operations of u∗ are not feasible anymore, it
will regenerate new possible operations of u∗ based on the updated
Γ+(u∗) and the threshold τ to replace the old ones. Finally, the al-
gorithm terminates when k rewiring operations have been found
or there is no feasible operation anymore.

Time complexity. The time complexity of computing F and z
is O(iter ·dn) where iter is the number of iterations in the power
method. The time to update F and z for each rewiring operation
is O(n). Overall, its time complexity is O(kdn2) since it is safe to
consider that iter ≪ n. In practice, it takes O(1) time to compute
∆(o) and iter = O(k), and thus the running time of the k-Rewiring
algorithm can be regarded as O (kn (d + logn)).

5 EXPERIMENTS
Our experiments aim to: (1) show the effectiveness of our algo-
rithm on mitigating radicalization pathways compared to existing
algorithms; (2) test the robustness of our algorithm with respect to
different thresholds τ ; and (3) illustrate how much our algorithm
can reduce the total exposure to harmful content.

5.1 Experimental Setup
Datasets. We perform experiments within two application do-
mains: video sharing and news feeding.

For the first application, we use the YouTube dataset [47], which
contains 330,925 videos and 2,474,044 recommendations. The dataset
includes node labels such as “alt-right”, “alt-lite”, “intellectual dark
web” and “neutral”. We categorize the first three classes as “radical-
ized” or harmful and the last class as “neutral,” following the analysis
done by this dataset’s curators [47], in which these three classes are
shown to be overlapping in terms of audience and content. When
generating the recommendation graphs, we consider only videos
having a minimum of 10k views. In this way, we filter out all the
ones with too few interactions. We consider the video-to-video
recommendations collected via simulations as implicit feedback in-
teractions, where the video-to-video interactions can be formatted
as a square matrix, with position (u,v) containing the number of
times the user jumped from video u to video v . Using alternating
least squares (ALS) [22], we can first derive the latent dimensions of
the matrix, generate the scores (normalized to [0, 1]) and then build
the recommendation lists for each video. We eventually create dif-
ferent d-regular graphs with d ∈ {5, 10, 20}. To evaluate the effect
of graph size on performance, we also use a smaller subset of videos
with only 100k or more views for graph construction. Finally, we
have 3 smaller (YT-D5-S, YT-D10-S, and YT-D20-S) and 3 larger
(YT-D5-B, YT-D10-B, and YT-D20-B) recommendation graphs.

Table 1: Characteristics of the recommendation graphs used
in the experiments, including out-degreed , number of nodes
n, number of edgesm, fraction of nodes from Vh (i.e., nh/n),
and initial segregation Z 0 of each graph.

YouTube

Name d n m nh/n Z 0

YT-D5-S 5 31524 157620 0.48 588.86
YT-D5-B 105143 525715 0.43 598.32

YT-D10-S 10 31524 315240 0.48 718.92
YT-D10-B 105143 1051430 0.43 718.37

YT-D20-S 20 31524 630480 0.48 328.03
YT-D20-B 105143 2102860 0.43 331.09

NELA-GT

Name d n m nh/n Z 0

NEWS-1

10

27286 272860 0.61 88.53
NEWS-2 22296 222960 0.62 29.90
NEWS-3 28861 288610 0.61 335.23
NEWS-4 26114 261140 0.65 75.15

For the second application, we use the NELA-GT dataset [39],
which is a collection of 713k news in English. Each news article in-
cludes title, text, and timestamp, as well as credibility labels (reliable
or unreliable). Our task is to reduce the risk of users getting stuck
in unreliable content via “what-to-read-next” recommendations. To
build the recommendation graphs, we compute the pairwise seman-
tic similarities between news through the pre-generated weights
with RoBERTa [32]. After normalizing the scores in the range [0, 1],
in order to reproduce different instances of news feeding websites,
we generate different subsets of news by month. We perform our
experiments on the 4 months with the largest number of news:
August (NEWS-1), September (NEWS-2), October (NEWS-3) and
November (NEWS-4).

The characteristics of the ten recommendation graphs used in
our experiments are reported in Table 1.
Algorithms.We compare our proposed heuristic (HEU) algorithm
for k-Rewiring with three baselines and one existing algorithm.
The first baseline (BSL-1) selects the set of k rewiring operations by
running Algorithm 1. Instead of picking only one rewiring opera-
tion, it picks the k operations with the largest values of ∆ all at once.
The second baseline (BSL-2) considers the best possible k rewiring
operations by looking at the initial values of the vector z. It firsts
select the k nodes with the largest z values, then among the possible
rewiring operations from those nodes, it returns the k operations
with the largest values of ∆. The third baseline (RND) just picks
k random rewiring operations from all the candidates. Finally, the
existing method we compare with is the RePBubLik algorithm [21]
(RBL). It reduces the structural bias of the graph by looking at the
bubble radius of the two partitions of nodes, returning a list of k
new edges to add. The original algorithm is designed for the inser-
tion of new links, and not for the rewiring (deletion + insertion).
Consequently, we adapt the RePBubLik algorithm to our objective
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as follows: (1) we run it to return a list of potential edges to be
added for reducing the structural bias of the harmful nodes; (2) for
each potential insertion, in order to generate a rewiring operation,
we check among the existing edges to find the one edge that meets
the quality constraint τ after being replaced by the new edge; (3)
we finally select a set of k rewiring operations from the previous
step.

The experiments were conducted on a server running Ubuntu
16.04 with an Intel Broadwell 2.40GHz CPU and 29GB of mem-
ory. Our algorithm and baselines were implemented in Python 3.
Our code and datasets are publicly available at https://github.com/
FraFabbri/rewiring-what-to-watch. The implementation of ReP-
BubLik is available at https://github.com/CriMenghini/RePBubLik.

5.2 Experimental Results
Effectiveness of our method. In Figure 1, we present the results
on the YouTube recommendation graphs. On each graph, we evalu-
ate the performance of each algorithm along 50 rewiring operations
with the threshold of quality constraint is fixed to τ = 0.9. We keep
track of the relative decrease in the segregation ZT /Z 0 after each
rewiring operation, where Z 0 is the initial segregation and ZT is
the segregation after T rewiring operations. On all the graphs, it
is clear that our heuristic algorithm (HEU) outperforms all the
competitors. On the graphs with the smallest out-degree (d = 5), it
decreases Z by over 40% within only 10 rewiring operations (i.e.,
Z 10/Z 0 ≤ 0.6). In this case, it stops decreasing Z after 30 rewiring
operations, which implies that only after a few rewiring opera-
tions our heuristic algorithm has found the best possible operations
constrained by the threshold τ . On the graphs with d = 10, our
heuristic algorithm is able to decrease Z by nearly 80%, which is
even larger than the case of d = 5. This result is consistent in both
smaller (YT-D10-S) and bigger (YT-D10-B) graphs. On the graphs
with the largest out-degree (d = 20), the algorithm is still effective
but, as expected, achieves a comparable reduction in Z after 50
operations.

The first baseline (BSL-1) shows almost the same solution qual-
ity as HEU, since most of the operations found by both algorithms
are the same. Although the rewiring operations provided by ReP-
BubLik (RBL) also decrease the original Z0 significantly, they are
less effective than the ones given by our algorithm. Also, with a
smaller size of recommendation list (d = 5), it reaches some steady
states along the iterations, where the new rewiring operations do
not decrease the Z value at all. For the YouTube dataset, we present
only the results of RBL on the smaller graphs (the second column
of Figure 1), since it cannot finish in reasonable time (24 hours) on
larger graphs. The other baseline (BSL-2) and the random solution
(RND) do not produce substantial decreases over the initial Z0.

In Figure 2, we present the results on the NELA-GT recommen-
dation graphs. We also fix τ = 0.9 in these experiments. Given that
the values of Z 0 are smaller in the news recommendation graph,
we evaluate the performance of different algorithms with smaller k
(i.e., k = 20). As for the previous case, our heuristic algorithm is the
one achieving the best performance on every graph, which reduces
Z by at least 60% after 20 rewiring operations. Furthermore, on the
graph with the biggest Z value (NEWS-3), it decreases the initial
segregation by more than 80% only after 4 rewiring operations. The
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Figure 1: Performance comparison in the YouTube dataset.
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Figure 2: Performance comparison in the NELA-GT dataset.

two baselines (BSL-1 and BSL-2) show comparable performance,
but only on NEWS-3 they obtain close drops in Z0 to HEU after
20 iterations. In the other cases, they are stuck in steady states
far from HEU. The rewiring provided by RePBubLik (RBL) shows
no significant decrease over the initial Z0, which is comparable
only to RND. The difference in performance between YouTube
and NELA-GT can be to some extent attributed to differences in
their degree distributions. We compute the Gini coefficient of the
in-degree distribution of the graphs: for the YouTube graphs the
Gini coefficient of in-degree for the harmful nodes is never below
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Figure 3: Performance of our algorithm (HEU) with varying
quality constraints τ .
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Figure 4: Distribution of the segregation scores (z values) of
harmful nodes before (blue) and after (red) performing 50
rewiring operations provided by HEU and RBL.

90%; while for the NELA-GT graphs this index is never above 50%.
These differences imply that RePBubLik might not perform well
when the in-degree distribution of the graph is not highly skewed.
Robustness w.r.t. threshold of recommendation quality. To
investigate the role of the threshold τ of recommendation quality
on the output of our algorithm, we test on the YouTube recom-
mendation graphs with the same number of rewiring operations
(k = 50) but different values of τ in {0.5, 0.8, 0.9, 0.99}. We present
the results in Figure 3. As expected, under a more lenient quality
constraint (τ = 0.5), the algorithm achieves a larger decease in the
value of Z . It is also clear that the differences are less evident on
graphs with a larger out-degree (d = 20). Specifically, for a smaller
out-degree (d = 5) all the τ configurations except τ = 0.5 tend
to stabilize after k = 20 rewiring operations. This is because the
number of possible rewiring operations constrained by τ is small. It
is also evident that the graph size, given different values of τ , does
not impact the overall performance of our algorithm.
Total exposure to harmful content. Having tested the effective-
ness of our algorithm in reducing the maximum segregation score,

we study its effect on the distribution of the segregation scores
over all harmful nodes. Figure 4 depicts the distribution of the z
values before and after the rewiring operations (with k = 50 and
τ = 0.9) provided by HEU and RBL on the YouTube recommenda-
tion graphs. For each graph, the violin plot in blue (left) denotes
the distribution of segregation scores before the rewiring opera-
tions and the one in red (right) the distribution after the rewiring
operations. The range of segregation scores is normalized to [0, 1],
where the maximum corresponds to the initial segregation. We
observe that reducing the maximum segregation also helps reduce
the segregation scores of other harmful nodes. Compared to RBL,
HEU generates a distribution more highly concentrated around
smaller values; this discrepancy between the distributions is most
significant when d = 20.

6 CONCLUSIONS AND FUTUREWORK
In this paper we studied the problem of reducing the risk of radi-
calization pathways in what-to-watch-next recommenders via edge
rewiring on the recommendation graph. We formally defined the
segregation score of a radicalized node to measure its potential
to trap users into radicalization pathways, and formulated the k-
Rewiring problem to minimize the maximum segregation score
among all radicalized nodes, while maintaining the quality of the
recommendations. We proposed an efficient yet effective greedy
algorithm based on the absorbing random walk theory. Our ex-
periments, in the context of video and news recommendations,
confirmed the effectiveness of our proposed algorithm.

This work is just a first step and it has several limitations that
we plan to tackle in future work. One main limitation is assuming
a binary labelling of nodes, which limits each content to one of the
two groups (harmful or neutral), which is not always realistic. A
natural extension is to assume numerical labels in [0, 1]. This would
require to re-define segregation accordingly.

Another limitation is that we are given the recommendation
graph as input. This implies that the recommendations are precom-
puted and static. We plan to extend our setting to a scenario where
recommendations are generated dynamically in an online fashion.

Finally, we showed through empirical evidence how our method,
designed to reduce maximum segregation, may actually reduce the
total segregation generated by all harmful nodes in the graph. We
plan to design different algorithms which are able to directly tackle
this objective.
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Figure 5: Illustration of the reduction from the VertexCover
problem to the k-Rewiring problem.

A PROOF OF THEOREM 3.1
Proof. We prove the NP-hardness of the k-Rewiring problem

by a reduction from the VertexCover problem [17].
A VertexCover instance is specified by an undirected graph

G = (V ,E), where |V | = n and |E | = m, and an integer k . It asks
whetherG has a vertex cover of size at most k , i.e., whether there
exists a subset C ⊆ V with |C | ≤ k such that {vi ,vj } ∩ C , �
for every edge e = (vi ,vj ) ∈ E. We construct an instance of the
k-Rewiring problem on G∗ from a VertexCover instance on G
as illustrated in Figure 5a. Given a graph G = (V ,E), the graph
G∗ = (V ∗,E∗) is constructed as follows: One vertex inG∗ is created
for each e ∈ E and v ∈ V . Furthermore, four vertices h1,h2,n1,n2
are added toG∗. LetV ∗h = E ∪V ∪ {h1,h2} be the set of (m +n + 2)
“harmful” vertices (in red) and V ∗n = {n1,n2} be the set of two
“neutral” vertices (in blue). Then, for each e = (vi ,vj ) ∈ E, two
directed edges (e,vi ) and (e,vj ) are added to G∗. For each v ∈ V ,
two directed edges (v,h1) and (v,h2) are added to G∗. Finally, four
directed edges (h1,n1), (h1,n2), (h2,n1), and (h2,n2) are added to
G∗. The out-degree d of each red node in G∗ is 2. Accordingly, the
transition probability of every edge in G∗ is set to 0.5.

We first show that there will be a set O of at most k rewiring
operations such that ∆(O) > 0 after the rewiring operations in
O are performed on G∗ if G has a vertex cover of size at most k .
For the original G∗, we have z(h1) = z(h2) = 1, z(v) = 2 for each
vertex v ∈ V , and z(e) = 3 for each edge e ∈ E. Thus, we have
Z = z(e) = 3. So, we will have ∆(O) > 0 as long as z′(e) < 3 for
each edge e ∈ E. Let C = {v1, . . . ,vk } be a size-k vertex cover of
G. We construct a set O = {o1, . . . ,ok } of k rewiring operations
on G∗, where oi = (vi ,h1,n1), corresponding to C , as illustrated in
Figure 5b. After performing the setO of rewiring operations onG∗,
we have two cases for z′(e) of each e = (vi ,vj ):

z′(e) =

{
0.5 × 3 + 0.5 × 2 = 2.5, if |{vi ,vj } ∩C | = 2
0.5 × 3 + 0.5 × 2.5 = 2.75, if |{vi ,vj } ∩C | = 1

Since C is a vertex cover, there is no edge e = (vi ,vj ) such that
{vi ,vj } ∩C = �. Therefore, after performing the set O of rewiring
operations on G∗, it must hold that z′(e) < 3 for every e ∈ E and
thus ∆(O) > 0.

We then show that there will be a set O of at most k rewiring
operations such that ∆(O) > 0 after the rewiring operations in O
are performed on G∗ only if G has a vertex cover of size at most k .
Or equivalently, if G does not have a vertex cover of size k , then

any set O of k rewiring operations performed on G∗ cannot make
∆(O) > 0. SinceG does not have a vertex cover of size k , there must
exist some edge e = (vi ,vj ) with {vi ,vj } ∩C = � for any size-k
vertex setC ⊆ V . Therefore, after performing the setO ofk rewiring
operations corresponding to C , we have z′(e) = 3 for an uncovered
edge e . So, we can say that any set of k rewiring operations from
V cannot make ∆(O) > 0. Furthermore, we consider the case of k
rewiring operations from E, i.e., to find a set of k edges {e1, . . . , ek }
and rewire one out-edge from each of them to n1 or n2. In this
case, we can always find some unselected edge e with z′(e) = 3 as
long asm > k , which obviously holds as G does not have a vertex
cover of size k . Finally, we consider the case of a “hybrid” set of k
rewiring operations from both E and V . W.l.o.g., we assume that
there are (k − k ′) operations from V and k ′ operations from E for
some 0 < k ′ < k . Since G does not have a vertex cover of size
k , we can say that any vertex set C of size (k − k ′) can cover at
most (m − k ′ − 1) edges. Otherwise, we would find a vertex cover
of size k by adding k ′ vertices to cover the remaining k ′ edges
and thus lead to contradiction. Therefore, after performing only k ′
rewiring operations from E, there always exists at least one edge e
that are covered by neither the vertex set nor the edge set, and thus
z′(e) = 3 and ∆(O) = 0. Considering all the three cases, we prove
that any set of k rewiring operations performed onG∗ cannot make
∆(O) > 0 if G does not have a vertex cover of size k .

Given that both the “if ” and “only-if ” directions are proven and
G∗ can be constructed fromG inO(m+n) time, we reduce from the
VertexCover problem to the k-Rewiring problem in polynomial
time and thus prove that the k-Rewiring problem is NP-hard.

To show the hardness of approximation, we suppose that there is
a polynomial-time algorithmA that approximates the k-Rewiring
problem within a factor of α > 0. Or equivalently, for any k-
Rewiring instance, ifO∗ is the set of k optimal rewiring operations,
then the setO ′ of k rewiring operations returned byA will always
satisfy that ∆(O ′) ≥ α · ∆(O∗). Let us consider a k-Rewiring in-
stance on the above graphG∗ constructed fromG and k be the size
of the minimum vertex cover of G. For this instance, the optimal
solution O∗ of the k-Rewiring problem exactly corresponds to the
minimum vertex cover C∗ of G with ∆(O∗) > 0; any other solution
O ′ will lead to ∆(O ′) = 0, as we have shown in this proof. If A
could find a solution for the k-Rewiring problem with any approxi-
mation factor α > 0 in polynomial time, thenA would have solved
the VertexCover problem in polynomial time, which has been
known to be impossible unless P=NP. Therefore, the k-Rewiring
problem is NP-hard to approximate with any factor. □

B ETHICS STATEMENT
In this work, we aim at reducing the exposure to radicalized con-
tent generated by W2W recommender systems. Our approach does
not include any form of censorship, and instead limits algorithmic-
induced over-exposure, which is stimulated by biased organic in-
teractions (e.g., the spread of radicalized content through user-user
interactions). Our work contributes to raise awareness on the im-
portance of devising policies aimed at reducing harmful algorithmic
side-effects. Generally, we do not foresee any immediate and direct
harmful impacts from this work.
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