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Complex networks have acquired a great popularity in recent years, since the graph representation of many
natural, social, and technological systems is often very helpful to characterize and model their phenomenology.
Additionally, the mathematical tools of statistical physics have proven to be particularly suitable for studying
and understanding complex networks. Nevertheless, an important obstacle to this theoretical approach is still
represented by the difficulties to draw parallelisms between network science and more traditional aspects of
statistical physics. In this paper, we explore the relation between complex networks and a well known topic of
statistical physics: renormalization. A general method to analyze renormalization flows of complex networks is
introduced. The method can be applied to study any suitable renormalization transformation. Finite-size scaling
can be performed on computer-generated networks in order to classify them in universality classes. We also
present applications of the method on real networks.
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I. INTRODUCTION

Many real systems in nature, society, and technology can
be represented as complex networks �1–6�. Independently of
their natural, social or technological origin, most networks
share common topological features, like the “small-world”
property �7� and a strong topological heterogeneity. The
small-world property expresses the fact that the average dis-
tance between nodes, as defined in the graph-theoretical
sense, is small with respect to the number of nodes, and
typically grows only logarithmically with it. Networks are
topologically heterogeneous in that the distributions of the
number of neighbors �degree� of a node are broad, typically
spanning several orders of magnitude, with tails that can of-
ten be described by power laws �hence the name “scale-free
networks” �8��.

While “scale-free-ness” implies the absence of a charac-
teristic scale for the degree of a node, it is not a priori clear
how this can be related to the notion of self-similarity, often
studied in statistical physics, and also typically related to the
occurrence of power laws. In this context, several recent
works have focused on defining and studying the concept of
self-similarity for networks. The notion of self-similarity is
related to a renormalization transformation, properly adapted
to graphs, introduced by Song et al. �9�. The renormalization
procedure is analogous to standard length-scale transforma-
tions, used in classical systems �10,11�, and can be simply
performed by using a box covering technique interpreted in a
graph-theoretical sense. The analysis of this transformation
in real networks �9� has revealed that some of them, such as
the World Wide Web, social, metabolic, and protein-protein
interaction networks, appear to be self-similar while others,
like the Internet, do not. Self-similarity here means that the
statistical features of a network remain unchanged after the
application of the renormalization transformation. Many suc-

cessive papers have focused on this subject, performing the
same analysis on several networks, introducing new box-
covering techniques and trying to explain the topological dif-
ferences between self-similar and non-self-similar networks
�12–18� �for a recent review on this topic, see �19��.

In this context, the analysis of renormalization flows of
complex networks �20� represents a new perspective to study
block transformations in graphs. Differently from all former
studies, the study of Ref. �20� is not devoted to observe the
effect of a single transformation, but to analyze the renormal-
ization flow produced by repeated iterations of the transfor-
mation. Starting from an initial network, the iteration of the
renormalization procedure allows us to explore the space of
network configurations just as standard renormalization is
used to explore the phase space of classical systems in sta-
tistical physics �10,11�. For these reasons, the analysis of
renormalization flows of complex networks represents not
only an important theoretical step towards the understanding
of block transformations in graphs, but also a further attempt
to link traditional statistical physics and network science.

In this paper, we substantially extend the analysis pre-
sented in �20�. We perform a numerical study of renormal-
ization flows for several computer-generated and real net-
works. The numerical method is applied to different
renormalization transformations. For a particular class of
transformations, we find that the renormalization flow leads
non-self-similar networks to a condensation transition, where
a few nodes attract a large fraction of all links. The main
result of the paper lies in the robustness of the scaling rules
governing the renormalization flow of a network: indepen-
dently of the transformation, the renormalization flow of
non-self-similar networks is characterized by the same set of
scaling exponents, which identify a unique universality class.
In contrast, the renormalization flow of self-similar networks
allows to classify these networks in different universality
classes, characterized by a set of different scaling exponents.

The paper is organized in the following way. In Sec. II,
we describe the standard technique used in order to renor-
malize a network and define the renormalization flow of a
graph. We then start with the analysis of renormalization
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flows of different networks. In the case of computer-
generated graphs, we distinguish the behavior of non-self-
similar �Sec. III A� and self-similar �Sec. III B� networks.
Section IV is devoted to the analysis of the renormalization
flows of real complex networks. Finally, in Sec. V we sum-
marize and comment on the results.

II. RENORMALIZING COMPLEX NETWORKS

Differently from classical systems, graphs are not embed-
ded in Euclidean space. As a consequence, standard length-
scale transformations cannot be performed on networks since
measures of length have a meaning only in a graph-
theoretical sense: the length of a path is given by the number
of edges which compose the path; the distance between two
nodes is given by the length of the �or one of the� shortest
path�s� connecting the two nodes. Based on this metrics,
Song et al. �9� proposed an original technique for renormal-
izing networks �see Fig. 1�. Given the length of the transfor-
mation �B, their method is given by the following steps:

�i� Tile the network with the minimal number of boxes
NB; each box should satisfy the condition that all pairs of
nodes within the box have distance less than �B.

�ii� Replace each box with all nodes and mutual edges
inside with a supernode.

�iii� Construct the renormalized network composed of all
supernodes: two supernodes are connected if in the original
network there is at least one link connecting nodes of their
corresponding boxes.

The former recipe represents a transformation R�B
appli-

cable to any unweighted and undirected network leading to
the generation of a new unweighted and undirected network,
the “renormalized” version of the original one. In principle,
there are many ways to tile a network and therefore the trans-
formation R�B

is not invertible. Moreover, finding the best
coverage of a network �i.e., the one which minimizes the
number of boxes NB� is computationally expensive: up to
now, the best algorithm introduced in this context is the
greedy coloring algorithm �15� �GCA�, a greedy technique

inspired by the mapping of the problem of tiling a network to
node coloring, a well known problem in graph theory �21�.
An analogous technique, leading to a qualitatively and quan-
titatively similar transformation RrB

, is random burning �RB�
�14�. In RB boxes are spheres of radius rB centered at some
seed nodes, so that the maximal distance between any two
nodes within a box does not exceed 2rB. Nodes in boxes
defined through the transformation RrB

satisfy the condition
defining boxes of the transformation R�B

, for �B=2rB+1.
However, the search for minimal box coverage is much more
effective for the GCA than for RB, and this may occasionally
yield different results, as we shall see.

The strict meaning of self-similarity is that any part of an
object, however small, looks like the whole �22�. Similarly,
complex networks are self-similar if their statistical proper-
ties are invariant under a proper renormalization transforma-
tion. Song et al. �9� have shown that the degree distribution

TABLE I. We list the values of the scaling exponent � and of the
fixed point threshold x* �fourth and fifth column, respectively� for
all networks we consider in our numerical analysis. Computer-
generated networks �specified in the second column� are divided in
non-self-similar, self-similar, and perturbed self-similar �first col-
umn�. The perturbation is made by rewiring a fraction p=0.01 of all
links in the WS model and by adding a fraction p=0.05 or p
=0.01 of all connections in the FM or AP networks, respectively.
The third column specifies the type of transformation used to ana-
lyze the renormalization flow. We associate to each numerical value
of � and x* its error.

Type Network R � x*

Non-self-similar ER �k�=2 rB=1 2.0�1� 0.059�1�
�B=2 2.0�1� 0.15�1�
rB=2 2.0�1� 0

�B=3 2.0�1� 0

BA m=3 rB=1 2.0�1� 0.098�2�
�B=2 2.0�1� 0.245�5�
rB=2 2.0�1� 0

�B=3 2.0�1� 0

Self-similar WS �k�=4 rB=1 1.0�1� 0

�B=2 1.0�1� 0

�B=3 1.0�1� 0

FM e=0.5 rB=1 2.2�1� 0

�B=2 2.2�1� 0

�B=3 1.0�1� 0

AP �B=2 4.8�2� 0

�B=3 1.0�1� 0

Perturbed self-similar WS �k�=4 rB=1 2.0�1� 0.004�2�
�B=3 2.0�1� 0

FM e=0.5 rB=1 2.1�1� 0.118�2�
�B=3 2.0�1� 0

AP rB=1 2.0�1� 0.045�2�
�B=2 2.0�1� 0.05�1�
�B=3 2.0�1� 0

FIG. 1. �Color online� Renormalization procedure applied to a
simple graph: �left� the original network is divided into boxes and
the renormalized graph �right� is generated according to this tiling.
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of several real networks remains unchanged if a few itera-
tions of the renormalization transformation are performed.
Moreover, when this feature is verified, the number of boxes
NB needed to tile the network for a given value of the length
parameter �B decreases as a power law as �B increases:

NB��B� � �B
−dB. �1�

The exponent dB is called, in analogy with classical systems,
the fractal exponent of the network �22�. This property has
been verified for several real networks in various studies
�9,12,14�. On the other hand, not all real networks are self-
similar, i.e., Eq. �1�, and the invariance of the degree distri-
bution do not hold for them. For consistency, these networks
are called non-self-similar.

In contrast to former studies which mostly dealt with a
single step of renormalization, we are interested here in ana-
lyzing renormalization flows of complex networks, i.e., the
outcome of repeated iterations of the renormalization proce-
dure described above. Starting from a graph G0, with N0
nodes and E0 edges, we indicate as Gt �with Nt nodes and Et
edges� the network obtained after t iterations of the transfor-
mation R:

G1 = R�G0�, G2 = R�G1� = R2�G0�, . . .

. . . ,Gt = R�Gt−1� = ¯ = Rt�G0� . �2�

Note that in Eq. �2� we have suppressed the subscript �B �or
rB� for clarity of notation. In our analysis, we follow the flow
by considering several observables. We mainly focus on the
variables

�t = Kt/�Nt − 1� , �3�

where Kt is the largest degree of the graph Gt, and

�t = Et/�Nt − 1� , �4�

which is basically the average degree of the graph Gt divided
by 2. �t and �t can assume nontrivial values in any graph,

excluding trees �for which �t=1, ∀t�. We monitor also the
fluctuations of the variable �t along the flow by measuring
the susceptibility

�t = N0���t
2� − ��t�2� , �5�

where �·� denotes averages taken over different realizations
of the covering algorithm. Moreover, we consider other
quantities like the average clustering coefficient Ct �7�. All
these observables are monitored as a function of the relative
network size xt=Nt /N0, which is a natural way of following
the renormalization flow of the variables under study.

III. COMPUTER-GENERATED NETWORKS

We first consider artificial networks. In the case of
computer-generated networks, it is in fact possible to control
the size N0 of the initial graph G0 and to perform the well
known finite-size scaling analysis for the renormalization
flow. For every computer-generated graph and every trans-
formation R, we find that the observable �t obeys a relation
of the type

�t = F��xt − x*�N0
1/�� , �6�

where F�·� is a suitable function depending on the starting
network and the particular transformation used. Analogous
scaling relations hold for the other observables ��t and Ct�
we considered. The susceptibility �t needs an additional ex-
ponent � since it obeys a relation of the type �t=N0

�/�G��xt

−x*�N0
1/��, with G�·� a suitable scaling function. In general,

the scaling exponent � does not depend on the particular
transformation R used to renormalize the network, but de-
pends on the starting network G0: we always obtain �=2 for
any non-self-similar network �Sec. III A� and values of �
depending on the initial network in the case of self-similar
graphs �Sec. III B�. On the other hand, we obtain x*=0 in all
cases, except for the particular transformations obtained for
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FIG. 2. �Color online� Study of renormalization flows on the ER model with �k�=2. The box covering has been performed by using RB
with rB=1 �a� and GCA with �B=2 �b�. The figures display �t �a, b top� and �t �a, b bottom� as a function of the relative network size xt.
The insets display the scaling function of the variable �xt−x*�N0

1/� for �t and �t. Here the scaling exponent �=2 in both cases. Note that the
flow of the renormalization procedure goes from larger �right on the x axis� to smaller values �left� of xt.
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rB=1 and �B=2 on non-self-similar networks �Sec. III A 1�.
In the next sections, we show our numerical results, obtained
from the analysis of renormalization flows of computer-
generated networks, distinguishing between the various
cases. All values of � and x* are listed in Table I. We em-
phasize the importance of the fact that the exponent � is able
to classify artificial networks in different universality classes.

A. Non-self-similar networks

We consider several computer-generated networks for
which Eq. �1� does not hold. Equation �6� is able to describe
the renormalization flows of any of these network models.
The scaling exponent �=2 identifies a single universality
class for all these models. The only difference is given by the
finite value of x*�0 obtained when renormalization is per-
formed with �B=2 or rB=1 �Sec. III A 1�. Instead, for �B

�2 and rB�1 we always obtain x*=0 �Sec. III A 2�.

1. rB=1, �B=2

For rB=1 or �B=2, the transformation R has a particular
behavior. In the case of GCA and �B=2, at each stage of the

renormalization flow, the boxes in which the network is tiled
have the peculiarity to be fully connected subgraphs or
cliques �23�. In the case of renormalization performed with
RB and rB=1, spheres are compact subgraphs composed
only of neighbors of the selected seed nodes. In both cases,
at each stage of the renormalization flow, the contraction of
the network is much slower if compared with the same trans-
formations run for higher values of �B or rB.

In Fig. 2, we show some numerical results obtained fol-
lowing the renormalization flow of the Erdös-Rényi �ER�
�24� model with average degree �k�=2. For both algorithms
used for renormalizing the networks, we clearly see a point
of intersection between all the curves occurring at a particu-
lar value x*�0. Interestingly, the same values of � and x*

hold also for the susceptibility �t and the average clustering
coefficient Ct. Numerical results for both quantities and their
relative scaling are reported in Fig. 3.

The same behavior is observed for all the non-self-similar
networks that we have studied. To mention a few, we per-
formed numerical simulations also on the Barabási-Albert
�BA� model �8� and its generalization given by scale-free

0.03 0.04 0.05 0.06 0.07 0.08 0.09
xt

0

200

400

600

800

χ t

N0 = 1000

N0 = 2000

N0 = 5000

N0 = 10000

N0 = 20000

-2 -1 0 1 2

(xt - x*) N0
1/ν

0

0.005

0.01

0.015

0.02

χ t
N

0-γ
/ν

a

ER <k> = 2

0.11 0.12 0.13 0.14 0.15 0.16 0.17
xt

0

50

100

150

200

χ t

N0 = 500

N0 = 1000

N0 = 2000

-1 0 1 2

(xt - x*) N0
1/ν

0

0.01

0.02

χ t
N

0-γ
/ν

c

ER <k> = 2

0.11 0.12 0.13 0.14 0.15 0.16 0.17
xt

0

0.02

0.04

0.06

0.08

0.1

0.12

C
t

N0 = 500

N0 = 1000

N0 = 2000

-1 0 1

(xt - x*) N0
1/ν

0

0.05

0.1
d

ER <k> = 2

0.03 0.04 0.05 0.06 0.07 0.08 0.09
xt

0

0.05

0.1

0.15

0.2

C
t

N0 = 1000

N0 = 2000

N0 = 5000

N0 = 10000

N0 = 20000

-2 -1 0 1 2

(xt - x*) N0
1/ν

0

0.05

0.1

0.15

0.2b

ER <k> = 2

FIG. 3. �Color online� Study of renormalization flows on ER model with �k�=2. The box covering has been performed by using RB with
rB=1 �a, b� and GCA with �B=2 �c, d�. The figures display the susceptibility �t �a, c� and the average clustering coefficient Ct �b, d� as a
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1/� for �t and Ct. Here the scaling
exponent �=2 and the susceptibility exponent �=� in all cases.
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networks generated with linear preferential attachment �25�.
We report in Fig. 4 the numerical results obtained for the BA
model: the quantities �t and �t are shown as a function of the
renormalization flow’s variable xt. Again, a clear crossing
point x*�0 can be seen in this case. More importantly, both
variables �t and �t obey Eq. �6� with �=2.

The existence of a nonvanishing x* is a peculiarity of the
renormalization obtained for �B=2 and rB=1: x*�0 implies
the existence of a special stable fixed point, which holds in
the limit of infinite network size. The fixed point is reached
in a number of iterations which scales logarithmically with
the initial size of the network, while the number of renormal-
ization stages needed to reach any xt�x* diverges almost
linearly with the initial system size �see Fig. 5�. Interestingly,
the fixed point statistically corresponds to the same topologi-

cal structure, independently of the topology of the initial net-
work �see Fig. 6�. This particular fixed point is a graph where
a few nodes attract a large fraction of all links �i.e., �t�x*�
�1�; such hub nodes have degrees which are distributed
according to a power law �see Fig. 6�a��. Moreover, the net-
work obtained at the fixed point is composed of nodes with
clustering coefficient �C� and average degree of the neigh-
bors �knn� which decrease as a power law as the degree of the
node increases �see Figs. 6�b� and 6�c� respectively�. Figure
6�d� is a graphical representation of the graph obtained at x*

when starting from an ER network with N0=30 000. The
presence of many starlike structures gives an explanation of
the results described above �Fig. 5�: for rB=1, the center of
the first chosen box will be with high probability a low-
degree node �“leaf” in the figure�, so the box will include
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only a low-degree node and the attached hub, and the other
low-degree nodes �the other leaves of the star� will need one
box each. This is why Nt decreases very slowly. Renormal-
ization steps with “small” boxes �rB=1 or �B=2� make it
therefore “difficult” or “slow” to modify appreciably such
structures.

2. rB�1, �B�2

Renormalization flows with �B�2 and rB�1 have been
discussed in �20�, and we present some additional results in
Fig. 7. The renormalization flows of non-self-similar
computer-generated networks still obey Eq. �6� with �=2,
and the main difference with respect to the particular cases
�B=2 and rB=1 consists in the value of x*, which is now
x*=0. As usual in statistical physics, however, the precise
value of the threshold is less relevant than the value of the
exponents describing the flow. In this respect, the robustness
of the value �=2 strikingly shows that all non-self-similar

artificial networks can be classified as belonging to a unique
universality class.

B. Self-similar networks

Let us now consider computer-generated models which
satisfy Eq. �1�. For all these models, we find that Eq. �6� still
holds. In strong contrast with non-self-similar networks, the
value of the scaling exponent � now depends on the particu-
lar network analyzed and on the specific renormalization
transformation. Moreover, each self-similar model is a fixed
point of the renormalization flow since the statistical proper-
ties of the network are unchanged if iterated renormalization
transformations are applied to the network.

As a prototype of computer-generated self-similar net-
work, we consider the fractal model �FM� introduced by
Song et al. �13�. The FM is self-similar by design, as it is
obtained by inverting the renormalization procedure. At each
step, a node turns into a star, with a central hub and several
nodes with degree 1. Nodes of different stars can then be
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FIG. 6. �Color online� Statistical properties of the fixed point in the case of computer-generated networks. Renormalization has been
performed by using GCA with �B=2. Initial network sizes are N0=106 for the ER model, N0=106 for the BA model, N0=106 for the
Watts-Strogatz �WS� model �with ratio of rewired links p=0.01�, and N0=156 251 for the fractal model �FM�, with ratio of added connec-
tions p=0.05. Dashed lines have slopes −1.5 in �a�, −1.2 in �b�, and −1 in �c�. �d� The graphical representation of the fixed point has been
obtained by starting from an ER model with N0=30 000 and �k�=2.

RADICCHI et al. PHYSICAL REVIEW E 79, 026104 �2009�

026104-6



connected in two ways: with probability e one connects the
hubs with each other, with probability 1−e a nonhub of a star
is connected to a nonhub of the other. The resulting network
is a tree with power law degree distribution, the exponent of
which depends on the probability e.

In the case of the FM network it is possible to derive the
scaling exponent �, by inverting the construction procedure
of the graph. In this way one recovers graphs with identical
structure at each renormalization step and one can predict
how �t, for instance, varies as the flow progresses. Since we
are interested in renormalizing the graph, our process is the
time-reverse of the growth described in �13�, and is charac-
terized by the following relations:

Nt−1 = nNt,

kt−1 = skt,

� = 1 +
ln n

ln s
, �7�

where n and s are time-independent constants determining
the value of the degree distribution exponent � of the net-
work. Here Nt and kt are the number of nodes and a charac-
teristic degree of the network at step t of the renormalization;
we choose the maximum degree Kt. The initial network has
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FIG. 7. �Color online� Study of renormalization flows on non-self-similar artificial graphs. Renormalization has been performed by using
GCA with �B=3. The figures display the variables �t �a,b top� and �t �a,b bottom� as a function of the relative network size xt, for the
renormalization flow of an ER model with �k�=2 �a� and a BA model with 2m= �k�=6 �b�. The insets display the scaling function of the
variable �xt−x*�N0
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size N0 and shrinks due to box-covering transformations. In
this case, for the variable �t one obtains

�t �
Kt

Nt
=

K0

N0
	 s

n

−t

=
K0

N0
	 Nt

N0

−��−2�/��−1�

=
K0

N0
xt

−��−2�/��−1�

� �N0xt�−��−2�/��−1�, �8�

where we used s=n1/��−1�, Nt /N0=n−t, and K0�N0
1/��−1�, de-

rived from Eqs. �7�. We see that the scaling exponent �=1 is
obtained for any value of the exponent �. From Eq. �8� we
actually get the full shape of the scaling function, that is, a
power law: our numerical calculations confirm this predic-
tion �see Fig. 8�b��. We remark that this holds only because
one has used precisely the type of transformation that inverts
the growth process of the fractal network. This amounts to
applying the GCA with �B=3, as we did Fig. 8�b�.

If we consider instead the renormalization procedure de-
fined by RB with rB=1 �or by GCA with �B=2�, the centers
of the boxes will be mostly low degree nodes, as discussed
above. Hubs are thus included in boxes only as neighbors of
low degree nodes and, as a consequence, the supernode cor-
responding to a box with a large hub inside will have a
degree which is essentially the same as the degree of the hub
before renormalization. It is therefore reasonable to assume
that Kt�K0, and we get

�t �
Kt

Nt
�

K0

Nt
�

N0
1/��−1�

Nt
= �N0

��−2�/��−1�xt�−1 �9�

which is again a scaling function of the variable N0
1/�xt, with

�= ��−1� / ��−2�, as we found numerically �see Fig. 8�a��.
Qualitatively similar numerical results can be shown also

for other self-similar models of networks: unperturbed Watts-
Strogatz �WS� model �7� �i.e., one-dimensional lattice�, hier-
archical model �27� and the Apollonian �AP� network model
�28� �see Table I�.

C. Effect of small perturbations on self-similar networks

Self-similar objects correspond by definition to fixed
points of the transformation. To study the nature of these
fixed points, we have repeated the analysis of the renormal-
ization flows for the self-similar networks considered, but
perturbed by a small amount of randomness, through the
addition or rewiring of a small fraction p of links. The results
are shown in Fig. 9 for WS small-world networks, which are
simply linear chains �trivially self-similar� perturbed by a
certain amount of rewiring �7�, and FM networks with ran-
domly added links. In both cases we recover the behavior
observed for non-self-similar graphs, with a scaling exponent
�=2 �this holds for all values of rB or �B investigated, see
also �20��. This clearly implies that the original self-similar
fixed points are unstable with respect to disorder in the con-
nections, and highlights once again the robustness of the ex-
ponent value �=2. Furthermore, the statistical properties of
the fixed point reached at x*, when it exists �i.e., for rB=1 or
�B=2� are again the same as those obtained starting from
non-self-similar networks �see Fig. 6�. For these particular
renormalization flows �for rB=1 or �B=2�, the picture ob-
tained is therefore a global flow towards the structure de-
picted in Fig. 6, with isolated unstable fixed points given by
the artificial self-similar graphs.

IV. REAL NETWORKS

For real-world networks, a finite-size scaling analysis is
not available because of the uniqueness of each sample. On
the other hand, it is still possible to apply repeatedly the
renormalization transformation and to study the evolution of
the network properties �a similar numerical study has been
performed also in �29��. In Fig. 10, we measure some basic
statistical properties of two real networks along the renor-
malization flow. We consider the actor network �8�, a graph
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FIG. 9. �Color online� Effect of a small random perturbation on renormalization flows. The box covering has been performed by using
RB with rB=1. �a� WS network with �k�=4 and a fraction p=0.01 of randomly rewired links. �b� FM network with e=0.5 and a fraction
p=0.05 of added links. The figures display �t �a,b, top�, and �t �a,b, bottom� as a function of the relative network size xt. Comparing with
Fig. 8�a�, we see that the transformation yields a crossing of the �t curves for the FM networks. The crossing appears also for the WS
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The exponents are now very different from the unperturbed case: we recover �=2. The relation �=� seems to hold here as well.
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constructed from the Internet Movie Database �32� where
nodes are connected if the corresponding actors were cast
together in at least one movie, and the link graph of the Web
pages of the domain of the University of Notre Dame �Indi-
ana, USA� �26�. Both networks have been claimed to be

self-similar, since Eq. �1� holds for both of them �9�. On the
one hand, the degree distributions P�k� are only slightly af-
fected by the renormalization transformation, and retain their
main characteristics even after several stages of renormaliza-
tion �in particular for the Web graph, see Fig. 10�b��. This
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FIG. 10. �Color online� Statistical properties of real networks after t steps of renormalization. We consider two examples: a network of
392 340 actors, where nodes are connected if the corresponding actors were cast together in at least one movie �8� �a, c, and e�; the link graph
of the World Wide Web, consisting of 325 729 Web pages of the domain of the University of Notre Dame �Indiana, USA� and of their mutual
hyperlinks �26� �b, d, and f�. The box covering was performed with the GCA ��B=2�, but the results hold as well for other transformations.
The clustering spectrum and the degree correlation pattern change drastically already after a single transformation. In particular, the actor
network displays assortativity, but after two transformations it becomes disassortative. The solid line in �b� has slope −2.1.
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first result points towards an effective self-similarity of P�k�
under the action of the renormalization flow. The degree dis-
tribution by itself is, however, not enough to characterize
complex networks, since many different topologies can cor-
respond to the same P�k�. Important information is in par-
ticular encoded in the clustering coefficient spectrum C�k�,
defined as the average clustering coefficient of nodes of de-
gree k, and in the average degree of the neighbors of nodes
of degree k, knn�k�, which is a measure of the degree corre-
lations between nearest neighbors in the graph. In this con-
text, Figs. 10�c�–10�f� show that even a single renormaliza-
tion transformation induces large changes in these quantities.
In this respect, the apparent self-similarity exhibited by the
degree distribution does not extend to higher order correla-
tion patterns.

Interestingly, in the case rB=1 or �B=2, the iteration of
the renormalization transformation leads all real networks
investigated �either self-similar or not, as defined by Eq. �1��
towards the same kind of structure �illustrated in Fig. 6�
which is reached by non-self-similar artificial networks �see

Fig. 11�. Note that, for real networks, no change in the initial
size can be performed, so we simply show the structure ob-
tained after a few steps of renormalization, which remains
stable for many steps due to the peculiarity of the case rB
=1 or �B=2, as explained above.

All these results allow us to discuss the exact self-
similarity of real-world networks: as we have seen in the
case of computer-generated self-similar networks, all fixed
points correspond to strongly regular topologies and minimal
perturbations are enough to break the picture of self-
similarity. Since randomness is an unavoidable element in
real complex networks, exact self-similarity should not be
observed in them. The randomness of their topology is am-
plified when renormalization is iterated. Real-world net-
works which are self-similar according to Eq. �1� could,
however, a priori be arbitrarily close to an actual fixed point
of the renormalization. This actually raises the important is-
sue of defining and measuring a distance in the space of
networks. However, Fig. 10 shows that few renormalization
steps �often a single one� are enough to substantially modify
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FIG. 11. �Color online� Statistical properties of the “fixed point” in the case of real networks. Renormalization has been performed by
using GCA with �B=2. The properties of the networks are measured after a certain number �less than 10� of renormalization steps. Dashed
lines have the same slopes as those appearing in Fig. 6. The real networks considered in this figure are the actor network �8�, the scientific
collaboration network �30�, the network of Web pages of the domain of the University of Notre Dame �26�, and the protein-protein
interaction network of the yeast Saccharomyces cerevisae �31�. �d� The graphical representation of the fixed point has been obtained by
starting from the protein-protein interaction network of the yeast.

RADICCHI et al. PHYSICAL REVIEW E 79, 026104 �2009�

026104-10



the network structure in our examples, so that it seems to us
hard to sustain that they are close to a fixed point.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented a detailed analysis of the
method, introduced in �20�, to study renormalization flows of
complex networks. The method is applied using the two most
popular techniques for network renormalization: greedy col-
oring �13� and random burning �14�. Independently of the
algorithm, we have shown that a simple scaling rule �i.e., Eq.
�6�� is able to describe the renormalization flow of any
computer-generated network. A single scaling exponent � is
needed in order to classify networks in universality classes:
all non-self-similar networks belong to the same universality
class characterized by �=2; self-similar networks, on the
other hand, belong to other universality classes, generally
identified by values of the scaling exponent � different from
2. Self-similar networks represent by definition fixed points
of the renormalization transformation, since the statistical

properties of these networks remain invariant after renormal-
ization. They are actually unstable fixed points of the renor-
malization transformation: minimal random perturbations are
indeed able to lead the flow out of these fixed points. The
numerical study presented here confirms and extends the va-
lidity of the results already anticipated in �20�.

In addition, we have performed an analysis of the effect of
the iterated renormalization transformation on real networks.
Unfortunately, the same technique, introduced in �20�, cannot
be directly applied to real networks. In this case, in fact, a
finite-size scaling analysis cannot be performed since any
real network has a fixed size. Nevertheless, the usual simple
measures of the network structure, taken after a few itera-
tions of renormalization, reveal that the transformation modi-
fies the topological properties of the network. Furthermore,
the repeated renormalization of real networks produces flows
converging to the same fixed point structure, when it exists,
as the one found in the case of computer-generated non-self-
similar networks.
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