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Relevance of temporal cores 
for epidemic spread in temporal 
networks
Martino ciaperoni1, edoardo Galimberti2, francesco Bonchi2, ciro cattuto2,3, 
francesco Gullo4 & Alain Barrat2,5,6*

temporal networks are widely used to represent a vast diversity of systems, including in particular 
social interactions, and the spreading processes unfolding on top of them. The identification of 
structures playing important roles in such processes remains largely an open question, despite recent 
progresses in the case of static networks. Here, we consider as candidate structures the recently 
introduced concept of span-cores: the span-cores decompose a temporal network into subgraphs 
of controlled duration and increasing connectivity, generalizing the core-decomposition of static 
graphs. To assess the relevance of such structures, we explore the effectiveness of strategies aimed 
either at containing or maximizing the impact of a spread, based respectively on removing span-
cores of high cohesiveness or duration to decrease the epidemic risk, or on seeding the process from 
such structures. The effectiveness of such strategies is assessed in a variety of empirical data sets and 
compared to baselines that use only static information on the centrality of nodes and static concepts 
of coreness, as well as to a baseline based on a temporal centrality measure. our results show that 
the most stable and cohesive temporal cores play indeed an important role in epidemic processes on 
temporal networks, and that their nodes are likely to include influential spreaders.

A large variety of systems find a convenient representation as networks of interactions between components. 
Network representations have indeed proved to be useful to understand the structure and dynamics of systems 
as diverse as transportation infrastructures or social networks, as well as to describe processes occurring on top 
of them, such as information diffusion, epidemic spread, synchronization,  etc1. A large body of work aims in 
particular at understanding how the network’s features impact the outcome of processes taking place on top of 
them, with the ambition of devising control and prediction capabilities. For instance, several methods have been 
put forward to identify the nodes of a network that play a more important role in a spreading process, either 
because they are “influencers” able to widely spread an information, or because they are “sentinels” with a high 
probability to be reached by a disease in its early stages and thus can give an early warning, or because their 
immunization is likely to hinder the  spread2–11.

Such a task becomes even more complex when dealing with temporal networks, in which edges between nodes 
can appear and disappear on different time scales. The recent availability of time-resolved data sets of interac-
tions has pushed network science beyond the static graph representation and has led to the development of the 
field of temporal  networks12,13. The temporal dimension can yield non-trivial temporal features such as broad 
distributions of interaction times and of inter-event times (“burstiness”), heterogeneous activity distributions, 
causality constraints, and overall a broader diversity of activity/connectivity patterns than in static  networks12–15. 
This has raised new questions on designing surveillance and control strategies for epidemic processes in temporal 
 networks16–23. Identifying single nodes for the design of targeted interventions (immunization, isolation) can 
however be challenging in practice: indeed, centrality measures can fluctuate strongly over time and depend on 
details of the system that change in different periods; they might moreover be difficult to relate to interpretable 
features. Data with limited resolution can also make it difficult to correctly identify the most central  nodes24. 
In particular, several  works17,18,21 have addressed the issue of designing causal interventions, in which node 
properties are measured until a certain time and determine the nodes to immunize to contain a future spread. 
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In practice, the impact of such strategies depends strongly on the data set under study and is limited by tem-
poral fluctuations in the centralities of nodes. Moreover, action at the level of individuals is subjected to many 
informational and operational constraints.

Therefore, strategies based on intermediate scales have been advocated, targeting structures rather than single 
nodes, with the goal of identifying patterns that can be acted upon in practice. The idea in this case is to first iden-
tify potential structures of interest in (static or temporal) networks, and then verify that they play an important 
role in spreading processes: this is typically done by thought experiments in which one compares the outcome of 
a spreading process on the original network with the outcome if the structure of interest is altered or removed. 
Alternatively, one can seed the process from the structure and investigate the spreading power of nodes of the 
structure. A second important step is to relate the structures to interpretable features of the system of interest, 
and the third step is to use this knowledge to propose actionable strategies. Examples of such structures include 
groups or communities in the population, in which individuals have more contacts with each other than with 
the rest of the population, leading to the proposal of reactive measures of class  closure22,25, or sets of links with 
correlated activity  patterns23, which, in a school environment, can be related to the breaks between lectures and 
thus help design concrete interventions. We note here that the investigation of structures does not necessarily 
correspond to causal interventions in which only past knowledge is used. Rather, one wants to identify a certain 
type of structures that play an important role and could be interpreted in practical settings to be acted upon.

Here, we contribute to the first, most theoretical step of this line of research by proposing a novel type of 
candidate structures for idealized targeted interventions: the span-cores of a temporal network. The span-cores 
are structures that we recently  introduced26 to decompose a temporal network into hierarchies of subgraphs of 
controlled duration and increasing connectivity, generalizing the core-decomposition of static graphs. They could 
thus in temporal contact networks be interpreted as long-lasting groups of interacting individuals. We recall 
that the core-decomposition of a static network yields a hierarchy of subgraphs that are increasingly densely 
connected: a core with coreness k is defined as the maximal subgraph such that all nodes within it have degree 
(number of neighbors in the core) at least k27. The nodes belonging to the more central cores have been shown 
to play an important role in standard theoretical models of epidemic spreading processes on static  networks4,28.

In temporal networks, the span-cores are  defined26 as temporal subgraphs as follows: a span-core C of order k 
is defined on an interval � of contiguous timestamps, such that all nodes in C have at all timestamps of that inter-
val at least k stable neighbours in C (i.e., the links to these nodes are present during all timestamps of the interval). 
Each span-core is thus characterized by two quantities: its order and its duration (the length of the interval on 
which it is defined). Moreover, a span-core of order k on a temporal interval [t1, t2] is said to be maximal if there 
exists no other span-core with order at least k and broader temporal interval ( [t ′1, t

′
2] with t ′1 ≤ t1 and t ′2 ≥ t2 ). 

In  reference26, we have introduced the definition of span-cores and maximal span-cores, devised efficient algo-
rithms to extract them from data, and performed a preliminary analysis of their properties in several data sets.

Maximal span-cores are thus well-connected stable groups of nodes, and can be considered as natural candi-
dates when looking for structures having an important role in spreading processes on temporal networks. In the 
present work, we therefore study the role of the maximal span-cores of temporal networks in spreading processes 
occurring on these networks. To this aim, we perform two types of thought experiments. We first examine the 
impact of the removal of maximal span-cores with large order and/or duration on spreading processes in a variety 
of empirical temporal networks. We quantify this impact by the resulting decrease in epidemic risk and compare 
the removal of span-cores to random baselines and to the isolation of nodes based on properties in the static 
aggregated network known to be relevant to spreading  processes4,28. For completeness, we also consider a strategy 
based on the computation of a centrality measure taking into account the whole temporality of the data, namely 
the temporal PageRank, which assigns a centrality measure to each node at each  time29. We show that the removal 
of links in the most connected and stable temporal cores has a particularly strong impact on the epidemic risk. 
We then investigate the spreading influence of nodes belonging to maximal span-cores, defined as the final size 
of a spreading process originating in those nodes. Our results show that processes seeded in cohesive span-cores 
yield in general large epidemic sizes, even compared with several baseline seeding strategies based on properties 
known to be relevant such as static centralities. We note that we do not attempt to classify strategies based on 
all potential centrality measures: first, one can expect the classification to be highly dependent on specific data 
set properties; second, centrality measures identify nodes rather than structures. For our goal here, it is thus 
enough to check whether strategies based on span-cores yield reliably large effects. Overall, our results confirm 
the important role of the span-cores in diffusion processes on temporal networks. We discuss some limitations 
and perspectives in the “Discussion” section, in particular concerning the need to know the temporal network 
in advance to find the span-cores, showing that one has to be able to interpret the span-core structures in order 
to translate this theoretical knowledge into actionable strategies.

Results
Approach. Before presenting our results, we describe here our general methodology, and we refer to the 
“Methods” section for more details on each step of our procedure. We consider a series of publicly available 
data sets describing temporal networks of particular relevance for epidemic spreading scenarios, namely high-
resolution social network data on face-to-face interactions in a variety of settings, collected independently by 
two different  collaborations30,31: schools, conferences, offices, hospital (see “Methods” section for details). This 
allows us to study data with a broad variety of structural and temporal patterns. The data sets we consider are 
all represented as temporal networks on discrete timestamps: nodes represent individuals, and a temporal edge 
(i, j, t) between two nodes i and j in time window t corresponds to the fact that these two nodes have been in 
contact during that time window.
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We consider standard schematic models of epidemic spreading processes occurring on top of these temporal 
networks, namely the Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Recovered (SIR) models. 
In the SIS case, nodes can only be in either of two states: susceptible (S) or infected (I). A susceptible node in 
contact with an infected one becomes infected with a fixed probability β per unit time. Infected nodes recover 
with a constant rate ν and become susceptible again. The system can thus either reach a steady state in which 
there is constantly a finite fraction of the nodes in the I state, or the epidemic can die out if all nodes recover. 
In the SIR model, nodes that recover enter the Recovered (R) class and can no longer take part in the epidemic 
process. Therefore, no steady state can be reached: the epidemic process ends when no more infected nodes are 
present, and all nodes are then either susceptible (those who have not been reached by the disease) or recovered.

To evaluate the outcome of these processes, we resort to two standard measures of the epidemic risk. We 
first take advantage of the theoretical framework developed  by32,33 to compute the epidemic threshold for both 
SIS and SIR models in arbitrary temporal networks (see “Methods” section  and32,33 for details). The epidemic 
threshold represents a crucial way of quantifying the epidemic risk in a system, as it gives the critical value of 
disease transmissibility above which the simulated pathogen is able to reach a large fraction of the population. In 
the SIR case, we moreover perform direct numerical simulations of the process and measure the epidemic size, 
i.e., the final fraction of recovered nodes, averaged over 1000 realizations of the process. Note that the process 
might not have ended at the end of the data set, meaning that there might still be nodes in the I state. We then 
replicate the temporal network until the process has ended. The epidemic size can be interpreted both as a further 
quantification of the epidemic risk and as the spreading power of the seed, i.e., the initial source of the spread.

As mentioned in the introduction, two complementary questions are typically investigated in order to test the 
role of nodes or structures in spreading processes: how to best contain or mitigate a spread, and which seed(s) 
have the largest spreading power? Containment and mitigation aim at increasing the epidemic threshold and/
or at decreasing the final epidemic size, and various strategies can be considered and compared. Here we focus 
on the role of the maximal span-cores, and thus consider an idealized strategy based on removing from the 
temporal network a fraction of these structures. We thus first determine in each data set its maximal span-cores 
(see “Methods” section for the precise definitions). We then consider an altered version of the temporal network 
in which a fraction f of the temporal links, taken from the maximal span-cores, are removed: for a span-core 
spanning a temporal interval [t1, t2] this amounts to removing the temporal links in which any node of the span-
core is involved between t1 and t2 (i.e., effectively isolating these nodes during [t1, t2] ). The span-cores on which 
this strategy is applied are chosen either as the ones with the largest order k (kM maximal span-cores strategy), 
or the ones with the largest duration � ( � M maximal span-cores strategy): we remove temporal edges starting 
from the ones of the maximal span-cores ordered by non-increasing order or duration, until the fraction f is 
reached. This corresponds to removing all the temporal edges of a certain number of maximal span-cores, that 
we denote nmsc , and potentially some additional temporal edges taken at random in the next maximal span-core 
(number nmsc + 1 in the ordered list) to reach exactly f. For a given data set, the total number of temporal edges 
removed is denoted nT ( nT = f |E| where E is the overall set of temporal edges in the data set). Moreover, for a 
given strategy s, we denote by nst the number of temporal edges removed at timestep t in this strategy. Finally, we 
compare the epidemic risk in the altered temporal network and in the original one: specifically, we measure the 
relative variation of the epidemic threshold with respect to its value in the original temporal network, and we 
compare (for the SIR case) the average final epidemic size in both cases.

Moreover, and to assess the scale of the impact of the removal of maximal span-cores, we compare the 
results to several alternative strategies for removing temporal edges, and in particular to some strategies based 
on properties known to be important for spreading processes. To perform a sensible comparison, each of these 
alternative strategies must consist in the removal of a globally equivalent number of temporal edges nT , to 
have overall the same impact on the global temporal network activity. We first consider strategies (see details 
in “Methods” section) based on static measures of coreness, since static cores have been shown to play a role 
in spreading processes: these would be effective strategies if the processes were taking place on temporally 
aggregated networks. To this aim, we aggregate the temporal network on the data set temporal window: in the 
aggregated network, two nodes are connected if they are connected at least once in the temporal network, and 
the corresponding static edge has a weight equal to the number of timestamps with a temporal edge between 
them. We perform the static k-core decomposition as well as its weighted counterpart s-core  decomposition34 and 
then consider sequentially the nodes starting from the cores with highest order (either k or s, yielding the SC and 
SWC strategies) and remove all the temporal edges of these nodes, until nT temporal edges have been removed 
(nodes are ordered at random in each core; also, whenever removing all temporal edges of a node would lead to 
a total number of removed edges larger than nT , we remove edges of this node at random until we reach exactly 
nT ). Although our focus is on structures rather than single nodes, we also consider strategies based on the most 
well-known node centrality measures in the aggregated network (degree and strength, yielding the SD and SWD 
strategies), proceeding in the same manner. As several centrality measures have been generalized to temporal 
networks, we moreover consider a strategy based on computing the temporal  PageRank29 of each node at each 
time, classifying the pairs (node, time) according to this centrality and removing temporal edges of nodes using 
this classification (tPR strategy). Finally, we consider three random baselines strategy. In the “random times” 
(RT) strategy, nT temporal edges are removed totally at random from the temporal network. In the “random by 
timestamp”, we remove exactly nst temporal edges at random at each timestep t: there are thus two such strategies, 
kRTT (resp. �RTT) removing the same number of edges at each time step than the kM (resp. � M) maximal 
span-cores strategy. This means that these strategies are informed by the temporality of the maximal span-cores, 
but not by which nodes and edges they contain.

To investigate on the other hand whether nodes belonging to maximal span-cores tend to have a high spread-
ing power, we proceed as follows: we compute the ratio of the average epidemic sizes obtained (1) when a node 
of a maximal span-core is chosen as seed of the SIR process and (2) when a random node is chosen instead (see 
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“Methods” section). We then compare the epidemic ratio obtained for nodes chosen in maximal span-cores 
and for nodes chosen according to aggregated static characteristics (nodes of the static cores with highest order, 
nodes with high degree, nodes with high strength).

While we perform these investigations for 8 different data sets (see “Methods” section), we show in the main 
text the results for two data sets corresponding to: a high school (where the aggregated contact network displays 
a clear community structure, and contacts between classes are observed only during the breaks, giving rise to 
interesting correlations between structure and temporal  patterns23,35) and a workplace (where group structure 
is much weaker and individuals mix with no time  constraints36). The results for the other data sets are shown in 
the Supplementary Material.

(Maximal) span-core statistics. Let us first discuss some statistics regarding the maximal span-cores 
found in the temporal networks, which are here the structures of interest targeted by the intervention strategies. 
Figure 1 presents the timeline of the span-cores of the High School and Workplace data sets. As each span-core 
is characterized by a temporal interval (its span) and an order, we resort to a colorplot for their visualization: in 
each plot, the x-axis corresponds to the starting time of the interval, the y-axis to the duration of the core, and 
the color encodes its order. This allows to highlight periods in which cores with long durations and/or high order 
are observed. Note that the triangular shapes observed in the timelines showing all span-cores are a direct con-
sequence of the span-cores definition: if a span-core of order k is present on an interval � = [t1, t2] , then there 
is also a span-core of the same order on all the intervals [t1 + 1, t2], · · · , [t2 − 1, t2], [t2, t2] , with respective dura-
tions |�| − 1 , ..., 2, 1. Note also that it was shown in  Ref26, that the observed timeline is not trivially linked to the 
activity timeline: reshuffled data sets in which the number of temporal edges in each timestamp is conserved, as 
well as the instantaneous degree of each node, yield indeed span-cores with durations and orders systematically 
much lower than in the original data.

Figure 2 and Table S1 in the Supplementary Material present some aggregated statistics of the maximal span-
cores, aggregated over the whole temporal network (see also “Methods” section). We show in particular, as a 
function of core order and duration, the number of maximal span-cores, their average number of nodes and the 
largest number of nodes of a maximal span-core with these order and duration values. We also highlight the 
largest core duration found at a given core order: for larger values of the order, the largest duration decreases, 
and the largest order cores have duration 1, corresponding to cohesive groups that last only briefly. On the other 

Figure 1.  Colorplot of the span-cores temporal activity for two data sets. Left column: High School. Right 
column: Workplace. Top plots: all span-cores. Bottom plots: maximal cores. We restrict in each case to 1 day of 
data for a better visibility. In each plot, the x axis reports the timestamp at which the span of a span-core starts, 
the y axis specifies the size of the span (in minutes), and the color scale shows its order (coreness) k.
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hand, some cores of order 1 can last for many timestamps: they correspond to the most stable contacts between 
two nodes.

While these statistical properties do not provide a detailed temporal information as in Fig. 1, they nonethe-
less give an idea of the richness of the temporal patterns present in a data set. To highlight this point, we show in 
the Supplementary Material how the results of Fig.  2 are changed when the data is temporally reshuffled using 
several null models: as there are many possible null models for temporal  networks37, we consider several reshuf-
fling possibilities, which all preserve the global activity timeline. In all cases, the reshuffled data show a clearly 
less rich core structure, with in particular smaller maximal order at a given core duration.

Finally, we mention that span-cores might be used to give a time-dependent measure of centrality of each 
node in the temporal network: one can for instance at each timestamp take into account the span-cores to which 
a node belongs, and consider as centrality measure the highest order of these cores. One can also measure the 
duration of these cores, their size, etc. One can then aggregate these measures over the whole temporal window, 
to obtain the maximal core order to which a node belongs, or the average order, etc, yielding global centrality 
measures for each node based on the temporal structures to which it contributes. In the Supplementary Mate-
rial we show that these measures are statistically correlated with static coreness measures in the static network 
obtained by temporal aggregation of the temporal network, but that the correlation is weak and many outliers 
are observed: this is expected as a given node’s static connectivity properties in the aggregated network might 
come from the results of non-simultaneous interactions, while span-cores are defined by cohesiveness proper-
ties that are local in time.

impact of removal strategies on activity timelines. As mentioned above and detailed in the “Meth-
ods” section, in order to assess the relevance of these structures, we consider as idealized intervention strategies 
to mitigate spreading processes the removal of maximal span-cores, as well as other strategies based on static 
centrality measures that are known to be relevant for spreading  processes2,4.

Table 1 gives, for each strategy based on span-cores, some properties of the span-cores targeted. As we con-
sider the overall removal of a fixed fraction of the temporal edges (here f = 20% ), the number of span-cores 
targeted depends on the strategy. Moreover, targeting the cores with largest order (kM strategy) leads to the 
removal of cores with smaller duration but larger size than the � M strategy. Figure 3 shows the impact on the 
activity timelines of the various strategies: each curve gives the number of temporal edges removed at each time 
step (i.e., nt vs t) for a specific strategy. The figure shows that all strategies tend to remove more temporal edges 
in periods of high activity. This effect is however much stronger for the strategies based on span-cores, especially 
for the kM strategy: this is linked to the fact that large order cores appear during these periods. On the other 
hand, strategies based on static measures or on temporal PageRank remove also a substantial number of temporal 
edges during low-activity periods. Note that the � M strategy strikes a balance, in particular in the high school 
case, removing more temporal edges than the static strategies in the large activity periods but also more than 

Figure 2.  Aggregated statistics of the maximal span-cores for two data sets. Top row: High School. Bottom 
row: Workplace. Each panel shows with a color scale the property of cores with given core order (x-axis) and 
core duration (y-axis). Left plots: number of cores. Middle plots: average size (number of nodes) of these cores. 
Right plots: size (number of nodes) of the largest of these cores. The blue dots give, for each order, the maximal 
duration of cores with that order.
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the kM strategy in low activity periods (this is due to the fact that some cores with large duration have order 
1, corresponding for instance to long-lasting links that extend beyond large activity periods, see Figs. 1 and 2). 

impact of removal strategies on the epidemic risk. Figure 4 shows the impact of the various removal 
strategies on the epidemic threshold of SIS and SIR spreading processes for the data sets High School and Work-

Figure 3.  Original activity timelines (number of temporal edges per timestamp, top plots) and number of 
temporal edges removed per timestamp for each strategy (bottom plots), for 1 day of data. Here the overall 
fraction of removed temporal edges is f = 20% . The kM and � M strategies target maximal span-cores 
(respectively with largest order and largest duration); the kRTT and �RTT remove the same number of 
temporal edges at each time as the kM and � M strategies, respectively, but choosing the edges at random; the 
SD, SWD, SC and SWC are based on static quantities measured on the aggregated network, namely degree, 
strength, coreness and weighted coreness, respectively (See “Methods” section for the detailed list of strategies). 
Left column: High School. Right column: Workplace. The values of the total numbers of removed span-cores 
and temporal edges are given in Table 1.

Table 1.  Basic properties of the maximal span-cores removed in each of the targeted strategies (with removal 
of f = 20% of the temporal edges). nmsc : number of maximal span-cores with all temporal edges removed; 〈k〉 : 
average order of the targeted maximal span-cores; �|�|� : average duration of the targeted maximal span-cores; 
〈n〉 : average number of nodes in the targeted maximal span-cores; 〈e〉 : average number of temporal edges 
removed per time step impacted by the strategy.

Data set Strategy nmsc 〈k〉 �|�|� 〈n〉 〈e〉

High school
Largest order cores 300 2.98 2.72 7.97 40.56

Largest duration cores 289 2.13 7.17 4 43.24

Workplace
Largest order cores 232 2.74 2.46 5.20 27.46

Largest duration cores 179 1.13 10.50 2.16 30.71
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place (results for the other data sets are shown in the Supplementary Material). The figure shows, as a function 
of the recovery rate ν , the relative variation �βc/βc between the threshold computed on the temporal network 
after removal of temporal edges and the threshold in the original temporal network. In all cases the variation is 
positive, meaning as expected that the removal of edges increases the epidemic threshold and thus decreases the 
epidemic risk.

We first observe that the size of the effect varies a lot for different strategies and also between data sets: some 
strategies lead only to a small shift of the epidemic threshold, while in some cases its value can be doubled. We 
also note that the best strategy, and more generally the classification of strategies according to the size of the 
epidemic threshold shift, depends on the data set under consideration. However, several points are worth high-
lighting. First, the best strategy is almost always the � M or the kM one, i.e., strategies based on maximal span-
cores. Moreover, in school contexts the kM strategy is either best or second-best, and in three cases out of four 
the two span-cores based strategies are the best performing ones. Finally, even when they are not the two best 
ones, the strategies based on maximal span-cores always have a large impact on the epidemic threshold, while 
the effect of strategies based on static centrality measures is more variable across data sets. This is illustrated in 
Fig. 5 that shows, for a specific value of ν , the eight values of �βc/βc for each strategy (one value per data set). 
The results are consistently large for the span-core strategies. Strategies based instead on static coreness (either 
weighted or not) and on static degree have in some cases a very small impact, while the static strength strategy, 
that targets nodes according to their total number of contacts, also yields a strong impact for all data sets, as well 
as the tPR strategy that in addition integrates temporal information. We however note that both these strategies 
target single nodes (and the tPR strategy even isolates single nodes at specific times) and not whole structures 
as the span-core strategies do and hence carry an advantage in the comparison, despite being less actionable in 
practice. We moreover show in the Supplementary Material that these results are robust with respect to a change 
in the fraction of removed temporal edges.

As a further investigation, we have considered the epidemic size reached by the SIR process on temporal 
networks altered by the various intervention strategies. While all strategies tend to decrease the epidemic size, 
we show in the Supplementary Material that there is no clear optimal strategy: which strategy performs best 
depends both on the spreading parameters and on the data set, and in many cases the epidemic size mitigation 
is of similar amplitude for the various strategies. In particular, the removal of span-cores has thus an impact as 
important as other well-known strategies using single node centralities.

impact of seeding strategies on the epidemic sizes of SiR processes. We now consider the issue 
of spreading maximization, namely, which choice of the initial seed and time of the spread leads to the largest 
spread. Here, we consider as possible seeding strategy an initial seed belonging to a span-core of high order, 
with an initial time of the spread at a time in the temporal interval of this span-core (kM strategy, see “Meth-
ods” section). Moreover, as nodes with large degree or strength and nodes belonging to cores of high order are 
known to have a large spreading power in static networks, we also consider processes originating in such nodes 
(see “Methods” section). Figure 6 shows, for the various combinations of spreading parameters, which strategy 
leads to the largest average epidemic size (see also Fig. 7 and the Supplementary Material for the other data sets). 

Figure 4.  Impact of the various intervention strategies as measured by the change in the epidemic threshold 
of SIS processes. Left plot: High school. Right plot: Workplace. In each panel we plot for the various strategies 
the relative change �βc/βc in the epidemic threshold of an SIS process on the temporal network, computed 
using the method of Valdano et al.32, as a function of the recovery rate ν . For each strategy based on random 
choices, we show the confidence interval between the 5th and 95th percentiles as a shaded area (computed on 30 
samples).
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While some dependency on the parameter values is observed, seeds chosen in maximal span-cores of high order 
have consistently a large spreading power, and in fact in most cases the largest among the considered baselines. 
Moreover, we show in the Supplementary Material that the spreading power tends to increase with the order of 
the span-core to which the seed belongs.

Discussion
In this work, we have investigated the relevance of specific temporal structures, namely the span-cores put 
forward in Ref.26, for spreading processes on temporal networks. The span-core decomposition generalizes to 
temporal networks the k-core decomposition of static graphs, by extracting in each time interval subgraphs of 

Figure 5.  Epidemic threshold relative variation �βc/βc for ν = 0.5 over all the 8 datasets and candidate 
strategies. For a given strategy, indicated on the x-axis, each point corresponds to one data set and its y-axis 
value is given by �βc/βc.

Figure 6.  Heatmap indicating the seeding strategy leading to the largest ratio of average final sizes, for each 
combination of spreading parameter values. Left column: High School. Right column: Workplace.
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increasing internal connectivity (“order”). Given their definition as lasting well-connected structures, it is rather 
intuitive that span-cores of high order and/or duration might play an important role in propagation processes 
on temporal networks, just as static cores of large coreness are relevant for such processes on static  networks4,28. 
We therefore focused here on the maximal span-cores: a span-core on an interval � is defined as maximal if no 
other span-core can be found with higher order and on a broader temporal interval than �.

To test the relevance of the maximal span-cores on propagation processes, we have investigated how two 
standard simplified models for epidemic spreading processes, the SIS and SIR models, are impacted by the 
removal of a fraction of the temporal edges forming these span-cores, starting with the cores of highest order or 
of longest duration: this corresponds to temporary “quarantining” the nodes involved in these cohesive struc-
tures. We have compared the impact of such mitigation strategies to several baselines strategies of temporal 
edge removal targeting nodes chosen according to their centrality (degree or coreness, both weighted or not) 
in the static network obtained by aggregation of the temporal network, as these properties are known to impact 
spreading processes. We have also considered a strategy based on the generalization of PageRank to temporal 
networks, which allows to define a centrality that is local in time for each node.

We have quantified the impact of these strategies on the one hand by measuring the induced relative shift 
in the epidemic threshold of the process, and on the other hand, in the SIR case, by the change in the resulting 
epidemic size (i.e., the fraction of the population affected by the spread). We have performed these numerical 
experiments using several empirical temporal networks of relevance for epidemic spread, namely data describing 
human interactions in a variety of contexts.

The results show that the shift in epidemic threshold resulting from the removal of temporal edges in maximal 
span-cores is consistently large; the strategies of removing edges in the span-cores of large orders or durations 
figure moreover among the mitigation strategies leading to the strongest impact among the considered strate-
gies, while the impact of strategies based on static measures depends more on the specific data set. The good 
performance of the strategies based on maximal span-cores in school environments is particularly interesting as 
such contexts are of special relevance for containing infectious disease  spread22 and span-cores might be related 
to interpretable events in such settings, such as groups forming during the breaks. The fact that strategies based 
on temporal structures perform well in such environment could be related to the fact that such environments 
present at the same time a strong community structure and also specific temporal patterns of correlated edges 
that cannot be exposed by purely static  measures14,15. Overall, span-cores are thus more able to detect structures 
whose targeting leads to an increase of the epidemic threshold than static quantities. In terms of final epidemic 
size, we note that all strategies considered lead to a large decrease of this epidemic risk measure of comparable 
size, confirming the consistently important role of span-cores.

We have also investigated the spreading power of nodes belonging to span-cores of high order, comparing 
the final size of SIR processes seeded at these nodes (and with initial time in the span of the core) and at nodes 
chosen with other seeding strategies. The results indicate that seeds chosen in span-cores of the highest order 
have consistently a large spreading power, which tends to increase with the order of the span-core considered.

Overall, our findings confirm that maximal span-cores in temporal networks play an important role in 
propagation processes on these networks. These results should in particular stimulate the design of models 
of temporal networks with non-trivial span-core structures, in addition to the usually considered statistics of 
contact durations and inter-contact times.

Our work has several limitations worth discussing. First, we have limited our investigations to the schematic 
SIS and SIR models, while real diseases have most often a more complicate description with a larger number of 
possible states for each individual (such as latent, asymptomatic,...). However, despite their simplicity, SIR and 
SIS models capture the main phenomenology of spreading processes, and these paradigmatic processes therefore 

Figure 7.  Distributions of final epidemic sizes for some illustrative cases, for an SIR process on the original 
temporal network and for several seeding strategies. The RT case corresponds to the baseline of randomly 
chosen initial time and seed. Left column: High School. Right column: Workplace.
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constitute the first natural testing ground for understanding whether a certain type or node or structure is rel-
evant in spreading  processes4,8,10,11,16,18,20. This should nevertheless be kept in mind, and future work should also 
concern more realistic models of spread, in particular when addressing more concrete applications. Second, we 
consider here that the whole temporal network is known “in advance”, and the thought experiments we perform 
by removing structures are not causal. As described in the introduction, such causal interventions have been 
discussed in other  works17,18,21 and correspond to a different type of studies. Here, our goal was to assert the 
importance of a certain type of temporal network structures in the unfolding of spreading processes. The next 
steps towards the effective design of applied strategies would be to relate the span-cores to interpretable events 
or features in a context of interest and to use such knowledge to devise actionable strategies, as done for instance 
in several works dealing with strategies towards controlling outbreaks in  schools22,23,38.

Further work includes thus more realistic design and investigation of strategies, in particular under the 
hypothesis that the temporal network is not fully known but for instance only its main statistical  properties24,36. 
Moreover, it would be interesting to investigate the role of span-cores in other types of dynamical processes on 
networks, such as opinion formation, complex contagion or synchronization processes.

Methods
Span-core decomposition and maximal span-cores. In a recent work, Galimberti et al.26 proposed an 
extension of core decomposition to temporal networks, whereby cores are associated with their temporal spans, 
i.e., intervals of contiguous timestamps for which the coreness property (i.e., of minimal connectivity) holds. 
Such cohesive temporal structures are named span-cores.

Let us consider a temporal graph G = (V ,T , τ) , where V is a set of nodes, T = [0, 1, . . . , tmax] is a discrete time 
domain, and τ : V × V × T → {0, 1} is a function defining for each pair of vertices u, v ∈ V  and each timestamp 
t ∈ T whether the edge (u, v) exists in t. We denote E = {(u, v, t) | τ(u, v, t) = 1} the set of all temporal edges. 
Given a timestamp t ∈ T , Et = {(u, v) | τ(u, v, t) = 1} is the set of edges existing at time t. Given a subset of nodes 
S ⊆ V  , let E�[S] be the set of edges connecting the nodes of S that exist in all timestamps t ∈ � . We then define 
the temporal degree of a node u within the subgraph G�[S] = (S,E�[S]) as d�(S, u) = |{v ∈ S | (u, v) ∈ E�[S]}| . 
In other words, the temporal degree of u is the number of other nodes to which u is linked in all the timestamps 
of � , without interruption.

Definition 1 ((k,�)-core) The (k,�)-core of a temporal graph G = (V ,T , τ) is (when it exists) a maximal and 
non-empty set of nodes ∅ �= Ck,� ⊆ V  , such that ∀u ∈ Ck,� : d�(Ck,�, u) ≥ k , where � ⊑ T  is a temporal 
interval and k ∈ N

+.

The interval � and the integer k are referred to as span and order of the span-core, respectively. As it is well 
known, the cores of a static graph define a hierarchy. On the other hand, span-cores are not all nested into each 
other. Nonetheless, they exhibit containment properties. In particular, we say that a (k,�)-core is contained into 
another (k′ ,�′

)-core if k′ < k and � ⊑ �
′.

The number of span-cores is quadratic in |T|. This is definitely not desirable when human inspection is of 
interest. Therefore, it is useful to focus only on the most relevant ones. Thus, Galimberti et al.26 introduced the 
concept of maximal span-core.

Definition 2 (Maximal span-core) A span-core Ck,� of a temporal graph G is said maximal if there does not 
exist any other span-core Ck′ ,�′ of G such that k ≤ k′ and � ⊑ �′.

A span-core is thus identified as maximal if it is not dominated by any other span-core in terms of both order 
and span. Clearly, maximal span-cores resemble the idea of innermost core, i.e., the core of highest order, in the 
core decomposition of a static graph. However, maximal span-cores are not unique. Instead, there is at most one 
maximal span-core for every temporal interval.

We also recall here some basic ideas of the efficient algorithm to compute all span-cores in a temporal 
 network26. A naive approach would involve executing a static core decomposition routine independently for 
each temporal interval � . A more efficient procedure exploits the containment property in both its dimensions, 
coreness and temporal intervals. Indeed, given a temporal graph G, and a temporal interval � = [ts , te] ⊑ T , let 
�+ = [min{ts + 1, te}, te] and �− = [ts , max{te − 1, ts}] . It holds that

The  algorithm26 takes advantage of this simple property by processing temporal intervals of increasing size 
(starting from size one) and, for each interval � of width larger than one, the core decomposition is initiated 
from (C1,�+ ∩ C1,�− ) , the smallest intersection of cores containing C1,� . This expedient produces a speed-up of 
orders of magnitude in the obtention of all span-cores.

The problem of computing the maximal span-cores of a temporal graph can also be addressed by the simple 
approach of extracting all span-cores and then filtering out those which are not recognized as maximal. However, 
theoretical properties that relate the maximal span-cores to each other prove that it is not required to compute 
the overall temporal core decomposition but it is possible to extract only the maximal span-cores. Note that 
this is a challenging design principle, as it contrasts the idea that a core of order k is typically computed from 
the core of order k − 1 . Theoretical findings provide bounds on the order of a maximal span-core and suggest a 
top-down algorithm that processes temporal intervals starting from the larger ones, in opposition to the method 

C1,� ⊆ (C1,�+ ∩ C1,�− ) =
⋂

�′⊑�

C1,�′ .
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used to extract the entire span-core decomposition. The procedure does not search the whole span-core space 
and it has been empirically shown to be markedly more efficient compared to the approach based on filtering 
out non-maximal span-cores26.

The algorithms are detailed in Ref.26 and the code is publicly available on https ://githu b.com/egali mbert i/
span_cores 

Datasets. We consider 8 data sets describing human interactions with high spatial and temporal resolu-
tions in a variety of contexts: schools (at different levels and in different countries), conferences, workplace 
(office building) and hospital. These data are publicly available thanks to two independent collaborations. 
 SocioPatterns30 gathers longitudinal data on physical proximity and face-to-face contacts of individuals in dif-
ferent contexts using a sensing platform based on wearable badges equipped with radiofrequency identification 
devices (RFIDs). Contact data are collected with a temporal resolution of 20 s. Further data describing human 
proximity are provided by Toth et al.31, who deployed a platform composed of wireless ranging enabled nodes 
(WRENs) in several schools in the USA. Each WREN collects signals from other WRENs in proximity at inter-
vals of approximately 20 s. Signal strength criteria are used to select pairs of individuals wearing these WRENs 
located at distance lower than or equal to 1 meter: this is the practical definition used to define a contact between 
individuals at each time. For each data set, we aggregate all interactions in successive time-windows (times-
tamps) of 300 s. We thus obtain from each data set a temporal network in which nodes represent individuals, and 
a temporal edge is drawn in a timestamp t between two nodes if the two corresponding individuals have been in 
contact in this time-window.

The specific data sets we use are the following. The first 6 are provided by the  SocioPatterns30 collaboration, 
and the last 2 by Toth et al.31.

• The Primary School data set contains the contact events between 242 individuals (232 children and 10 teach-
ers) in a primary school in Lyon, during 2 days in October  200939.

• The High School data set gives the interactions between 327 students of nine classes within a high school in 
Marseille, during 5 days in December  201335.

• The Hospital data set describes the face-to-face interactions of patients and health-care workers (HCWs) 
in a hospital ward in Lyon, France during 1 week in December 2010. The study included 46 HCWs and 29 
 patients40.

• The Conference data set was collected during the ACM Hypertext 2009 conference, which took place between 
June 6, 2009 and July 1, 2009 in Turin, Italy. The data cover a period of 2 days and a  half41.

• The SFHH conference data set describes the face-to-face interactions of 405 participants to the 2009 SFHH 
conference in Nice, France (June 4–5, 2009) citeGenois:2018.

• The Workplace data set contains the temporal network of contacts between individuals recorded in an office 
building in France in  201524.

• The Elementary School data set contains the contact data associated with the 476 students in the 21 classes 
of a suburban elementary school in Utah (USA) on January 31, 2013 and February 1,  201331.

• The Middle School data set describes the proximity interactions occurred on November 28 and 29, 2012 in 
an urban public middle school in Utah (USA)31.

Some more details are given in Table 2.

Spreading processes and impact evaluation. We consider the two paradigmatic spreading processes 
Susceptible-Infectious-Susceptible (SIS) and Susceptible-Infectious-Recovered SIR, with parameters β and ν , as 
described in the main text: β is the probability per unit time that a susceptible node in contact with an infectious 
one becomes infectious, and ν is the probability per unit time that an infectious node recovers spontaneously 
(becoming again susceptible in the SIS case, and recovered in the SIR case). These spreading processes are con-
sidered on the temporal network data: contagion can occur only along the temporal edges.

Table 2.  Properties of the data sets considered here and of the span-cores with largest order or duration.

Data set and reference Number of nodes Number of temporal edges
Total duration (in number of 
timestamps)

Core of largest order: (order, 
duration, number of nodes)

Core of max duration: 
(order, duration, number 
of nodes)

Primary school 242 55k 208 (7, 1, 10) (1, 27, 2)

High school 327 47k 492 (6, 1, 7) (1, 50, 2)

Elementary school 339 41k 152 (9, 1, 13) (1, 49, 5)

Middle school 590 68k 168 (10, 1, 11) (1, 23, 2)

SFHH 403 21k 247 (9, 1, 10) (1, 83, 2)

ACM hypertext conference 113 7k 424 (7, 1, 9) (1, 38, 2)

Workplace 217 21k 1k (7, 1, 24) (1, 97, 2)

Hospital 75 9218 627 (6,1,7) (1,55,2)

https://github.com/egalimberti/span_cores
https://github.com/egalimberti/span_cores


12

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12529  | https://doi.org/10.1038/s41598-020-69464-3

www.nature.com/scientificreports/

In the spreading mitigation scenario, our aim is to compare the unfolding and impact of these processes, 
for each data set, on the original temporal network and on temporal networks modified according to several 
intervention strategies. To quantify the differences between processes in original and altered networks, we resort 
to two common measures of the epidemic risk and study how its value is modified by the intervention. We first 
consider the value of the epidemic threshold, i.e., the critical value of disease transmissibility β above which the 
spread is able to reach a large fraction of the population. The analytical method developed by Valdano et al.32, 
based on the approximation of the process by a Markov chain, allows to express the epidemic threshold for both 
processes in terms of the spectral radius of a matrix that encodes both network structure and disease dynamics. 
We use the Python package publicly available at http://githu b.com/eugen io-valda no/thres hold to compute the 
threshold as a function of the recovery parameter ν for the various data sets and the various intervention strate-
gies, and measure the impact of each strategy through the relative change in the threshold value.

We moreover consider the final size of the epidemic, i.e., the fraction of nodes that have been reached by the 
process when it ends. At the end of the SIR process, no infectious nodes are left and the epidemic size is given 
by the fraction of nodes in the R state. Note that, as the SIR epidemic might not end within the finite span of the 
data, the temporal network is repeated if needed until the process ends. For the original data, for each strategy 
and for each set of parameters (β , ν) we simulate Nsim = 1000 SIR processes. We then compute the epidemic size 
ratio for each strategy and parameter values, defined as the ratio between the average epidemic size for processes 
on the reduced temporal network obtained according to a strategy and the average epidemic size for processes 
on the original temporal network:

In the spreading maximization scenario, the goal is to assess the performance of the maximal span-cores as a 
tool to identify the nodes that,when infected, lead to wide propagation. We consider numerical simulations of 
the SIR process and we adopt the final size of the epidemics as a performance metric for a seeding strategy. For 
each seed, we simulate Nsim = 100 SIR processes starting at different timestamps. Again, if required, the temporal 
domain of a temporal network is repeated until the process end. We then compute the epidemic size ratio, in 
which the numerator and denominator are given by the average epidemic sizes for processes seeded according 
to a strategy and for randomly seeded processes, respectively:

Clearly, although in the spreading mitigation and maximization frameworks the epidemic size ratios are defined 
similarly, in the former smaller values are desiderable while in the latter larger values are to be preferred.

Mitigation strategies. We describe here in detail the targeted intervention strategies aimed at mitigat-
ing the spread of an epidemic process unfolding in a host population described by a temporal network. These 
interventions consist in removing temporal edges in the network, and different strategies consider different ways 
of choosing the edges to be removed. The strategies we put forward target the maximal span-cores of the given 
temporal network G = (V ,T , τ) . One possibility is to choose an a priori number nmsc of maximal span-cores and 
remove all the corresponding edges. This can be interpreted as temporary isolation: a node u belonging to one of 
the chosen maximal span-cores Ck,� is isolated over the time interval � . As different cores have different sizes, 
fixing nmsc would however lead to different fractions of removed temporal edges for the different strategies. We 
thus fix the fraction f of temporal edges to be removed and remove them starting with the maximal span-cores 
taken in a chosen order. We consider here f = 20% and show in the supplementary material the results of using 
f = 10%.

As the maximal cores can be classified along two properties, their order and their durations, we consider in 
fact two separate strategies:

• The top-k maximal span-cores strategy (kM for short) removes temporal edges starting from the maximal 
span-cores with highest order, independently of their duration. We denote by GkM and EkM the temporal 
network and set of temporal edges remaining after the intervention, respectively.

• The top-� maximal span-cores strategy ( �M for short) removes temporal edges starting from the maximal 
span-cores with longest duration, independently of their order. We denote by G�M and E�M the temporal 
network and set of temporal edges remaining after the intervention, respectively.

We denote by nT the total number of temporal edges removed: nT = f |E| where |E| is the set of temporal edges 
in the temporal network considered. For each strategy, we precise that: (1) at given duration or order, the cores 
are ordered randomly; (2) if removing all the edges of a span-core would lead to removing more than nT edges, 
edges are removed at random from that core until reaching exactly nT removed edges.

Table 1 gives for each strategy the properties of the span-cores removed for the two data sets considered in 
the main text. These properties are given in the Supplementary material for the other data sets.

The nT temporal edges removed are not removed uniformly along the timeline of the temporal network, 
and we denote by nst the number of temporal edges removed at timestep t for strategy s ( s = kM or s = �M ). 
We evaluate the effectiveness of these intervention strategies by comparing their impact to the one of several 

ρstrategy(β , ν) =
�Rfinal�strategy

�Rfinal�original
.

ρstrategy(β , ν) =
�Rfinal�strategy

�Rfinal�random
.

http://github.com/eugenio-valdano/threshold
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baselines. Each baseline consists in removing the same number nT of temporal edges from the temporal network. 
The two simplest baselines consist in removing these edges at random:

• Randomly trimmed network (for short RT): the simplest benchmark is the intervention in which nT edges 
are randomly removed over the temporal domain.

• Randomly trimmed by timestamp network (for short RTT): this strategy uses the knowledge of the times-
tamps in which the targeted span-cores are active, by removing exactly nst edges randomly at each timestamp 
t. There are therefore two such strategies, kRTT that removes nkMt  random edges at time t and �RTT that 
removes n�M

t  random edges at time t.

Note that the two RTT strategies exploit the temporal information provided by the temporal core decomposition 
while the RT one does not.

We consider as well more sophisticated baselines based on node centrality measures computed on the time-
aggregated network. Indeed, it is known for static networks that nodes with large degree or static coreness play 
important roles in spreading processes. We also consider the weighted counterparts of degree and coreness, 
strength and weighted  coreness34. We recall that in the time-aggregated network, the degree of a node u is equal 
to the number of distinct nodes with whom u has been in contact, and the weight of an edge (u, v) gives the 
number of temporal edges between u and v in the temporal network.

For each centrality measure, the strategy works as follows:

• we first sort the nodes in decreasing order of their centrality;
• we then consider the nodes one by one, starting by the most central ones, and removing all the temporal edges 

to which it belongs over the entire temporal domain, until the stopping criterion is met (i.e., until nT edges 
have been discarded). If discarding all the interactions of a node would mean exceeding nT , the temporal 
interactions to be removed for this node are chosen at random.

We thus obtain the four following strategies:

• The highest static degree strategy (SD) strategy;
• The highest static coreness (SC) strategy;
• The highest static strength (weighted degree, SWD) strategy;
• The highest static s-coreness (weighted coreness, SWC) strategy.

Finally, we consider the strategy tPR, which is based on a generalization of PageRank to temporal  network29. 
Here, a temporal PageRank value is assigned to each node u at each timestamp t: tPR(u, t). The pairs (u, t) are 
ranked according to these values and we remove their temporal edges using this ranking until nT temporal edges 
have been removed.

Seeding strategies. In the spreading maximization scenario considered for the SIR model, we consider 
several seeding strategies, i.e., choice of the initial seed of the spread (the first node in state I) aimed at favouring 
the spread. The idea underlying the proposed procedure is that nodes that represent influential spreaders are 
likely to belong to the span-cores of highest order at the timestamp in which the spread begins. We consider a 
fraction f = 5% of the nodes of a temporal network: The top-k maximal span-core seeding strategy (for short 
kM) requires to carry out the following steps:

• we rank the nodes according to the value of the highest order of the span-cores they belong to;
• in decreasing order, we take each node as seed of Nsim = 100 SIR processes until the fraction f of the total 

amount of nodes has been considered. For a given node, the spread starts at a timestamp randomly sampled 
from the union of the spans of the highest order span-cores it belongs to. We then compute the average size 
of the epidemic, averaged over the Nsim = 100 processes.

Strategies based on randomness are not properly defined in this case since random seeds are exploited in order 
to construct the performance metric. Instead, baseline strategies are based on the same static node centrality 
measures used in the spread mitigation scenario, namely degree (strategy SD), strength (strategy SWD), core-
ness (strategy SC) and weighted coreness (strategy SWC). For each centrality measure, the associated strategy 
is implemented as follows:

• we rank the nodes according to their centrality;
• in decreasing order of centrality, we take each node as a seed of Nsim = 100 SIR processes until the fraction f 

of the total amount of nodes has been considered. In order for the comparison to be fair, the same sequence 
of initial timestamps considered in the seeding strategy based on the highest order maximal span-cores is 
considered.

Received: 19 March 2020; Accepted: 7 July 2020
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