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The link recommendation problem consists in suggesting a set of links to the users of 
a social network in order to increase their social circles and the connectivity of the 
network. Link recommendation is extensively studied in the context of social networks and 
of general complex networks due to its wide range of applications. Most of the existing 
link recommendation methods estimate the likelihood that a link is adopted by users 
and recommend links that are likely to be established. However, most of such methods 
overlook the impact that the suggested links have on the capability of the network to 
spread information. Indeed, such capability is directly correlated with both the engagement 
of a single user and the revenue of online social networks.
In this paper, we study link recommendation systems from the point of view of information 
diffusion. In detail, we consider the problem in which we are allowed to spend a given 
budget to create new links so to suggest a bounded number of possible persons to whom 
become friend in order to maximize the influence of a given set of nodes. We model the 
influence diffusion in a network with the popular Independent Cascade model.

© 2018 Published by Elsevier B.V.

1. Introduction

Link recommendation is one of the most important features of online social networking sites. Recommending suitable 
connections to social network users has a twofold impact: it improves the user’s experience by enlarging users’ social circles 
and connectivity, and it increases social network revenue by enhancing the user engagement and retention rate.

Most of the existing link recommendation methods estimate the likelihood that a link is adopted by users and recom-
mend links that are likely to be established [2,24–26]. In social networks such likelihood is estimated by considering the 
similarity of user profiles and some structural network properties. Friendship social networks, like Facebook, exploit simi-
larity metrics that are based on the number of common neighbors. For example, the Friend-of-Friend (FoF) algorithm [25]
recommends the users that have the highest number of common friends with the receiver of the recommendation. Other 
examples of such similarity metrics are the Adamic–Adar [1] index, the Jaccard’s coefficient [15], and the preferential at-
tachment index [3,28]. In content-centric social networks such as Twitter and Google+ the link recommender systems take 
also into account the similarity of the users’ interests.

Most of the known methods aim at having a high accuracy in the prediction of the suggested links, without considering 
the impact of the new links on the capability of the network to spread information. This approach speeds up the network 
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growth but is only able to infer links that will likely occur in the near future. Another drawback of the existing methods 
is that, in most of the cases, they suggest links to a short range of users and this does not necessarily lead to a network 
growth and an improved user engagement [35].

On the other hand, the capability of a social network to spread information is directly correlated with both the engage-
ment of a single user and the revenue of an online social network [4]. From a user’s perspective, being able to quickly and 
effectively disseminating information is highly desirable as it helps the user to share contents so to reach a large number 
of other users. This in turn helps the user to build its own social reputation, to express and diffuse its own opinion, and 
to discover novel contents and information. From the social network point of view, the effectiveness of the information 
spreading capabilities helps in improving the user engagement, which in turn increases the retention rate and the number 
of new subscriptions. Moreover, being able to quickly deliver diverse contents to a large portion of the users, increases the 
opportunities of making revenue from advertisement.

Most of the existing link recommendation systems overlook this aspect, which is crucial for both users and social net-
works. In this paper, we consider the problem of recommending links to a given set of users in a social network, without 
exceeding a given budget, in such a way that the number of users reached by the contents generated by such set of users 
is maximized. Our main objective is to improve the capability of the given users to diffuse their own contents, this in turn 
drives the network evolution towards an increment of the spreading capability of the whole network.

Several models of information diffusion have been introduced in the literature, two widely studied models are: the Linear 
Threshold Model (LTM) [13,17,31] and the Independent Cascade Model (ICM) [11,12,16,17]. In both models, we can distinguish 
between active, or infected, nodes which spread the information and inactive ones. At the beginning of the process a small 
percentage of nodes of the graph is set to active in order to let the information diffusion process start. Such nodes are called 
seeds. Recursively, currently infected nodes can infect their neighbors with some probability. After a certain number of such 
cascading cycles, a large number of nodes might becomes infected in the network. The process terminates when no further 
node gets activated. In this paper we adopt ICM to model the way in which the contents are propagated in the network.

1.1. Related works

The problem of recommending links to the users of a social network has been widely studied, we refer to [24] and [26]
for surveys on the link recommendation and link prediction problems, respectively. The problem of recommending links 
by taking into account the information spreading capability, instead, has received little attention in the literature. In the 
following we focus on such problem and on the problems of modifying a graph in order to maximize or minimize the 
spread of information through a network under LTM and ICM models.

Yu et al. [35] propose a recommendation algorithm called ACR-FoF (algebraic connectivity regularized friends-of-friends) 
that uses the algebraic connectivity of a connected network to estimate its capability for spreading contents. The ACR-FoF 
takes also into account the success rate of the suggested links. The authors give experimental evidence that ACR-FoF im-
proves the spread of contents in a social networks but do not prove any approximation guarantees. Chaoji et al. [4] consider 
a model in which each node is associated with an independent probability to share a content with all its neighbors and 
with a set of contents that are generated by the node itself. The problem they study consists in maximizing the expected 
number of nodes influenced by some of the contents by adding a set of edges under the constraint that each node has at 
most k incident new edges. They show that the problem is N P -hard and propose an information diffusion model called 
Restricted Maximum Probability Path Model in which a content is propagated between two users along the path with max-
imum probability among those containing a recommended edge. They show that under this model the objective function 
is submodular and hence the problem can be approximated within a constant bound. Li et al. [23] introduce the notion 
of user diffusion degree which is a measure of the influence that a user has and is computed by combining community 
detection algorithms with information diffusion models. They propose an algorithm that suggests links by combining the 
diffusion degree with the FoF algorithm and, by means of experiments on two networks, show that it outperforms some 
known baseline in terms of number of affected nodes under the ICM and LTM models.

To the best of our knowledge, under LTM, the graph modification problems that have been studied are those outlined in 
what follows. Khalil et al. [18] consider two types of graph modification, adding edges to or deleting edges from the existing 
network to minimize the information diffusion and they show that this network structure modification problem has a 
supermodular objective and therefore can be solved by algorithms with provable approximation guarantees. Zhang et al. [36]
consider arbitrarily specified groups of nodes, and edge and node removal from the groups. They develop algorithms with 
rigorous performance guarantees and good empirical performance. Kimura et al. [20] use a greedy approach to delete edges 
under the LTM but do not provide any rigorous approximation guarantees. Kuhlman et al. [22] propose heuristic algorithms 
for edge removal under a simpler deterministic variant of LTM which is not only hard, but also has no approximation 
guarantee. Papagelis [29] and Crescenzi et al. [7] study the problem of augmenting the graph in order to increase the 
connectivity or the centrality of a node, respectively and experimentally show that this increases the expected number of 
eventual active nodes. Parotsidis et al. [30] study the problem of recommending links with the objective of improving the 
centrality of a node within a network. Cordasco et al. consider the problem of activating all the nodes in a network by 
adding links [6]. The authors study the Minimum Links Problem whose the aim is to find the minimum number of links 
that a set of external influencers should form with people in the network, in order to activate the entire social network. 
They prove that the Minimum Links problem cannot be approximated to within a ratio of O (2log1−εn) or any fixed ε ≥ 0
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unless N P ⊆ DT I M E(npolylog), where n is the number of nodes in the network. They give linear time algorithms to solve 
the problem for trees, cycles, and cliques. For general graphs, instead, they design a polynomial time algorithm to compute 
size-efficient link sets that can activate the entire graph.

Under ICM, Wu et al. [34] consider graph modifications other than edge addition, edge deletion and source selection, 
such as increasing the probability that a node infects its neighbors. They proved that optimizing the selection of such 
modifications with a limited budget is N P -hard and is neither submodular nor supermodular. Sheldon et al. [32] study the 
problem of node addition to maximize the spread of information, and provide a counterexample showing that the objective 
function is not submodular. Kimura et al. [21] propose methods for efficiently finding good approximate solutions on the 
basis of a greedy strategy for the edge deletion problem under the ICM, but do not provide any approximation guarantees.

In [8] the authors introduced a preliminary version of the edge addition problem where new edges are incident to a 
given initial set of active nodes. They focus on the case in which the initial set of seeds is a singleton and investigate the 
existence of a constant approximation algorithm.

In this paper, we extend the results presented in [8]. In detail, we adopt the independent cascade model and investigate 
the problem of adding a limited number of edges incident to an arbitrary set of initial seeds, without exceeding a given 
budget k, in order to maximize the spread of information in terms of number of nodes that eventually become active. The 
problem we analyze differs from above mentioned ones since we make the reasonable restriction that the edges to be 
added can only be incident to the seed nodes and that to add such edges there is a cost to be paid. To our knowledge, 
similar problems have never been studied for the independent cascade model. We refer to this problem as the Cost Influence 
Maximization with Augmentation problem (CostIMA).

A generalization of the CostIMA problem has been proposed in [9] where the initial set of seed nodes is not given and 
the budget k is used for selecting the set of initial seeds and for buying a small number of edges incident to the seeds in 
order to maximize the expected number of nodes that become active. The results presented in [9] depend on those for the 
CostIMA problem since it has been used as a subroutine for the more general problem of seed selection and link addition.

1.2. Our results

We first focus on the unit-cost version of the problem that we call Influence Maximization with Augmentation problem
(IMA). In such problem the cost of adding any edge is constant and equal to 1. We show that IMA is N P -hard to be 
approximated within a constant factor greater than 1 − (2e)−1 (Section 3.1). We then provide an approximation algorithm 
that almost matches such upper bound by guaranteeing an approximation factor of 1 − (e)−1 − ε , where ε is any positive 
real number (Section 3.2). The algorithm is based on a greedy technique and the approximation factor is proven by showing 
that the expected number of activated nodes is monotonically increasing and submodular with respect to the possible set 
of edges incident to the seeds.

Then, we study the more general CostIMA problem where we are given a budget k and the cost of edges is in [0, 1]. We 
propose an algorithm that combines greedy and enumeration techniques and that achieves an approximation guarantee of 
1 − (e)−1, for any ε > 0 (Section 4).

Both the IMA and CostIMA problems are interesting: even though the former represents a limited number of real scenar-
ios, there is a greedy approximation algorithm that guarantees an approximation factor of 1 − (e)−1 exploiting the properties 
of submodular functions. The latter problem, instead, introduces a more flexible and general model for the application to 
link recommendation. Even if the greedy heuristic of IMA can not be trivially generalized to achieve the same approximation 
for the budgeted version of the problem, we will show how to obtain an approximation factor to 1 − (e)−1 by using the 
enumeration technique.

We observe that, even if the two proposed algorithms have the same worst-case computational complexity and approxi-
mation factor, the algorithm presented for the IMA problem is simpler because it does not require an enumeration technique 
and, therefore, it should perform better in practical scenarios.

2. Preliminaries

A social network is represented by a weighted directed graph G = (V , E, p, c), where V represents the set of nodes, 
E represents the set of relationships, p : V × V → [0, 1] is the propagation probability of an edge, that is the probability 
that the information is propagated from u to v if (u, v) ∈ E , and c : V × V → [0, 1] is the cost of adding an edge to E .

In ICM, each node can be either active or inactive. If a node is active (or infected), then it is already influenced by the 
information under diffusion, if a node is inactive, then it is unaware of the information or not influenced. The process runs 
in discrete steps. At the beginning of the ICM process, few nodes are given the information, they are known as seed nodes. 
Upon receiving the information these nodes become active. In each discrete step, an active node tries to influence one of 
its inactive neighbors. The success of node u in activating the node v depends on the propagation probability of the edge 
(u, v), independently of the history so far. In spite of its success, the same node will never get another chance to activate 
the same inactive neighbor. The process terminates when no further nodes became activated from inactive state.

We define the influence of a set A ⊆ V in the graph G , denoted σ(A, G), to be the expected number of active nodes in 
G at the end of the process, given that A is the initial set of seeds. Given a set S of edges not in E , we denote by G(S) the 
graph augmented by adding the edges in S to G , i.e. G(S) = (V , E ∪ S). We denote by σ(A, S) the influence of A in G(S).
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In this paper, given a set of seeds A, we look for a set of edges S , to be added to G , incident to such seeds that 
maximize σ(A, S). We assume that each edge e ∈ (V × V ) \ E can be selected according to cost function c. In detail, the 
CostIMA problem is defined as follows: given a graph G = (V , E), a budget k and a set A of seeds, find a set S of edges 
such that S ⊆ (A × V ) \ E , c(S) ≤ k, and σ(A, S) is maximum, where c(S) = ∑

e∈S c(e).
Moreover, we consider also the unit-cost version of our problem, we refer to it as the IMA problem: it is a particular 

case of CostIMA where each edge e ∈ (V × V ) \ E has cost c(e) = 1 and where c(S) = |S|.
We give now some definitions useful to prove our results. We will use the definition of live-edge graph X = (V , E X ) which 

is a directed graph where the set of nodes is equal to V and the set of edges is a subset of E . More specifically, the edge 
set E X is given by a edge selection process in which each edge in E is either live or blocked according to its propagation 
probability. We can assume that, for each edge e = (u, v) in the graph, a coin of bias pe is flipped and the edges for which 
the coin indicated an activation are live, the remaining are blocked.

We denote by χ(S) the probability space in which each sample point specifies one possible set of outcomes for all the 
coin flips on the edges of G(S), that is the set of all possible live-edge graphs of G(S). For a node a ∈ V and a live-edge 
graph X in χ(S), let R(a, X) denote the set of all nodes that can be reached from a in graph X , that is for each node 
v ∈ R(a, X), there exists a path from a to v consisting entirely of live edges with respect to the outcome of the coin flips 
that generates X .

It is easy to show that the information diffusion process is equivalent to a reachability problem in live-edge graphs: 
given any seed set A, the distribution of active node sets after the diffusion process ends is the same as the distribution of 
node sets reachable from A in live-edge graphs. Indeed, let

R(A, X) =
⋃
a∈A

R(a, X),

then σ(A, S) can be computed as

σ(A, S) =
∑

X∈χ(S)

P[X] · |R(A, X)|.

Note that, the influence function σ(A, S) cannot be evaluated exactly in polynomial time since it has been proven that it 
is generally #P -complete for the Independent Cascade Model [5]. However, by simulating the diffusion process sufficiently 
many times and sampling the resulting active sets, it is possible to obtain arbitrarily good approximations to σ(A, S). The 
next proposition bounds the number of times that the diffusion process must be simulated to obtain a good approximation 
of σ(A, S).

Proposition 1 ([17]). If the diffusion process starting with A on graph G(S) is simulated at least � 
( |V |2

λ2 ln 1
δ

)
times, then the average 

number of activated nodes over these simulations is a (1 + λ)-approximation to σ(A, S), with probability at least 1 − δ.

Therefore, in the rest of the paper we can assume that we can compute σ(A, S) within an arbitrary bound. This reflects 
to an additional factor 1 − ε , for any ε > 0, to all algorithms presented in this paper.

Given a set of edges S , for each graph X ∈ χ(S) and subset of edges T ⊆ S , we denote by X T the graph obtained 
by removing edges in T from X . To avoid cumbersome notation, when T = {e} we denote Xe = X {e} . Given two feasible 
solutions S1 and S2, such that S2 ⊆ S1, we denote with δ(S1, S2) the expected number of nodes affected by S1 and not 
affected by S2, formally:

δ(S1, S2) =
∑

X∈χ(S1)

P[X] ·
(
|R(A, X)| − |R(A, X T )|

)
,

where T = S1 \ S2.

3. The IMA problem

In this section we present our results for the IMA problem, i.e. the unit-cost version of the CostIMA problem.

3.1. Hardness of approximation

We first show that the IMA problem does not admit a PTAS, unless P = N P . The result holds even when there is only 
one seed node, i.e. when |A| = 1. Moreover, since IMA is a special case of costIMA, any upper bound on the approximation 
of IMA also holds for CostIMA. In the next section, and in Section 4, we give an algorithm that almost matches the following 
upper bound on approximation.

Theorem 2. It is N P -hard to approximate IMA within a factor greater than 1 − (2e)−1 for any A such that |A| ≥ 1.
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Fig. 1. Reduction used in Theorem 2. The dashed arcs denote those added in a solution.

Proof. The proof is based on a reduction from the maximum set coverage problem (MSC) which has been shown to be 
N P -hard to approximate within a factor greater than 1 − 1

e [10]. In detail, in the MSC problem, we are given a finite 
set X , a finite family F of subsets of X , and an integer k′ , and we aim at finding a family F ′ ⊆ F such that |F ′| ≤ k′ and 
s(F ′) = | ∪Si∈F ′ Si | is maximum.

We follow the scheme of L-reductions [33, Chapter 16], since it has been shown that if there is an L-reduction with 
parameters a and b from maximization problem � to maximization problem �′ , and there is an α-approximation algorithm 
for �′ , then there is an (1 − ab(1 − α))-approximation algorithm for � [33, Chapter 16]. In our specific case, if there exists 
an α-approximation algorithm AIMA for IMA and the following two conditions are satisfied for some values a and b:

O P T (IIMA) ≤ aO P T (IMSC) (1)

O P T (IMSC) − s(SMSC) ≤ b (O P T (IIMA) − σ(A, S IMA)) , (2)

where O P T denotes the optimal value of an instance of an optimization problem, then there exists an approximation 
algorithm AMSC for MSC with approximation an factor of 1 − ab(1 − α). Since it is N P -hard to approximate MSC within 
a factor greater than 1 − 1

e [10], then the approximation factor of AMSC must be smaller than 1 − 1
e , unless P = N P . This 

implies that 1 − ab(1 − α) < 1 − 1
e that is, the approximation factor α of AIMA must satisfy α < 1 − 1

abe , unless P = N P .
Therefore, in what follows we give a polynomial-time algorithm that transforms any instance IMSC = (X, F , k′) of MSC

into an instance IIMA = (G, A, k) of IMA and a polynomial-time algorithm that transforms any solution S IMA for IIMA into a 
solution SMSC for IMSC such that Conditions (1) and (2) are satisfied.

Given IMSC = (X, F , k′), we define IIMA = (G, A, k) where G = (V , E, p) is a directed graph containing a node vxi for 
each element xi ∈ X , a node v S j for each set S j ∈ F , a seed node a, and a directed edge (v S j , vxi ), whenever xi ∈ S j . We 
define k = k′ and A = {a}. We denote by VF the set of nodes corresponding to sets in F . The propagation probability pe is 
equal to 1 if e ∈ E ∪ (A × VF ) and 0 otherwise. See Fig. 1 for a visualization. Note that in IIMA , the information diffusion 
is a deterministic process, as all probabilities are 0 or 1. Moreover, any solution S for I IMA contains only edges (a, v S j ), for 
some S j ∈ F , since any other edge would have probability 0 of being activated. Given a solution S IMA = {(a, v S j ) | S j ∈ F}
to IIMA , we construct the solution SMSC = {S j | (a, v S j ) ∈ S IMA} to IMSC . W.l.o.g., we can assume that |S IMA| = k and since by 
construction |SMSC| = |S IMA|, then |SMSC| = k = k′ .

The nodes influenced by node a in S IMA are all nodes v S j such that (a, v S j ) ∈ S IMA and all the nodes vxi such that 
xi ∈ S j , for some S j such that (a, v S j ) ∈ S IMA . The nodes of the former type are k, while the nodes of the latter type are all 
those nodes vxi such that xi ∈ ∪(a,v S j )∈S IMA

S j . Therefore, σ(A, S IMA) = k + | ∪(a,v S j )∈S IMA
S j | = k + s(SMSC).

It follows that Conditions (1) and (2) are satisfied for a = 2, b = 1 since: O P T (IIMA) = O P T (IMSC) +k ≤ 2O P T (IMSC) and 
O P T (IMSC) − s(SMSC) = (O P T (IIMA) − k) − (σ (A, S IMA) − k) = O P T (IIMA) − σ(A, S IMA), where the first inequality is due to 
the fact that O P T (IMSC) ≥ k, as otherwise the greedy algorithm finds an optimal solution for MSC. The statement follows 
by plugging the values of a and b into α < 1 − 1

abe . This concludes the proof for |A| = 1. We can extend to cases in which 
|A| > 1 by adding nodes in A that can only form edges with propagation probability equal to 0. �
3.2. Greedy approximation algorithm

In this section, we propose an algorithm that guarantees a constant approximation ratio for the IMA problem. The 
algorithm exploits the results of Nemhauser et al. on the approximation of monotone submodular objective functions [27]. 
Let us consider the following optimization problem: given a finite set N , an integer k′ , and a real-valued function z defined 
on the set of subsets of N , find a set S ⊆ N such that |S| ≤ k′ and z(S) is maximum. If z is monotone and submodular,1 then 
the following greedy algorithm exhibits an approximation of 1 − 1

e [27]: start with the empty set, and repeatedly add an 
element that gives the maximal marginal gain, that is if S is a partial solution, choose the element j ∈ N \ S that maximizes 
z(S ∪ { j}).

1 For a ground set N , a function z : 2N → R is submodular if for any pair of sets S ⊆ T ⊆ N and for any element e ∈ N \ T , z(S ∪ {e}) − z(S) ≥
z(T ∪ {e}) − z(T ).
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Algorithm 1: GreedyIMA algorithm.
Input : A directed graph G = (V , E); a set of vertices A ⊆ V ; and an integer k ∈N

Output: Set of edges S ⊆ (A × V ) \ E such that |S| ≤ k
1 S := ∅;
2 for i = 1, 2, . . . , k do
3 ê = arg max{σ(A, S ∪ {e}) | e = (a, v) ∈ (A × V ) \ (E ∪ S)};
4 S := S ∪ {ê};

5 return S;

Theorem 3 ([27]). For a non-negative, monotone submodular function z, let S be a set of size k obtained by selecting elements 
one at a time, each time choosing an element that provides the largest marginal increase in the value of z. Then S provides a (
1 − 1

e

)
-approximation.

In this paper, we exploit such results by showing that σ(A, ·) is monotone and submodular with respect to the possible 
set of edges incident to nodes in A. In fact, assuming that for a set S ⊆ (A × V ) \ E we are able to compute σ(A, S),2 then 
Algorithm 1 provides a 

(
1 − 1

e

)
-approximation. Algorithm 1 iterates k times and, at each iteration, it adds to an initially 

empty solution S an edge ê = (â, ̂v) s.t. (â, ̂v) ∈ (A × V ) \ E that, when added to S , gives the largest marginal increase in 
the value of σ(A, S), that is σ(A, S ∪ {ê}) is maximum among all the possible edges in (A × V ) \ (E ∪ S) to be added to S . 
The next theorem shows that σ(A, ·) is monotone and submodular.

Theorem 4. Given a graph G = (V , E, p), σ(A, S) is a monotonically increasing submodular function of sets S ⊆ (A × V ) \ E.

In order to prove the theorem, we first show, in the next lemma, that function R(A, ·) is submodular with respect to the 
insertion of edges outgoing nodes in A to live-edge graphs. Note that this is a deterministic property.

Lemma 5. Given a set of nodes A ⊆ V , two live-edge graphs X and Y such that E X ⊆ EY and EY \ E X ⊆ A × V , and an edge 
e ∈ (A × V ) \ E, let X+ and Y + denote the live-edge graphs obtained by adding e to X and Y , respectively, that is X+ = (V , E X ∪ {e})
and Y + = (V , EY ∪ {e}). Then, |R(A, Y +)| − |R(A, Y )| ≤ |R(A, X+)| − |R(A, X)|.

Proof. Let r(X, e) = R(A, X+) \ R(A, X), that is, r(X, e) is the set of nodes that are reachable from A in X+ by means of 
edge e and that are not reachable in X . Similarly, let r(Y , e) = R(A, Y +) \ R(A, Y ). Since E X ⊆ EY and EY \ E X ⊆ A × V , then 
R(A, X) ⊆ R(A, Y ) and the set of nodes that are reachable from A only by means of edge e is smaller in Y + than in X+ . It 
follows that |r(X, e)| ≥ |r(Y , e)|. Therefore, |R(A, X+)| − |R(A, X)| = |r(X, e)| ≥ |r(Y , e)| = |R(A, Y +)| − |R(A, Y )|. �

We can now prove Theorem 4.

Proof of Theorem 4. To prove that σ is a monotonically increasing function, we show that for each S ⊆ (A × V ) \ E and 
e = (a, v) ∈ (A × V ) \ (E ∪ S), σ(A, S ∪ e) − σ(A, S) ≥ 0, that is∑

X∈χ(S∪{e})
P[X] · |R(A, X)| −

∑
X∈χ(S)

P[X] · |R(A, X)| ≥ 0. (3)

For each live-edge graph X in χ(S)), there are two different corresponding live-edge graph X+ and X− in χ(S ∪ {e}), 
whose edge sets depend on the outcome of the coin flipped for e, that is E X+ = E X ∪ {e} and E X− = E X , respectively. The 
probabilities for the live-edge graph X+ and X− to occur, are: P[X+] = P[X] · pe and P[X−] = P[X] · (1 − pe), while the set 
of reachable nodes are such that R(A, X) ⊆ R(A, X+) and R(A, X) = R(A, X−), because in X+ there is one more edge e and 
X− = X . Therefore, |R(a, X+)| ≥ |R(a, X)| and we can prove Inequality (3) as follows:∑

X∈χ(S)

(
P[X+] · |R(A, X+)| + P[X−] · |R(A, X−)|) −

∑
X∈χ(S)

P[X] · |R(A, X)| =
∑

X∈χ(S)

(
P[X] · pe · |R(A, X+)| + P[X] · (1 − pe) · |R(A, X−)| − P[X] · |R(A, X)|) ≥

∑
X∈χ(S)

(P[X] · pe · |R(A, X)| + P[X] · (1 − pe) · |R(A, X)| − P[X] · |R(A, X)|) = 0.

This shows that σ is a monotonically increasing.

2 We showed in Section 2 how to find an arbitrarily good approximation of σ(A, S) in polynomial time.
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To prove the submodularity, we show that for each pair of sets S, T such that S ⊆ T ⊂ (A × V ) \ E and for each e =
(a, v) ∈ (A × V ) \ T , the increment in expected number of influenced nodes that edge e causes in S ∪ {e} is larger than the 
increment it produces in T ∪ {e}, that is σ(A, S ∪ {e}) − σ(A, S) ≥ σ(A, T ∪ {e}) − σ(A, T ), or∑

X∈χ(S∪{e})
P[X] · |R(A, X)| −

∑
X∈χ(S)

P[X] · |R(A, X)| ≥ (4)

∑
X∈χ(T ∪{e})

P[X] · |R(A, X)| −
∑

X∈χ(T )

P[X] · |R(A, X)|. (5)

For each live-edge graph X in χ(S) let us denote by χ(T , X) the set of live-edge graphs in χ(T ) that have X as a 
subgraph and possibly contain other edges in T \ S . In other words, a live-edge graphs in χ(T , X) has been generated with 
the same outcomes as X on the coin flips in the edges of E ∪ S and it has other outcomes for edges in T \ S .

As in the proof for monotonicity, for each live-edge graph X in χ(T ), let X+ and X− be the live-edge graphs in χ(T ∪{e})
such that E X+ = E X ∪{e} and E X− = E X , respectively. Again, P[X+] = P[X] · pe , P[X−] = P[X] · (1 − pe), R(A, X) ⊆ R(A, X+), 
and R(A, X) = R(A, X−).

Then, Formula (4) is equal to∑
X∈χ(S)

(
P[X+] · |R(A, X+)| + P[X−] · |R(A, X−)| − P[X] · |R(A, X)|) =

∑
X∈χ(S)

(
P[X] · pe · |R(A, X+)| + P[X] · (1 − pe) · |R(A, X−)| − P[X] · |R(A, X)|) =

∑
X∈χ(S)

P[X] · pe · (|R(A, X+)| − |R(A, X)|).

For each X ∈ χ(T ), there exists a unique pair X ′ ∈ χ(S), Y ∈ χ(T , X ′) such that X = Y . Similarly, for each X ∈ χ(T ∪ {e}), 
there exists a unique pair X ′ ∈ χ(S), Y ∈ χ(T , X ′) such that P[X] · |R(A, X)| = P[Y +] · |R(A, Y +)| + P[Y −] · |R(A, Y −)|. It 
follows that Formula (5) is equal to∑

X∈χ(S)

∑
Y ∈χ(T ,X)

(
P[Y +] · |R(A, Y +)| + P[Y −] · |R(A, Y −)| − P[Y ] · |R(A, Y )|) =

∑
X∈χ(S)

∑
Y ∈χ(T ,X)

(
P[Y ] · pe · (|R(A, Y +)| − |R(A, Y )|)) .

By Lemma 5, |R(A, Y +)| − |R(A, Y )| ≤ |R(A, X+)| − |R(A, X)|. Moreover, 
∑

Y ∈χ(T ,X) P[Y ] = P[X] and then∑
X∈χ(S)

∑
Y ∈χ(T ,X)

P[Y ] · pe · (|R(A, Y +)| − |R(A, Y )|) ≤
∑

X∈χ(S))

P[X] · pe · (|R(A, X+)| − |R(A, X)|),

which concludes the proof. �

Algorithm 2: GreedyIMA algorithm with approximate estimation of marginal increment.
Input : A directed graph G = (V , E); a set of vertices A ⊆ V ; and an integer k ∈N

Output: Set of edges S ⊆ (A × V ) \ E such that |S| ≤ k
1 S := ∅;
2 for i = 1, 2, . . . , k do
3 foreach e ∈ (A × V ) \ (E ∪ S) do
4 Use repeated sampling to estimate a (1 + λ)-approximation of σ(A, S ∪ {e}) with prob. 1 − δ;
5 Let σ̃ (A, S ∪ {e}) be the estimation;

6 ê = arg max{σ̃ (A, S ∪ {e}) | e = (a, v) ∈ (A × V ) \ (E ∪ S)};
7 S := S ∪ {ê};

8 return S;

Theorem 3 can be generalized to the case in which each step of the greedy algorithm, at each iteration, selects an 
element whose marginal increment is an α-approximation to the maximum one. In this case, it guarantees an approx-
imation factor of 1 − 1

eα [14, Chapter 3]. Moreover, thanks to Proposition 1, we can estimate the maximum marginal 
increment to within a factor (1 + λ) to the maximal one in polynomial time. In this case, the greedy algorithm guaran-
tees a 

(
1 − 1

e − ε
)
-approximation, where ε depends on λ and goes to 0 as λ → 0. By combining these results, we can 

formally define Algorithm 2 that differs from Algorithm 1 on how it computes σ(A, S).
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Theorem 6. Algorithm 2 guarantees an approximation factor of 
(
1 − 1

e − ε
)

for the IMA problem, where ε is any positive real number.

We notice that the computational complexity of Algorithm 2 is O (k · n · g(n, m + k)), where g(n, m + k) is the complexity 
of computing an approximation σ̃ (A, S) of σ(A, S) in a graph with n nodes and m + k edges. Specifically, it runs in k
iterations, each of which requires estimating the expected spread of O (n) node sets running a breadth first search on the 
live-edge graphs. Since g(n, m + k) = O ((n + m + k) · R) where R is the number of simulations, then the complexity of the 
greedy algorithm is O (k · n · (n + m + k) · R).

4. Approximation algorithms for the COSTIMA problem

In this section we introduce our approximation algorithm for the CostIMA problem. First we propose a greedy algorithm 
that achieves an approximation factor of 1

2

(
1 − 1

e

)
for the CostIMA problem, then we improve such approximation factor to (

1 − 1
e

)
by using an enumeration technique.

Algorithm 3: GreedyCostIMA algorithm.
Input : A directed graph G = (V , E), a budget k ≥ 0 a seed set A
Output: A set of edges S ⊆ (A × V ) \ E such that c(S) ≤ k

1 S := ∅;
2 T := (A × V ) \ E;
3 eM := arg maxe∈(A×V )\E {σ(A, {e})};
4 while T �= ∅ do

5 ê := arg maxe∈T

{
δ(S∪{e},S)

c(e)

}
;

6 if k − c(ê) ≥ 0 then
7 S := S ∪ {ê};
8 k := k − c(ê);

9 T := T \ {ê};

10 return arg max{σ(A, S), σ(A, {eM })};

Our first algorithm, whose pseudocode is reported in Algorithm 3, outputs a solution that maximizes the expected 
number of affected nodes between two possible solutions described in the following. The first solution is found at line 3
and is made of a single edge (aM , v M) for which σ(A, {(aM , v M)}) is maximized; the second solution is obtained by a 
greedy algorithm at lines 4–9.

In particular, the greedy phase, selects at each step an edge ê to be added to the solution S obtained at the previous 
iteration, such that the ratio between δ(S ∪ {ê}, S), that is the expected number of nodes affected by S ∪ {ê} and not 
affected by S , and c(ê) is maximized (see line 5). Then, if cost c(S ∪ {ê}) does not violate the budget, the edge ê is added 
to S , otherwise the edge is discarded (lines 6–8).

Next, we analyze the performance guaranteed by Algorithm 3. We denote by S∗ an optimal solution to the problem. 
Let l be the number of edges added to the solution by the greedy algorithm until an edge from S∗ is considered (i.e. it 
maximizes the ratio at line 5) but not added to the solution because it violates the budget constraint. Let ji , i = 1, 2, . . . , l, 
be the indices of the first l iterations of the greedy algorithm in which an edge is added to the solution, ji < ji+1, and let 
Si be the solution at the end of iteration ji . Moreover, let jl+1 be the index of the first iteration in which an edge e in S∗ is 
considered but not added to S because it violates the budget constraint and let Sl+1 = Sl ∪ {e}. For each i = 1, 2, . . . , l + 1, 
we denote by c̄i the marginal cost of Si as computed at line 5, c̄i = c(ê), where ê is the edge selected at iteration ji .

The next lemmas are the core of our analysis, note that the statements are similar to lemmas in [19].

Lemma 7. For each i = 1, 2, . . . , l + 1, σ(A, Si) − σ(A, Si−1) ≥ c̄i
k (σ (A, S∗) − σ(A, Si−1)).

Proof. First, we define δi to be the expected number of nodes affected by solution Si and not affected by solution Si−1, 
δi = δ(Si, Si−1).

It is easy to see that the following inequality holds

σ(A, S∗) − σ(A, Si−1) ≤
∑

e∈S∗\Si−1

δ(Si−1 ∪ {e}, Si−1), (6)

i.e. the value σ(A, S∗) − σ(A, Si−1) is at most the sum, for each edge in S∗ and not in Si−1, of the expected number of 
nodes affected by such edge and not affected by solution (A, Si−1).

Since the greedy algorithm selects at each step the element that maximizes the ratio between δi and c̄i , for each e ∈
S∗ \ Si−1 the following holds,

δ(Si−1 ∪ {e}, Si−1)

c(e)
≤ δi

c̄i
.
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Therefore,

∑
e∈S∗\Si−1

δ(Si−1 ∪ {e}, Si−1) ≤
∑

e∈S∗\Si−1

δi

c̄i
c(e) = δi

c̄i

⎛
⎝ ∑

e∈S∗\Si−1

c(e)

⎞
⎠ ≤ k

δi

c̄i
.

To conclude the proof, we need to show that δi = σ(A, Si) − σ(A, Si−1). Indeed, if Si \ Si−1 = {e},

δi =
∑

X∈χ(Si)

P[X] · (|R(A, X)| − |R(A, Xe)|)

= σ(A, Si) −
∑

X∈χ(Si−1)

P[X] (pe|R(A, X)| + (1 − pe)|R(A, X)|)

= σ(A, Si) − σ(A, Si−1). �
Armed with Lemma 7, we prove the next lemma by induction on iterations ji .

Lemma 8. For each i = 1, 2, . . . , l + 1,

σ(A, Si) ≥
[

1 −
i∏


=1

(
1 − c̄


k

)]
σ(A, S∗).

Proof. For i = 1, by Lemma 7, σ(A, S1) ≥ c̄1
k σ(A, S∗) =

[
1 −

(
1 − c̄1

k

)]
σ(A, S∗). Let us assume that the statement holds for 

iterations j1, j2, . . . , ji−1, then

σ(A, Si) = σ(A, Si−1) + [σ(A, Si) − σ(A, Si−1)]

≥ σ(A, Si−1) + c̄i

k

[
σ(A, S∗) − σ(A, Si−1)

]
= σ(A, Si−1)

(
1 − c̄i

k

)
+ c̄i

k
σ(A, S∗)

where the inequalities follows from Lemma 7.
To conclude the proof we apply the inductive hypothesis:

σ(A, Si−1)

(
1 − c̄i

k

)
+ c̄i

k
σ(A, S∗) ≥

[
1 −

i−1∏

=1

(
1 − c̄


k

)](
1 − c̄i

k

)
σ(A, S∗) + c̄i

k
σ(A, S∗)

=
[

1 −
i∏


=1

(
1 − c̄


k

)]
σ(A, S∗). �

Before proving the main theorem, we prove the following technical lemma.

Lemma 9. For a sequence of numbers b1, b2, . . . , bn such that 
∑n


=1 b
 = B, the fallowing holds: 
∏n

i=1

(
1 − bi

B

)
≤ (

1 − 1
n

)n
.

Proof. We show the equivalent statement that function 
∏n

i=1

(
1 − bi

B

)
is maximized when bi = B

n , for each i = 1, 2, . . . , n, 
that is we solve the following optimization problem:

maximize
n∏

i=1

(
1 − bi

B

)

subject to
n∑


=1

b
 − B = 0.

We use the method of Lagrangian multiplier. To this aim we define the Lagrangian function

L(b1,b2, . . . ,bn, λ) =
n∏

i=1

(
1 − bi

B

)
− λ

(
n∑


=1

b
 − B

)
,

where λ is a Lagrangian multiplier.



JID:TCS AID:11459 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.229; Prn:31/01/2018; 10:21] P.10 (1-13)

10 G. D’Angelo et al. / Theoretical Computer Science ••• (••••) •••–•••
We solve ∇L = 0, that is we solve the following n + 1 equations:{
∂L
∂bi

= 0 ∀ i = 1,2, . . . ,n∑n

=1 b
 − B = 0.

(7)

The first n equations are satisfied if and only if, for each i = 1, 2, . . . , n,

− 1

B

n∏
j=1, j �=i

(
1 − b j

B

)
− λ = 0,

that is bi = b j , for each i, j = 1, 2, . . . , n. Plugging this into the last equation of (7), we obtain nbi = B , for each i = 1, 2, . . . , n, 
which is what we wanted to show. �
Theorem 10. Algorithm 3 achieves an approximation factor of 1

2

(
1 − 1

e

)
for the CostIMA problem.

Proof. We first observe two facts:

1. since (A, Sl+1) violates the budget, then c(Sl+1) > k,
2. since 

∑l+1
j=1 c̄ j = c(Sl+1), then by Lemma 9 the following holds,

l+1∏
j=1

(
1 − c̄ j

c(Sl+1)

)
≤

(
1 − 1

l + 1

)l+1

.

Therefore, by applying Lemma 8 for i = l + 1, we obtain:

σ(A, Sl+1) ≥
⎡
⎣1 −

l+1∏
j=1

(
1 − c̄ j

k

)⎤
⎦σ(A, S∗)

≥
⎡
⎣1 −

l+1∏
j=1

(
1 − c̄ j

c(Sl+1)

)⎤
⎦σ(A, S∗)

≥
[

1 −
(

1 − 1

l + 1

)l+1
]

σ(A, S∗)

≥
(

1 − 1

e

)
σ(A, S∗).

It follows that:

σ(A, Sl+1) = σ(A, Sl) + δl+1 ≥
(

1 − 1

e

)
σ(A, S∗). (8)

Moreover, since δl+1 ≤ σ(A, {eM}) as computed in line 3 of Algorithm 3, we get:

σ(A, Sl) + σ(A, {eM}) ≥
(

1 − 1

e

)
σ(A, S∗).

Finally, note that max{σ(A, Sl), σ(A, {eM})} ≥ 1
2

(
1 − 1

e

)
σ(A, S∗). �

As for Algorithm 2, we use repeated sampling to estimate a (1 +λ)-approximation of σ(A, S ∪{e}) with probability 1 − δ. 
Also in this case the complexity of the greedy algorithm is O (k · n · (n + m + k) · R), where R is the number of simulations 
and the approximation ratio is 1

2

(
1 − 1

e

) − ε , for any ε > 0.
We now propose an algorithm which improves the performance guarantee of Algorithm 3. Let Y be a fixed integer, we 

consider all the solutions of cardinality Y (i.e. |S| = Y ) which have cost at most k, c(S) ≤ k, and we complete each solution 
by using the greedy algorithm.

Theorem 11. For Y ≥ 3 Algorithm 4 achieves an approximation factor of 
(
1 − 1 )

for the CostIMA problem.
e
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Algorithm 4: GreedyIMA algorithm with enumeration technique.
Input : A directed graph G = (V , E), integer Y ∈N and an integer k ∈N

Output: A set of edges S ⊆ (A × V ) \ E such that c(S) ≤ k
1 S1 := arg max{σ(A, S) : |S| < Y , c(S) ≤ k};
2 S2 := ∅;
3 T := (A × V ) \ E;
4 foreach S ⊆ T such that |S| = Y , c(S) ≤ k do
5 T := T \ S;
6 Complete S by using lines 4–9 of Algorithm 3 with T as possible edge set;
7 if σ(A, S) > σ(A, S2) then
8 S2 := S;

9 return arg max{σ(A, S1), σ(A, S2)};

Proof. We assume that |S∗| > Y since otherwise Algorithm 4 finds an optimal solution.
We sort the edges in S∗ in decreasing order according to their marginal increment in the objective function.
Let S Z be the first Y elements in this order. We now consider the iteration of Algorithm 4 in which element S Z is 

considered. We define S Z ′ such that S = S Z ∪ S Z ′ , where S is the solution obtained after applying the greedy algorithm. It 
follows that:

σ(A, S) = σ(A, S Z ) + δ(S Z ∪ S Z ′ , S Z ).

The completion of S Z to S is an application of the greedy heuristic from Algorithm 3 therefore, we can use the result 
and notation from the previous theorems. Let l be the number of edges added to the solution during the completion of S Z

to S until an edge e in S∗ \ S Z is considered but not added to the solution because it violates the budget constraint, let 
Sl+1 = Sl ∪ {e}, and let δl+1 = δ(Sl+1, S). Applying Inequality (8) on the increment given by Z ′ to the objective function, we 
get:

δ(S Z ∪ S Z ′ , S Z ) + δl+1 ≥
(

1 − 1

e

)
σ(A, S∗ \ S Z ) (9)

we observe that, since we ordered the elements in S∗ , δl+1 ≤ σ(A,S Z )
Y .

Therefore, applying Inequality (9) and the previous observation:

σ(A, S) = σ(A, S Z ) + δ(S Z ∪ S Z ′ , S Z )

≥ σ(A, S Z ) +
(

1 − 1

e

)
σ(A, S∗ \ S Z ) − δl+1

≥ σ(A, S Z ) +
(

1 − 1

e

)
σ(A, S∗ \ S Z ) − σ(A, S Z )

Y

≥
(

1 − 1

Y

)
σ(A, S Z ) +

(
1 − 1

e

)
σ(A, S∗ \ S Z ).

But, σ(A, S Z ) + σ(A, S∗ \ S Z ) ≥ σ(A, S∗), and we get:

σ(A, S) ≥
(

1 − 1

e

)
σ(A, S∗) +

(
1

e
− 1

Y

)
σ(A, S Z )

≥
(

1 − 1

e

)
σ(A, S∗), for Y ≥ 3

proving the theorem. �
As in the previous cases, Theorem 11 can be generalized to the case in which each step of the greedy algorithm uses 

repeated sampling to estimate a (1 +λ)-approximation of σ(A, S) with probability (1 −δ). In this case, the greedy algorithm 
guarantees a 

(
1 − 1

e − ε
)
-approximation, where ε → 0 as λ → 0. We note that the complexity of the enumeration algorithm, 

which pseudocode is reported in Algorithm 4, is O (k · n · (n + m + k) · R) as for Algorithm 3 since Y is a fixed integer.

5. Conclusion and future research

In this paper, we have shown that IMA admits a constant factor approximation algorithm by proving that the expected 
number of activated nodes is monotonically increasing and submodular with respect to the possible set of edges incident 
to the seeds. We further provide an upper bound to the approximation factor that is slightly higher than that guaranteed 
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by our algorithm. Moreover, we have shown how to approximate the more general CostIMA problem: we first provide an 
algorithm which achieves a 1

2

(
1 − 1

e

)
approximation factor and then, using the enumeration technique, we improve the 

performance guarantee within a factor of 1 − 1
e .

As future works, we plan to analyze a minimization version of the CostIMA problem where we allow the deletion 
of edges incident to seeds. Moreover, our intent is to study the same problem in a generalization of ICM, which is the 
Decreasing Cascade model. In this model the probability of a node u to influence v is non-increasing as a function of the 
set of nodes that have previously tried to influence v . Other research directions that deserve further investigation include 
the study of the CostIMA problem on different information diffusion models such as LTM or the Triggering Model [17]. We 
are also interested, as a future work, in studying a generalization of the problem of Kempe et al. in which we are allowed 
to spend part of the budget to select seeds, which are not given, and part of it to create new edges incident to such seeds. 
Finally, we plan to assess the performance of our greedy algorithm from the experimental point of view and to propose 
some heuristics with the aim of improving the efficiency of the algorithm.
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