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The Hawkes process has garnered attention in recent years for its suitability to describe the behavior of online
information cascades. Here we present a fully tractable approach to analytically describe the distribution of
the number of events in a Hawkes process, which, in contrast to purely empirical studies or simulation-based
models, enables the effect of process parameters on cascade dynamics to be analyzed. We show that the presented
theory also allows predictions regarding the future distribution of events after a given number of events have
been observed during a time window. Our results are derived through a differential-equation approach to attain
the governing equations of a general branching process. We confirm our theoretical findings through extensive
simulations of such processes. This work provides the basis for more complete analyses of the self-exciting
processes that govern the spreading of information through many communication platforms, including the
potential to predict cascade dynamics within confidence limits.
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I. INTRODUCTION

The ease with which individuals may now access online
content has revolutionized the way in which information is
consumed [1], with social media platforms and online opinion
boards [2–5] being two paradigmatic examples of how infor-
mation is generated, transmitted, and finally absorbed. Mod-
ern information communication allow users to both become
informed on topics and easily interact online with each other,
which may lead to further discussion in a cascadelike manner.
This results in the occurrence of tree-shaped cascades, the
size of which describes the popularity of a discussion. This
size metric is one of the key elements in the modern-day
social media sphere and can range from a single post in
common discussions to values covering several orders of
magnitude for viral events, in an extremely heterogeneous
fashion [6–8].

One aspect of modeling information cascades that is of
paramount importance, not only on opinion boards but on
any type of online media, is the predictability of how content
popularity changes over time [9–14]. The ability to accurately
forecast which online content will become popular has at-
tracted a great deal of attention for several reasons. First, the
sheer volume of content that is now available through online
platforms, all of which are competing for the limited attention
of the users [15–18], has created a demand for techniques
that can decide the order in which users observe new posts,
something that is affected by the popularity of the information
and at the same time affects that same popularity. This is
sometimes referred to as algorithmic bias, by virtue of which
more popular topics get more exposure and their popularity
is further reinforced. Second, the capacity to predetermine
whether or not content will go viral would be an extremely
advantageous proposition for corporations, who spend

enormous amounts of capital on such campaigns in the hope
of increasing their market share [19–21].

Recent literature has focused on developing methods based
upon the theory of self-exciting point processes [22]. Unlike
homogeneous Poisson processes, the occurrence of previous
events in such processes increases the future rate of activity,
which can produce a “snowball effect,” leading to heavy-
tailed distributions of cascade sizes, as observed in empirical
data [23–25]. An example of such a process is the Hawkes
process [26], the application of which has been used to both
model and predict the evolution of retweet cascades on Twit-
ter by incorporating the underlying network topology along
with machine learning techniques [27,28], the popularity of
threads on Reddit [25,29], and predicting the number of
views Youtube videos receive as a result of the discussion
taking place on other social media platforms [30]. While these
works all highlight the capability of the Hawkes process in
predicting popularity cascades of online content, there is a
lack of knowledge regarding how the predictability of these
cascades is affected by the underlying parameters of the
Hawkes process.

The aim of this article is to first introduce an analytically
tractable approach to fully describe the Hawkes process using
the theory of branching processes, which has been success-
fully applied to other spreading processes on online media
platforms [15–17,31,32]. We obtain the expressions govern-
ing the process through an alternative differential-equation
framework. Using the results obtained from this analysis,
we then turn our attention to the question of predictability
in systems with dynamics of this type. We show that our
probabilistic interpretation enables the calculation not only of
analytical predictions of future popularity but also of levels
of confidence in these values directly from the model itself.
It should be noted that while we interpret the quantity of
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interest in this work to be the popularity of online content,
our general analytic derivation is not restricted to these types
of systems. More classically, Hawkes processes have been
used to describe a wide range of systems, such as those found
in finance [33–38], neuronal activity [39,40], or seismology
[41–44]. Hence, the expressions obtained in the following can
be applied to any process described by such dynamics simply
by changing the phrase discussion tree for point process and
post for event.

Before proceeding, we briefly review some of the existing
literature that has also considered the use of branching pro-
cesses in describing such models. The description of an opin-
ion board, specifically Reddit, and also the question of pre-
dictability were considered in Ref. [25], wherein parameters
estimated from the thread’s history were used to calculate the
expected number of events in future thread activity. Multiple
works have also incorporated other elements of online plat-
forms into their models to assist in predicting cascade sizes.
For example, Refs. [14,45] describe Twitter cascades, via
extensive numerical predictions, using the follower network
of the tweeting individual. In Ref. [46] the authors consider
a specific Hawkes process to obtain, through a branching
process description, the distribution of events in a certain
time window and the distribution of recurrence times between
events, without commenting on the predictability of such a
model after some observation period.

Our work differs from the aforementioned literature in
several ways. First, we consider the most generic form of
Hawkes process (unlike, for example, Ref. [45], which makes
use of a given memory kernel, or [46], which considers
the constant background intensity case) to obtain equations
that fully describe the distribution of events at any time; the
generality of this approach lends itself to application in a
wider number of areas. Second, when we turn to the question
of predictability of such a process, which was not considered
in [46], we introduce a mathematically tractable model which
allows one to calculate the expected size of the underlying tree
for any given process while also opening up the possibility
of determining prediction intervals for the number of events
to occur by a given time. This model thus allows the user to
provide a level of confidence in their predictions directly from
theory rather than via simulation of an extensive number of
ensembles.

The remainder of this paper is organized as follows. In
Sec. II we introduce a branching process description of the
Hawkes process derived through a differential equation for-
mulation, which is then used to determine properties of cas-
cades generated by such processes. Specifically, our approach
allows us to fully determine the distribution of the number
of events in a given process at any point in time. Having
described the general Hawkes process, in Sec. III we consider
the predictability of such processes after observing a cascade
over a certain time period. We focus on the case whereby
we have observed a given process for some period of time,
which we call the observation window, and then, based on the
occurrence of events within this window, our theory enables
the prediction of not only the expected number of events by
some future time, but also the entire distribution of events
at each point in the future. In Sec. IV we perform extensive
numerical simulations with the aim of validating our model’s

FIG. 1. Example of the Hawkes process. (a) Intensity function
λ(t ) given by Eq. (1) along with the background intensity μ(t ) with-
out any self-excitation, shown by the dashed line. (b) Corresponding
event sequence of five events at times τi.

prediction. We present a summary and our conclusions in
Sec. V.

II. HAWKES PROCESS MODEL

Self-exciting processes are those in which the likelihood of
a stochastic event taking place increases with the occurrence
of past events. Hence, the probability of an event occurring in
these processes is determined by a time-dependent intensity
λ(t ), defined such that λ(t )dt is the expected number of events
in the interval [t, t + dt]. One particular example of these
processes is the Hawkes process [26]. In this class of point
processes the intensity is given by

λ(t ) = μ(t ) + ξ
∑
τi<t

φ(t − τi ), (1)

where μ(t ) is known as the background intensity, describing
the likelihood of an exogenous event occurring independently
of other events. The non-negative φ(t ) term is known as
the memory kernel or the excitation function, as it gives
the amount by which previous events that have occurred
at times τi < t increase the probability of occurrence of
future events. As such, it accounts for the endogenous or
self-exciting part of the process. Further, we normalize φ(t )
such that

∫ ∞
0 φ(t )dt = 1. Note that with this interpretation,

one may consider φ(t ) as a probability density function
or a memory-time distribution [16]. Finally, the parame-
ter ξ may be thought of as the branching number of the
process, whereby it defines the average number of events
caused as a result of an event and may in some sense
capture the fitness of a previous event. Note that in the
case ξ = 0, one recovers an inhomogeneous Poisson process.
In this article we specifically focus on the subcritical case
where ξ < 1, which results in finite-size (albeit potentially
very large) cascades. In the alternative supercritical case
(ξ > 1) the average number of events grows exponentially
without bound, which is evidently meaningless for the pro-
cesses of interest in this work. Figure 1 shows an example
realization of a Hawkes process.
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FIG. 2. Schematic of the model. A discussion is started by the
seed at time τ0 = 0, represented by the horizontal blue line. At time
τ1 the seed receives a reply, shown by the blue circle, with probability
μ(τ1)dτ , which starts its own subtree shown by the top horizontal
red line. At time τ2 the comment receives a reply highlighted by the
red circle, with probability ξφ(τ2 − τ1)dτ . The seed receives another
reply at time τ3, with probability μ(τ3)dτ , which again starts another
subtree. Finally, the subtree started at time τ1 receives another reply
at time τ4, which occurred with probability ξφ(τ4 − τ1)dτ , itself
starting a new branch. We now observe the entire tree size, i.e., the
number of comments, to be 5 at time �.

To describe this process further we will proceed to consider
the behavior of a discussion tree on a social media platform.
Suppose that a discussion is started by a user posting at time
τ0 = 0. This comment will be referred to as the seed of the
discussion. The size of the discussion can increase in two
ways, as described in [25]. First, it may receive new comments
itself, which are essentially replies to the seed, with rate μ(t ).
This rate can depend on a number of factors, such as the
discussion’s position on the “front page” of the site [47,48]
or the number of users present on the site in the period after
the tree was created. Second, comments made to the seed
can themselves receive replies and thus be viewed as subtrees
of the tree that represents the whole discussion. A comment
made at time τi receives replies with intensity ξφ(t − τi ),
where ξ can be viewed as some fitness parameter which could
depend on factors such as the quality of the content in the
comment, the time of day at which it first appeared, or the
popularity of the individual who made the comment. For
simplicity, however, we will consider it as a parameter unique
to each discussion.

We can graphically arrange the posts in a discussion by
the shape of a tree in which the nodes represent posts and
an edge is established between two nodes if one is a reply to
the other (see Fig. 2). This representation suggests that the
dynamics of such a system can be described as a branching
process. Letting qm(t ) be the probability that a discussion of
age t has popularity m, i.e., it has received m comments, we
may define the probability generating function (PGF) [49] of

the popularity distribution as

H (t ; x) =
∞∑

m=1

qm(t )xm. (2)

In passing we mention one important property of PGFs that
we will frequently use in the following, namely, that the PGF
for the sum of two random variables X and Y is simply
the product of their individual generating functions. For the
remainder of this section, we will focus on a derivation of this
PGF through a branching process description of the Hawkes
process [50,51], followed by an analysis of some of the
properties that can be extracted from this interpretation.

A. Branching process description of the Hawkes process

We propose a derivation of the equations for the branching
process generating function given by Eq. (2) that is based on
considering the change in the PGFs over infinitesimal time
intervals. This leads naturally to a differential equation formu-
lation. In the Appendix we show how the method introduced
below can also be used to derive the well-known integral
equation for the Bellman-Harris process [31,32,50,51].

Let us first consider the distribution of the size of subtrees
described above. Suppose that a new comment arrives at
the subtree at time τ . We define the PGF of the resulting
size distribution as G(τ, a,�; x), where a is the age of the
comment that originated the subtree and � the time at which
the distribution is observed. Note that the time of origin of
the subtree is thus c ≡ τ − a. Now suppose we examine how
this PGF changes over a time interval (τ − �t, τ ). If �t is
sufficiently small so that at most one event occurs in a time
interval of length �t , there are two possible events that may
occur.

(i) A user may decide to reply to the comment of age a
with probability ξφ(a)�t , which depends on both the time
elapsed since the comment was made and its fitness. This
will result in a new comment of age 0 which may in turn
receive its own replies. Concurrently, the original comment
may also spawn further replies, so the total contribution to
G(τ − �t, a − �t,�; x) is G(τ, 0,�; x)G(τ, a,�; x), where
we have made use of the aforementioned property that the
PGF for the sum of two random variables is simply the
product of their respective PGFs.

(ii) There may also be no replies to the comment in this
time interval. This occurs with probability 1 − ξφ(a)�t , and
the contribution to G(τ − �t, a − �t,�; x) in this case is
simply G(τ, a,�; x).

Thus, the equation governing the change in G over the
interval (τ − �t, τ ) is given by

G(τ−�t, a−�t,�; x) = ξφ(a)�tG(τ, 0,�; x)G(τ, a,�; x)

+ [1 − ξφ(a)�t]G(τ, a,�; x). (3)

This equation may then be expressed as a partial differential
equation by considering the two-dimensional Taylor approxi-
mation in the small-�t limit to obtain

∂G

∂τ
+ ∂G

∂a
= ξφ(a)[1 − G(τ, 0,�; x)]G, (4)

where we write G for G(τ, a,�; x). This equation may be
simplified via the method of characteristics [52] (letting
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c = τ − a be constant along a characteristic) to obtain the
ordinary differential equation

dG

dτ
= ξφ(τ − c)[1 − G(τ, 0,�; x)]G (5)

for the change in G along a characteristic, which we may solve
by noting that G(�,� − c,�; x) = x, i.e., the initial subtree
size when a comment is made is 1, to obtain

G(τ, τ − c,�; x)

= x exp

{
−ξ

∫ �

τ

φ(v − c)[1 − G(v, 0,�; x)]dv

}
. (6)

We may now insert a = τ − c and introduce the “tree age”
t = � − τ , i.e., the age of the subtree at observation time, and
let w = � − v, which gives

G(t, a; x) = x exp

{
ξ

∫ t

0
φ(w + a)[G(t − w, 0; x) − 1]dw

}
.

(7)

Finally, we let a = 0 to obtain the PGF for the subtree size
at age t as a result of a new post (and dropping the a = 0
argument from G)

G(t ; x) = x exp

{
ξ

∫ t

0
φ(w)[G(t − w, x) − 1]dw

}
. (8)

We will now proceed to determine the PGF of the entire
size distribution of a tree with age t , H (t ; x). Equation (8)
describes the distribution of the size of a subtree as a result of
replying to either the original seed or another comment (which
would be itself a root of a previous subtree). To determine the
entire tree size distribution we first define H (τ,�; x) to be the
PGF of a cascade that had started at time 0, observed over the
time interval (τ,�). As above, we consider the two possible
events which may occur in relation to the seed over the small
time interval (τ − �t, τ ).

(i) There may be a comment made on the post (i.e., in
direct reply to the seed) with probability μ(t )�t , resulting in
a subtree that develops from this comment with size distri-
bution determined by G(τ, 0,�; x). The seed itself may also
receive further comments. The total contribution to H (τ −
�t,�; x) is given by the product of the two individual PGFs
G(τ, 0,�; x)H (τ,�; x).

(ii) The seed may receive no comments in this time interval
which occurs with probability 1 − μ(τ )�t , so the contribu-
tion to H (τ − �t,�; x) is simply H (τ,�; x).

Analogously to the previous PGF, we take the �t → 0
limit and use the method of characteristics to obtain the
differential equation

dH (τ,�; x)

dτ
= μ(τ )[1 − G(τ, 0,�; x)]H (τ,�; x), (9)

noting that the initial tree size is 1 (the seed itself), i.e.,
H (0, 0; x) = x. We remark that � is in fact the age of the post.
For consistency, we will define this to be t and set τ = 0 such
that we observe the entire tree, obtaining

H (t ; x) = x exp

{∫ t

0
μ(y)[G(t − y; x) − 1]dy

}
, (10)

where G(t − y; x) is given by Eq. (8). Therefore, the entire
behavior of the Hawkes process is described by Eqs. (8) and
(10). Note that a similar expression was obtained by Hawkes
in the case of constant background intensity, i.e., μ(t ) = λ0,
by considering the process as a Poisson cluster process [53];
however, a description of the most general case including
time-varying background intensity is lacking.

B. Mathematical analysis and properties of the branching tree

1. Mean size of a cascade

To determine the expected size of a discussion with age t ,
m(t ), we use the property that

m(t ) =
∞∑

n=1

nqn(t ) = ∂H (t ; x)

∂x

∣∣∣∣
x=1

. (11)

We then differentiate Eq. (10) and evaluate at x = 1 to obtain
an integral equation for m(t ),

m(t ) = 1 +
∫ t

0
μ(y)mG(t − y)dy, (12)

where mG(t ) represents the mean size of a subtree with age t
and is defined by mG = ∂G

∂x |x=1. Analogously, differentiating
Eq. (8) yields

mG(t ) = 1 + ξ

∫ t

0
φ(w)mG(t − w)dw. (13)

The next step is to take the Laplace transform of Eq. (12) to
obtain

m̂(s) = 1

s
+ μ̂(s)m̂G(s), (14)

with m̂G(s) given by the Laplace transform of Eq. (13), which
may be solved exactly to obtain

m̂G(s) = 1

s[1 − ξ φ̂(s)]
; (15)

substituting this value in Eq. (14) gives

m̂(s) = 1

s
+ μ̂(s)

s[1 − ξ φ̂(s)]
. (16)

We may determine the limiting value of m(t ) as t → ∞, if
it exists, by making use of the final limit theorem [54]

m(∞) = lim
t→∞ m(t ) = lim

s→0
sm̂(s) (17)

= 1 +
∫ ∞

0 μ(t )dt

1 − ξ
. (18)

Furthermore, it is also interesting to understand how this
limit is approached in the large-t limit. Following [16,32], the
calculation depends on the existence (or not) of the value α

that satisfies

ξ

∫ ∞

0
e−αtφ(t )t = 1. (19)

This special value of α is known as the Malthusian param-
eter [50]. If this parameter exists then the limit m(∞) is
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approached exponentially:

m(t ) ∼ m(∞) +
∫ ∞

0 e−αpμ(p)d p

αξ
∫ ∞

0 pφ(p)e−αpd p
eαt as t → ∞.

(20)
However, if there is no solution α of Eq. (19), which is the
case when φ(t ) is a subexponential distribution (e.g., Gamma
distribution), then the large-t behavior of m(t ) is given by

m(t ) ∼ m(∞) − ξ
∫ ∞

0 μ(p)d p

(1 − ξ )2
[1 − C(t )], (21)

where C(t ) = ∫ t
0 φ(t )dt is the cumulative distribution of the

memory kernel.
While the above analysis describes the mean behavior of

the long-time dynamics, for some choices of the background
intensity and memory kernel it is also possible to exactly de-
termine the entire temporal behavior of the mean cascade size.
In the following we will explore two of those choices: con-
stant background intensity with exponential memory kernel
and constant background intensity with power-law memory
kernel.

a. Exponential memory kernel with constant background
intensity. To consider a specific example, we take the well-
studied case where the process’s memory kernel is expo-
nentially distributed [26,53,55–57] with mean time 1/β and
background intensity given by a constant, i.e., μ(t ) = λ0, so
that the intensity is given by

λ(t ) = λ0 + ξ
∑
τi<t

βe−β(t−τi ); (22)

in this case (16) becomes

m̂(s) = 1

s
+ λ0

s2

[
β + s

s + β(1 − ξ )

]
, (23)

which results in the following solution for the mean cascade
size as a function of time:

m(t ) = 1 + λ0

1 − ξ

[
t + ξ

β(1 − ξ )
(e−β(1−ξ )t − 1)

]
. (24)

Note that we initially have a linear term in t , as one would
expect in the case of constant background intensity, which
gives some constant probability of replies to a post regardless
of the time. This growth does eventually slow down as a
result of the exponential decay term, but is still determined as
linear growth. A detailed analysis into this form of the Hawkes
process was considered in [58], where it was shown that this
simplistic setting is equivalent to a continuous-time Markov
process, as one would anticipate from the exponential kernel.

b. Shifted power-law memory kernel with constant back-
ground intensity. Another frequently used kernel is that of
the shifted power-law memory kernel φ(t ) ∝ (t + c)−(1+β ) for
β > 0 [14,30,41,59–61]. From this kernel, along with a con-
stant background intensity and the normalization condition
[i.e.,

∫
φ(t )dt = 1] we have

λ(t ) = λ0 + ξ
∑
τi<t

βcβ (t − τi + c)−(1+β ). (25)

Hence, in this case μ̂(s) = λ0
s and φ̂(s) = βcβecssβ�(−β, cs),

where � is the upper incomplete Gamma function. We may

determine the early-time behavior in this instance by consid-
ering s � 1 and expanding the incomplete � function giving

φ̂(s) ∼ β

c

1

s
. (26)

Inserting this expression into Eq. (16) and applying the inverse
Laplace transform, we obtain

m(t ) ≈ 1 + cλ0

ξβ
[e(β/ξc)t − 1]. (27)

The presence of a constant background intensity makes the
question regarding long-time behavior less relevant. This is
due to the fact that the constant (nonzero) probability of an
event to occur results in infinitely large cascades in the large-t
asymptotic limit described, on average, by Eq. (18). If this
factor were not constant but rather a time-decaying μ(t ), as
the theory allows, the large-t behavior would be governed by
Eq. (21).

2. Probability a discussion receives no comments

Another interesting quantity which may be determined
directly from the probability generating function is the prob-
ability that a discussion tree, once started by a user, receives
no responses by the time it has age t , denoted given by q1(t ).
This value can be obtained from Eq. (10) as follows:

q1(t ) = lim
x→0

H (t ; x)

x
(28)

= lim
x→0

exp

{∫ t

0
μ(y)[G(t − y; x) − 1]dy

}
(29)

= exp

{
−

∫ t

0
μ(y)dy

}
. (30)

As one would expect, this quantity is purely determined by
the background intensity function as the memory kernel only
becomes a factor once the seed has received a reply.

3. Distribution of the number of events

The branching process interpretation of a given Hawkes
process described in Sec. II A allows one to determine the
entire dynamics of the given process through its PGFs (8) and
(10). In order to extract qm(t ), that is, the probability that a
tree has size m at age t , from these equations, one is required
to differentiate the PGF H (t ; x) m times, i.e.,

qm(t ) = 1

m!

∂m

∂xm
H (t ; x)

∣∣∣∣
x=0

; (31)

the numerical differentiation required to perform this calcula-
tion is however inaccurate for large-m values and as such we
instead use the Cauchy formula [62] for the derivative of a
function to obtain

qm(t ) = 1

2π i

∮
C

H (t ; x)x−(m+1)dx, (32)

where C is a contour in the complex-x plane such that all
poles of H (t ; x) lie outside C. This may then be evaluated in
a numerically accurate manner through inverse fast Fourier
transform routines [15,62,63] to allow one to obtain the distri-
bution of tree sizes at a given time t .

062311-5



O’BRIEN, ALETA, MORENO, AND GLEESON PHYSICAL REVIEW E 101, 062311 (2020)

0 2 4 6 8 10

Time

1

2

3

4

5

6

 = 0.2
 = 0.5
 = 0.8

100 101
10-5

10-4

10-3

10 -2

10-1

100

t = 2
t = 5
t = 8

0 2 4 6 8 10

Time

1

1.5

2

2.5

3

3.5

4

 = 0.2
 = 0.5
 = 0.8

100 101
10-5

10-4

10-3

10-2

10-1

100

t = 2
t = 5
t = 8

Number of Events Number of Events

N
um

be
r 

of
 E

ve
nt

s
C

C
D

F

(a) (b)

(c) (d)

FIG. 3. Numerical simulation of the Hawkes process over 106 realizations. (a) Mean number of events for a Hawkes process with
exponential memory kernel (β = 3) and constant background intensity λ0 = 0.1 for a range of fitness values. The lines represent the theoretical
values for the expected number of events given by Eq. (24), while the circles represent the corresponding results from simulation. (c) The CCDF
of the number of events in a scenario where ξ = 0.5 and β = 3 for three different values of observation time. Again, the lines represent the
theoretical CCDF from inversion of the PGF and circles represent the results from simulation. (b) and (d) Corresponding plots for a power-law
memory kernel with c = 0.01 and β = 0.3.

C. Numerical simulations

In Fig. 3 we compare the theoretical predictions with
numerical simulations of the Hawkes process. In Figs. 3(a)
and 3(c) we consider the case of constant background intensity
and exponential memory kernel. Specifically, in Fig. 3(a) the
expected number of events is shown for a number of different
fitness parameters (ξ = 0.2, 0.5, 0.8) along with λ0 = 0.1 and
β = 3. The lines correspond to the theoretical expected value
of Eq. (24), while the circles represent the average number
of events over an ensemble of 106 realizations. As expected,
larger fitness values result in a greater expected number of
events. Note also that for large values of t , a linear behavior
of the expected value is recovered, as suggested by the theo-
retical result of Eq. (24).

In each case we extract the distribution of tree sizes at
each time point via the approach described in Sec. II B 3.
Figure 3(c) shows the corresponding complementary cu-
mulative distribution function (CCDF), which is the prob-
ability of having m or more comments on the discussion,
following the process described above, at several differ-
ent ages. Regarding these results, it is clear that the like-

lihood of a larger number of events is increasing with
time.

Figures 3(b) and 3(d) show the equivalent tests for the
case of the power-law memory kernel given by Eq. (25)
with β = 0.3 and c = 0.01. Note that although there is no
closed-form expression for the expected value in Fig. 3(b),
we can determine these values directly from the distribution
function obtained through the PGF of the process. We find
the results to be in strong agreement with simulations (in
spite of the limitations of discrete-time simulations of such
dynamics [64]), therefore validating the branching process
interpretation.

One may note that the expected size of cascades shown in
Fig. 3 is not converging to a fixed value; this is due to the con-
stant background intensity, which results in some probability
of an event occurring at each point that leads to the cascades
growing, on average, without bound as suggested by Eq. (18).
If instead the background intensity is decaying with time, the
possibility of convergence on average to a fixed value is more
evident. In Fig. 4 we consider a purely self-exciting process
such that λ(t ) = ξφ(t ), specifically the same exponential
memory kernel as in Fig. 3 with ξ = 0.8 is used. Figure 4(a)
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FIG. 4. Numerical simulation of the Hawkes process over 106 realizations. (a) Mean number of events for a purely self-exciting Hawkes
process with exponential memory kernel (β = 3) and equivalent background intensity with a fitness value of ξ = 0.8. The black solid line
represents the theoretical values for the expected number of events, while the circles represent the corresponding results from simulation.
The gray dash-dotted lines indicates the 95% prediction interval, i.e., the values between which 95% of the distribution is centered at each time
point, while the colored dashed lines indicate the equivalent percentiles from simulation at three time points t = 2, 5, 8. (b) The CCDF of the
number of events at the same three time points.

shows the expected number of events and also the 95% predic-
tion intervals, i.e., the values within which we would expect
95% of ensembles appeared. The dashed color lines show the
equivalent percentiles from simulations. We note that in this
scenario these quantities converge at large time; for example,
the expected number of events tends towards 5 as Eq. (18)
indicates. Figure 4(b) shows the corresponding CCDFs at each
of the time points considered in Fig. 4(a). We also comment on
the wideness of the prediction intervals describing the process
which highlight how they are extremely heterogeneous in
comparison to the expected number of events. This highlights
the inherent stochasticity underlying processes described by
such dynamics, which further emphasizes the importance
in obtaining levels of confidence in predictions aside from
simply the expected number of events that appears to be an
insufficient predictor by itself, which is particularly important
when such methods are applied to empirical data.

III. PREDICTABILITY OF DISCUSSION POPULARITY

We now focus on the issue of predicting the time-
dependent discussion size given that its popularity has been
observed from the moment it was first created at time τ0 = 0,

until a time T , i.e., over the tree age interval [0, T ], which
we will refer to as the observation window (see Fig. 5). Let us
assume that we have observed n comments over this interval at
times {τ0, τ1, . . . , τn−1} and that we now wish to consider how
this process evolves until a new observation at time �, i.e., the
tree age interval (T,�], which we refer to as the prediction
window. Consistent with the branching process equivalence
for the Hawkes process, we may treat each of these subtrees
seeded during the observation window as independent and
we only consider what occurs in that subtree after the time
T . This means that while a comment may have resulted in
a new subtree before time T , we treat both of them inde-
pendently when they develop after time T such that at time
T we have n subtrees all of size one but with different ages
given by T − τi, where τi denotes the time when the subtree
was seeded.

As in Sec. II A, we have to consider two different types of
events. First, we have the seed which started the discussion.
Then the remaining n − 1 comments are replies to the seed
or to previous posts on the discussion. We again start by
defining G(τ, a,�; x) to be the PGF of the size distribution of
a subtree, seeded as a result of a reply at time τ to a comment
which had age a at this time, observed at time �. We are now
interested in predicting the dynamics of these n − 1 subtrees

over the time interval (T,�]. To do so, let us consider the (i + 1)th comment which was made at time τi < T and study the size
of the subtree resulting from a reply to this comment at time τ . Therefore, Eq. (6) in this case is

G(τ, a,�; x) = x exp

{
−ξ

∫ �

τ

φ(v + a − τ )[1 − G(v, 0,�; x)]dv

}
. (33)

The age of the original comment at this time will be a = τ − τi. As we are interested in considering the tree size over the entire
prediction window, we set τ = T so that

G(T, T − τi,�; x) = x exp

{
−ξ

∫ �

T
φ(v − τi )[1 − G(v, 0,�; x)]dv

}
. (34)
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FIG. 5. Schematic of the model described in Sec. III. For a given process, we observe its evolution over what we refer to as the observation
window from the time τ0 of the seed comment until a future time T . During this window we observe n = 5 events, including the seed event
itself, at times {τ0, τ1, . . . , τ4}. Our model then considers how the age of each of these events, ai = T − τi, influences the distribution of number
of events over a prediction window of length r = � − T , where � is the time at which we observe what has occurred in this window. In the
ensemble shown above, four further events took place by the observation time.

Next we define the prediction age, i.e., the length of the prediction window, as r = � − T . Similarly, letting w = � − v, we can
rewrite the function in terms of tree age to abridge notation, obtaining

G(r, T − τi; x) = x exp

{
−ξ

∫ r

0
φ(r + T − τi − w)[1 − G(w, 0; x)]dw

}
. (35)

We note that the G function within the integral, i.e., for a comment that was made during the prediction window, is exactly of
the form described by Eq. (8). The G function described by the above equation, however, has an explicit dependence on the age
of the comment when we stop observing, ai = T − τi. Thus, in order to compress notation, we define Gi(r; x) = G(r, ai; x) to
highlight the difference between trees started during the observation and prediction windows.

We must also consider replies to the seed comment over this interval. A similar line of thought allows one to see that the PGF
describing the distribution of these replies is given by

H (r; x) = x exp

{
−ξ

∫ r

0
μ(r + a0 − w)[1 − G(w, 0; x)]dw

}
, (36)

where a0 is simply the age of the discussion when we stop observing, i.e., a0 = T .
Finally, we require one more PGF to completely define the evolution of this process. We denote by I ({a0, a1, . . . , an−1}, r; x)

the PGF of total discussion tree size after a prediction window of length r, where we have observed n comments on the tree
which had ages {a0, a1, . . . , an−1} when we stopped observing (i.e., at t = T ). Therefore, it can be expressed as

I ({a0, a1, . . . , an−1}, r; x) = H (r; x)
n−1∏
i=1

Gi(r; x) (37)

= xn exp

[
−

∫ r

0

(
μ(r + a0 − w) +

n−1∑
i=1

ξφ(r + ai − w)

)
[1 − G(w, 0; x)]dw

]
, (38)

where the product of generating functions arises as we are
summing the contributions from each of the subtrees started
before time T . Note that this equation reduces to Eq. (10) in
the case where we observe only one event (n = 1), which has
age 0 when we stop observing (ai = 0) and letting t = r.

A. Mean popularity of predicted cascade size

To determine the mean tree size of such a discussion, we
can differentiate Eq. (38) and evaluate at x = 1 as in Sec. II.
This gives

mI (r) = ∂ I ({a0, a1, . . . , an−1}, r; x)

∂x

∣∣∣∣
x=1

(39)

= n +
∫ r

0

(
μ(r + a0 − w) +

n−1∑
i=1

ξφ(r + ai − w)

)

× mG(w)dw, (40)

where the n term represents the events that occurred during
the observation window and mG(w) represents the mean tree
size of prediction age r and is given by Eq. (13). Observing
that

ξ

∫ r

0
φ(r + ai − w)mG(w)dw (41)

can be written as a convolution integral in terms of the
quantity 
i(r) defined by 
i(r) = φ(r + ai ), we note that
the term in Eq. (41) has Laplace transform ξ 
̂i(s) m̂G(s).
Applying this to each term in the summation of Eq. (40) gives
the Laplace transform of mI (r) as

m̂I (s) = n

s
+ 1

s

[
�̂(s) + ∑n−1

i=1 ξ
̂i(s)

1 − ξ φ̂(s)

]
, (42)

where


̂i(s) =
∫ ∞

0
φi(r + ai )e

−rsdr (43)
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= eais

[
φ̂(s) −

∫ ai

0
φ(r̃)e−r̃sdr̃

]
, (44)

using the change of variable r̃ = r + ai. Similarly, we define
�(r) = μ(r + a0) such that

�̂(s) = ea0s

[
μ̂(s) −

∫ a0

0
μ(r̃)e−r̃sdr̃

]
. (45)

The evaluation of this transform now depends only on (a
finite) numerical integration, provided we know the Laplace
transform of both φ and μ. Thus, this approach is extremely
feasible. Furthermore, we can also determine some infor-
mation regarding the large-r behavior of the mean via the
final-value theorem to obtain

lim
r→∞ mI (r) = lim

s→0
sm̂I (s) (46)

= n +
(

�̂(0) + ξ
∑n−1

i=1 
̂i(0)

1 − ξ

)
, (47)

where by Eq. (44)


̂i(0) = 1 −
∫ ai

0
φ(r̃)dr̃ (48)

and similarly

�̂(0) = 1 −
∫ a0

0
μ(r̃)dr̃, (49)

which allows us to obtain

lim
r→∞ mI (r)

=n+
(

1 − ∫ a0

0 μ(r̃)dr̃ + ξ
∑n−1

i=1

[
1 − ∫ ai

0 φ(r̃)dr̃
]

1 − ξ

)
. (50)

1. Exponential memory with constant background intensity

We now consider, as in Sec. II B 1, the specific case of an
exponential memory function along with some constant back-
ground intensity [i.e., μ(t ) = λ0]. In this case φ(t ) = βe−βt

and therefore φ̂(s) = β

β+s . Equation (44) in this scenario is
given by


̂i(s) = eais

[
β

β + s
− β

∫ ai

0
e−β r̃ e−r̃sdr̃

]
(51)

= βe−βai

β + s
, (52)

and therefore

m̂I (s) = n

s
+ 1

s[β(1 − ξ ) + s]

[
λ0(β + s)

s
+ ξ

n−1∑
i=1

βe−βai

]
.

(53)

This allows us to write the following closed-form expression
for the expected cascade size at observation time r:

mI (r) = n + λ0

1 − ξ

[
r + ξ

β(1 − ξ )
(e−β(1−ξ )r − 1)

]

+
n−1∑
i=1

ξe−βai

1 − ξ
[1 − e−β(1−ξ )r]. (54)

Note that this equation consists of three components: (i) the
number of events we have observed at the start of the pre-
diction window n; (ii) the contribution from the background
intensity as we saw in Eq. (24), reflecting the constant back-
ground intensity; and (iii) the contribution from the events in
the cascade during the observation period. We would like to
highlight once more the fact that in the presence of λ0 	= 0, the
expected number of events increases linearly with time with a
nonzero probability of events occurring at each time step. In
contrast, we next consider a decaying background intensity.

2. Exponential background intensity and memory kernel

Suppose that the background intensity is decaying with
time such that μ(t ) = αe−αt , while the memory kernel is the
same as in the previous case, i.e., exponentially distributed
with mean time 1/β. Equation (45) is then given by

�̂(s) = αe−α(a0 )

α + s
, (55)

where a0 = T is the age of the seed comment when the
observation period ends. We can obtain the expected number
of events at time r in the prediction interval by inverting
Eq. (42),

mI (r) = n + αe−αa0

{
1

α(1 − ξ )
+ e−αr

[
α − β

α[(1 − ξ )β − α]

]

− e−α(1−ξ )r

[
ξ

(1 − ξ )(α − [1 − ξ ]β )

]}

+
n−1∑
i=1

ξ e−βai

1 − ξ
[1 − e−β(1−ξ )r]. (56)

Note that, unlike previous examples such as Eq. (54), this
quantity has a finite limit as r → ∞; this is to be expected as
there is no longer a constant probability of an event occurring
in each time step but rather a decaying probability and as such
the likelihood of events occurring after long interevent times
is significantly reduced. Thus, we may calculate the large-r
expected number of events to be

mI (∞) = n + 1

1 − ξ

[
e−αa0 +

n−1∑
i=1

e−βai

]
. (57)

B. Probability a discussion receives no further comments

In a similar fashion as in Sec. II B 2, we can calculate
the probability that the discussion tree receives no further
comments in the prediction window by time r, qn(r), as
follows:

qn(r) = lim
x→0

I ({a0, a1, . . . , an−1}, r; x)

xn
. (58)

Since qm(r) = 0 ∀ m < n, this results in

qn(r) = exp

{
−

[∫ r

0
μ(r + a0 − w)

+ ξ

n−1∑
i=1

φ(r + ai − w)dw

]}
. (59)

062311-9



O’BRIEN, ALETA, MORENO, AND GLEESON PHYSICAL REVIEW E 101, 062311 (2020)

Time

0

20

40

60

80

100
Simulated Hawkes
Theoretical Mean
95% Prediction Interval
95% Simulation

0

10

20

30

40

50

0 5 10 15 20
Time

0 5 10 15 20

N
um

be
r 

of
 E

ve
nt

s
(a) (b)

FIG. 6. Numerical simulation and theoretical results for two Hawkes processes where one realization is obtained over the interval [0,10]
before proceeding to simulate 106 ensembles based upon these events over the interval (10,20]. We show the average number of events along
with the 95% percentiles from the distribution of events at a number of time points. In addition, we show the theoretical expected number of
events and 95% prediction intervals obtained from numerical inversion of Eq. (38). (a) Case of background intensity λ0 = 1.5, fitness ξ = 0.8,
and exponential memory kernel with mean time 3 (β = 1/3). (b) Case with shifted power-law memory kernel (β = 1, c = 0.01, ξ = 0.5, and
λ0 = 1).

We can again calculate this quantity exactly in the case of
exponential memory with constant background intensity to
obtain

qn(r) = exp

{
−

[
λ0r + ξ

n−1∑
i=1

e−βai (1 + e−βr )

]}
. (60)

Note that whereas in Eq. (30) the probability of receiving no
more comments depended only on exogenous events, in this
expression we explicitly account for the endogenous events in
the history of the process prior to time T .

IV. COMPARISON OF NUMERICAL SIMULATIONS
WITH THEORY

In order to validate these expressions, as well as to test
their predictive power, we now proceed to compare them
with numerical simulations of Hawkes processes. In each
simulation we observe all events that took place before a
certain time T , i.e., at {τ0, τ1, . . . , τn−1} with τn−1 < T . Then
we predict the evolution of the discussion tree until time �,
using the PGF describing the distribution of future events from
Eq. (38), which we again invert via fast Fourier transforms as
in Sec. II C.

Figure 6 shows the case of a Hawkes processes with
constant background intensity and an exponential memory
kernel [Fig. 6(a)] or a power-law memory kernel [Fig. 6(b)].
In each case, we observe a time series of events until time
T = 10. Then we make a prediction of the dynamics until
time � = 20. Specifically, in each panel, we calculate the
ensemble average as well as the 95th percentile range, at
each time step over all ensembles. This is compared with
the theoretical expected number of events as well as the 95%
prediction interval with the information available up to time T
obtained via numeric inversion of Eq. (38) via the fast Fourier
transform method described in Sec. II B 3.

The first thing we observe is that, during the obser-
vation window, in the exponential case the frequency of

events is much more stable over time in comparison to the
bursty nature of the power-law memory kernel, which is
characterized by larger periods of inactivity followed by a
number of events over a short time interval [65,66]. We
also point out the difference between the prediction intervals
between the two distributions. Nevertheless, the agreement
in both cases between the theoretical predictions and the
numerical simulations is exceptionally good.

To determine how the age of comments at time T affects
the future popularity of the post, we generate two synthetic
time series of events for the observation period, each con-
taining ten events. Then we simulate the rest of the process
with those series acting as the history of the content and
predict the evolution using our analytical tools with results
shown in Fig. 7. In Fig. 7(a) the synthetic series consists of
equally spaced interevent times at {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
while the second sequence shown in Fig. 7(b) is such that there
are also ten events but some comments are “younger” at time
T , {0, 1, 2, 3, 5, 8, 9, 9.5, 9.6, 9.8}. Between times T and � =
20 we then proceed to simulate the Hawkes process given by
Eq. (22) with parameters β = 1/3, λ0 = 0.1, and ξ = 0.8. In
both cases, we show the theoretical mean given by Eq. (54),
the 95% prediction intervals drawn from the distribution at
each time step, and also the mean measured directly from the
distribution obtained numerically rather than the analytical
equation. As we can see, the occurrence of younger posts
when making predictions of future popularity results in larger
predicted cascade sizes, correctly matched with the results
obtained from the simulations both for the expected value and
for the upper limits of the prediction intervals.

Also shown in Figs. 7(c) and 7(d) are the corresponding
CCDFs, which are the probability of having m or more
comments on the discussion tree, at different times. Again, as
expected, the larger the age of a given tree, the more likely
it is to have received more posts. Also, the process with
younger comments by the end of the observation time has
higher probability of having more popular discussions due to
the time-decaying memory kernel.
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FIG. 7. Comparison of numerical simulations of two half-synthetic Hawkes processes with analytical results. In both cases, the constant
background activity is λ0 = 0.1 and the excitation function is given by an exponential distribution with mean time 3 (β = 1/3) and fitness
ξ = 0.8. Moreover, in both cases, we observe n = 10 events before T , although in this case these events are generated synthetically so that
(a) τ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and (b) τ = {0, 1, 2, 3, 5, 8, 9, 9.5, 9.6, 9.8}. Then the rest of the process is numerically computed and the
prediction of future events is done analytically up to time � = 20. The mean number of events is shown in (a) and (b) for the different
observation times. In (a) and (b) the circles represent the average over 106 Monte Carlo simulations, while the blue line shows the theoretical
mean calculated directly from the inversion of the PGF given by Eq. (53). Note that for this particular case of a Hawkes process we may
also obtain an analytical expression for this average through Eq. (54). We also show the 95% prediction intervals for the popularities at each
time point with the gray lines, again via inversion of Eq. (53). (c) and (d) The corresponding CCDFs for the number of events at a number
of different time points are shown, where the lines are the theoretical distributions and the circles are observed CCDFs from the numerical
simulations.

Finally, in Fig. 8 we again consider the evenly spaced ten
events prior to time T = 10 as per Fig. 7(a). In Fig. 8(a)
we explore the effect of different fitness parameters (ξ =
0.2, 0.5, 0.8) for the discussion’s future popularity, while in
Fig. 8(b) we show the probability qn(r), for each of the above
fitness values, that the tree does not receive another comment
between T and �, as given by Eq. (60). The agreement
between theory and numerical simulations is again excellent.

V. CONCLUSION

In this paper we have introduced an analytically tractable
predictive model built upon a branching process interpretation
of the most general form of the Hawkes process, namely,
where both the background intensity and the memory kernel
are arbitrary time-dependent functions. The focus on the un-
derlying branching process model is important for the general-
ity of the method: While we have considered the dynamics of

online opinion boards when describing this model, the bounds
on predictability given by the theory are applicable to a wide
range of phenomena. Examples of phenomena that can be
described by such processes include (but are not limited to)
natural catastrophes such as earthquakes [41–43,54,67], the
popularity of Youtube videos [60], criminal behavior [68],
and conversation frequency [56]. In comparison to related
works, a crucial feature of our analysis is that not only does
it give the expected number of future events but it also (in
a mathematically consistent way) bounds the predictability
in the sense of deriving the entire probability distribution of
future events. In applications, this allows the direct calculation
of not only the expected number of events but also the
entire theoretical distribution, without the need for extensive
Monte Carlo simulations to determine the time evolution
of the process. In turn, this opens the path to the develop-
ment of, possibly unsupervised, methods that could evaluate
and predict expected values (and their confidence intervals)
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FIG. 8. Simulations equivalent to the one in Fig. 7(a), i.e., with a synthetic evenly spaced series of events before T = 10, but with different
fitness values for the rest of the evolution up to time �. (a) Observed series along with the mean number of events during the prediction
window. (b) Probability of zero replies (posts) in a prediction window of length r, qn(r).

for quantities associated with self-exciting dynamics such
as cascade sizes.

The strength of this model’s predictions is, like that of all
models, limited by the accuracy of the parameters estimated
from data to describe the process. Issues regarding the esti-
mation of such parameters to describe empirical data are well
known and have been highlighted along with potential reme-
dies in numerous pieces of literature, for example, [22,45,69].
In order to apply the theory introduced in this article to a wide
range of applications, we suggest that, while beyond the scope
of the present article, future work should focus on improved
approaches in estimating parameters, which importantly may
in fact be time dependent, as suggested in this article, for both
the background intensity and/or the fitness parameter of the
memory kernel.

In summary, we believe that the theoretical approach de-
veloped in this paper creates an opportunity for more careful
prediction of cascading dynamics in online social media. The
ability to predict the entire distribution of possible future
popularity values means that confidence limits can be placed
on predictions, which should allow practitioners to better
appreciate the underlying stochasticity of human behavior
and to gain some measure of control over its influence on
dynamics. Future work will also be devoted to a better char-
acterization of real processes, such as those related to posting
on opinion boards, with the aim of learning which kind of
background intensity and kernel are best suited to described
these processes accurately and how they are correlated with
human (bursty) activity.
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APPENDIX: DERIVATION OF THE BELLMAN-HARRIS
INTEGRAL EQUATION

In this Appendix we show how the integral equation
of the well-known Bellman-Harris process [32,50,51] may
be derived via our differential equation branching process
approach. As in the classical discrete-time Galton-Watson
model, a single particle is born at time t = 0 but rather than
living for a single time unit, the particles live until an age
a, which is a random variable with distribution γ (a). From
this definition we may also determine λ(a) such that λ(a)�t
describes the probability that a particle alive at age a dies
in the age interval (a, a + �t ), or the so-called hazard rate.
At the moment of death, the particle produces k offspring or
progeny with probability pk each of which behaves exactly as
their parent, i.e., each particle is independent and identically
distributed. In the following, we will use the random variable
k through its PGF

f (x) =
∞∑

k=0

pkxk . (A1)

Due to the previous considerations, these processes are known
as age-dependent continuous-time branching processes.

We proceed, as in the main text, to define G(τ, a,�; x) to
be the PGF for the distribution of the number of particles,
observed at time �, that have lived as a result of a parent of
age a producing offspring at time τ . Note that we previously

062311-12



QUANTIFYING UNCERTAINTY IN A PREDICTIVE MODEL … PHYSICAL REVIEW E 101, 062311 (2020)

described this as the size of a tree. However, in the specific
case of the Bellman-Harris process, every particle dies at the
time of seeding a new tree. Now consider how this PGF may
change over infinitesimal time interval (τ − �t, τ ), where �t
is sufficiently small to ensure only one event at most may
occur in this interval. There are two possibilities.

(i) The parent may die with probability λ(a)�t producing a
random number k children, each of which may start their own
subtree at time τ but with age a = 0. As we are concerned
with the total number of particles to have lived in this interval
we must also count the (now deceased) parent particle through
an additional power of x in the PGF and as such the total
contribution to G(τ − �t, a − �t,�; x) is x f [G(τ, 0,�; x)].

(ii) The parent may also live, which occurs with probability
1 − λ(a)�t , and the contribution to G(τ − �t, a − �t,�; x)
in this case is simply G(τ, a,�; x).

Based on the above, the equation governing the change in
G over the time interval (τ − �t, τ ) is

G(τ − �t, a − �t,�; x)

= λ(a)x f [G(τ, 0,�; x)]�t

+ [1 − λ(a)�t]G(τ, a,�; x), (A2)

which when taking the �t → 0 limit and writing G(τ, a,�; x)
as G becomes

∂G

∂τ
+ ∂G

∂a
= λ(a){G − x f [G(τ, 0,�; x)]}. (A3)

Now, as in the main text, we use the method of characteristics
with c = τ − a (being a constant along a characteristic) to
express the change in G along a characteristic as

dG

dτ
= λ(τ − c){G − x f [G(τ, 0,�; x)]}, (A4)

which, along with the final condition G(�, a,�; x) = x, i.e.,
a tree seeded at observation time has size one, may be solved
to give

G(τ, a,�; x) = x exp

[
−

∫ �

τ

λ(w − τ + a)dw

]

+ x
∫ �

τ

exp

[
−

∫ t ′

τ

λ(w − τ + a)dw

]

× λ(t ′ − τ + a) f [G(t ′, 0,�; x)]dt ′. (A5)

Introducing the tree age t = � − τ , i.e., the time between a
tree being seeded and observed, and expressing G(τ, a,�, x)
as G(� − τ, a; x), the above equation becomes

G(t, a; x) = x exp

[
−

∫ t

0
λ(y + a)dy

]

+ x
∫ t

0
exp

[
−

∫ s

0
λ(u + a)du

]

× λ(s + a) f [G(t − s, 0; x)]ds, (A6)

where y = w − τ and s = t ′ − τ . The above equation de-
scribes the PGF for the size of a tree with tree age t seeded by
a parent of age a. Finally, as we are concerned with the total
number of particles in a given process which starts through
a single parent being born we set a = 0 (and drop the a = 0
argument from G) to obtain

G(t ; x) = x exp

[
−

∫ t

0
λ(y)dy

]
+ x

∫ t

0
exp

[
−

∫ s

0
λ(u)du

]
× λ(s) f [G(t − s; x)]ds, (A7)

which we may express as

G(t ; x) = xS(t ) + x
∫ t

0
γ (s) f [G(t − s; x)]ds, (A8)

where γ (a) describes the probability of living until age a
while S(a) = ∫ ∞

a γ (s)ds gives the probability of a particle
having a lifetime of length a or longer, which is the classical
Bellman-Harris integral equation.

On a final note, we mention that from Eq. (A8) we
may derive the governing equations for two more specific
branching processes. First, we obtain the Markovian age-
dependent branching process equation through letting λ(a) =
λ, i.e., a constant probability of death in each time inter-
val. Second, we can describe the classical Galton-Watson
branching process by ensuring each particle has a lifetime
of 1, i.e., γ (a) = δa,1, a Dirac delta function with mass
at a = 1.

[1] P. Lorenz-Spreen, B. Mønsted, P. Hövel, and S. Lehmann,
Accelerating dynamics of collective attention, Nat. Commun.
10, 1759 (2019).

[2] K. E. Matsa and E. Shearer, News use across social media
platforms 2018, https://www.journalism.org/2018/09/10/news-
use-across-social-media-platforms-2018/

[3] H. Kwak, C. Lee, H. Park, and S. Moon, Proceedings of the
19th International Conference on World Wide Web (ACM, New
York, 2010), pp. 591–600.

[4] A. N. Medvedev, R. Lambiotte, and J.-C. Delvenne, in Dynam-
ics On and Of Complex Networks III: Machine Learning and
Statistical Physics Approaches, edited by F. Ghanbarnejad, R. S.
Roy, F. Karimi, J.-C. Delvenne, and B. Mitra (Springer Nature,
Cham, 2017), pp. 183–204.

[5] P. Aragón, V. Gómez, and A. Kaltenbrunner, Proceedings of
the Eleventh International AAAI Conference on Web and Social
Media, Québec, 2017 (AAAI, Palo Alto, 2017).

[6] S. Vosoughi, D. Roy, and S. Aral, The spread of true and false
news online, Science 359, 1146 (2018).

[7] S. Goel, A. Anderson, J. Hofman, and D. J. Watts, The structural
virality of online diffusion, Manag. Sci. 62, 180 (2016).

[8] K. Lerman and R. Ghosh, Proceedings of the Fourth Interna-
tional AAAI Conference on Weblogs and Social Media, Wash-
ington, DC, 2010 (AAAI, Menlo Park, 2010).

[9] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and
J. Leskovec, Proceedings of the 23rd International Con-
ference on World Wide Web (ACM, New York, 2014),
pp. 925–936.

062311-13

https://doi.org/10.1038/s41467-019-09311-w
https://www.journalism.org/2018/09/10/news-use-across-social-media-platforms-2018/
https://doi.org/10.1126/science.aap9559
https://doi.org/10.1287/mnsc.2015.2158


O’BRIEN, ALETA, MORENO, AND GLEESON PHYSICAL REVIEW E 101, 062311 (2020)

[10] J. M. Miotto and E. G. Altmann, Predictability of extreme
events in social media, PLoS ONE 9, e111506 (2014).

[11] L. Weng, F. Menczer, and Y.-Y. Ahn, Virality prediction and
community structure in social networks, Sci. Rep. 3, 2522
(2013).

[12] R. Bandari, S. Asur, and B. A. Huberman, Proceedings of the
Sixth International AAAI Conference on Weblogs and Social
Media, Dublin, 2012 (AAAI, Palo Alto, 2012).

[13] G. Szabo and B. A. Huberman, Predicting the popularity of
online content, Commun. ACM 53, 80 (2010).

[14] S. Mishra, M.-A. Rizoiu, and L. Xie, Proceedings of the 25th
ACM International on Conference on Information and Knowl-
edge Management (ACM, New York, 2016), pp. 1069–1078.

[15] J. P. Gleeson, J. A. Ward, K. P. O’Sullivan, and W. T. Lee,
Competition-Induced Criticality in a Model of Meme Popular-
ity, Phys. Rev. Lett. 112, 048701 (2014).

[16] J. P. Gleeson, K. P. O’Sullivan, R. A. Baños, and Y. Moreno,
Effects of Network Structure, Competition and Memory Time
on Social Spreading Phenomena, Phys. Rev. X 6, 021019
(2016).

[17] J. D. O’Brien, I. K. Dassios, and J. P. Gleeson, Spreading of
memes on multiplex networks, New J. Phys. 21, 025001 (2019).

[18] L. Weng, A. Flammini, A. Vespignani, and F. Menczer, Compe-
tition among memes in a world with limited attention, Sci. Rep.
2, 335 (2012).

[19] B. Morrissey, Clients try to manipulate ‘unpredictable’ viral
buzz, Adweek, 19 March 2007.

[20] R. Van der Lans and G. van Bruggen, in The Connected
Customer: The Changing Nature of Consumer and Busi-
ness Markets, edited by S. Wuyts, M. G. Dekimpe, E.
Gijsbrechts, and R. Pieters (Routledge, New York, 2010),
pp. 257–282.

[21] R. Van der Lans, G. Van Bruggen, J. Eliashberg, and
B. Wierenga, A viral branching model for predicting the
spread of electronic word of mouth, Market. Sci. 29, 348
(2010).

[22] D. J. Daley and D. Vere-Jones, An Introduction to the Theory
of Point Processes: Volume I: Elementary Theory and Methods,
2nd ed., Probability and Its Applications (Springer, New York,
2003).

[23] K. Lerman, R. Ghosh, and T. Surachawala, Social contagion:
An empirical study of information spread on Digg and Twitter
follower graphs, arXiv:1202.3162.

[24] P. A. Dow, L. A. Adamic, and A. Friggeri, Proceedings of the
Seventh International AAAI Conference on Weblogs and Social
Media, Cambridge, 2013 (AAAI, Palo Alto, 2013).

[25] A. N. Medvedev, J.-C. Delvenne, and R. Lambiotte, Modelling
structure and predicting dynamics of discussion threads in
online boards, J. Complex Netw. 7, 67 (2019).

[26] A. G. Hawkes, Spectra of some self-exciting and mutually
exciting point processes, Biometrika 58, 83 (1971).

[27] Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J.
Leskovec, Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (ACM,
New York, 2015), pp. 1513–1522.

[28] R. Kobayashi and R. Lambiotte, Proceedings of the Tenth Inter-
national AAAI Conference on Web and Social Media, Cologne,
2016 (AAAI, Palo Alto, 2016).

[29] R. Krohn and T. Weninger, Modelling online comment threads
from their start, arXiv:1910.08575.

[30] M.-A. Rizoiu, L. Xie, S. Sanner, M. Cebrian, H. Yu, and P. Van
Hentenryck, Proceedings of the 26th International Conference
on World Wide Web (ACM, New York, 2017), pp. 735–744.

[31] J. L. Iribarren and E. Moro, Impact of Human Activity Patterns
on the Dynamics of Information Diffusion, Phys. Rev. Lett. 103,
038702 (2009).

[32] J. L. Iribarren and Esteban Moro, Branching dynamics of viral
information spreading, Phys. Rev. E 84, 046116 (2011).

[33] C. G. Bowsher, Modelling security market events in continu-
ous time: Intensity based, multivariate point process models,
J. Econom. 141, 876 (2007).

[34] E. Bacry, I. Mastromatteo, and J.-F. Muzy, Hawkes pro-
cesses in finance, Market Microstruct. Liquidity 1, 1550005
(2015).

[35] E. Bacry and J.-F. Muzy, Hawkes model for price and trades
high-frequency dynamics, Quant. Finance 14, 1147 (2014).

[36] P. Embrechts, T. Liniger, and L. Lin, Multivariate Hawkes
processes: An application to financial data, J. Appl. Probab. 48,
367 (2011).

[37] M. Rambaldi, P. Pennesi, and F. Lillo, Modeling foreign ex-
change market activity around macroeconomic news: Hawkes-
process approach, Phys. Rev. E 91, 012819 (2015).

[38] Y. Aït-Sahalia, J. Cacho-Diaz, and R. J. A. Laeven, Modeling
financial contagion using mutually exciting jump processes,
J. Financ. Econ. 117, 585 (2015).

[39] V. Pernice, B. Staude, S. Cardanobile, and S. Rotter, How
structure determines correlations in neuronal networks, PLoS
Comput. Biol. 7, e1002059 (2011).

[40] F. Gerhard, M. Deger, and W. Truccolo, On the stability and dy-
namics of stochastic spiking neuron models: Nonlinear Hawkes
process and point process GLMs, PLoS Comput. Biol. 13,
e1005390 (2017).

[41] Y. Ogata, Statistical models for earthquake occurrences and
residual analysis for point processes, J. Am. Stat. Assoc. 83,
9 (1988).

[42] Y. Ogata, Space-time point-process models for earthquake oc-
currences, Ann. Inst. Stat. Math. 50, 379 (1998).

[43] A. Saichev and D. Sornette, Universal Distribution of In-
terearthquake Times Explained, Phys. Rev. Lett. 97, 078501
(2006).

[44] R. Shcherbakov, J. Zhuang, G. Zöller, and Y. Ogata, Fore-
casting the magnitude of the largest expected earthquake, Nat.
Commun. 10, 1 (2019).

[45] M.-A. Rizoiu, Y. Lee, S. Mishra, and L. Xie, Frontiers of
Multimedia Research (ACM, New York, 2017), pp. 191–218.

[46] A. Saichev and D. Sornette, Fertility heterogeneity as a mecha-
nism for power law distributions of recurrence times, Phys. Rev.
E 87, 022815 (2013).

[47] T. Hogg and K. Lerman, Social dynamics of Digg, EPJ Data
Sci. 1, 5 (2012).

[48] F. Wu and B. A. Huberman, Novelty and collective attention,
Proc. Natl. Acad. Sci. USA 104, 17599 (2007).

[49] H. S. Wilf, Generatingfunctionology (Elsevier, New York,
2013).

[50] K. B. Athreya and P. E. Ney, Branching Processes (Springer
Science + Business Media, New York, 2013).

[51] T. E. Harris, The Theory of Branching Processes (Courier,
Chelmsford, 2002).

[52] R. Haberman, Elementary Applied Partial Differential Equa-
tions (Prentice Hall, Englewood Cliffs, 1983), Vol. 987.

062311-14

https://doi.org/10.1371/journal.pone.0111506
https://doi.org/10.1038/srep02522
https://doi.org/10.1145/1787234.1787254
https://doi.org/10.1103/PhysRevLett.112.048701
https://doi.org/10.1103/PhysRevX.6.021019
https://doi.org/10.1088/1367-2630/ab05ef
https://doi.org/10.1038/srep00335
https://doi.org/10.1287/mksc.1090.0520
http://arxiv.org/abs/arXiv:1202.3162
https://doi.org/10.1093/comnet/cny010
https://doi.org/10.1093/biomet/58.1.83
http://arxiv.org/abs/arXiv:1910.08575
https://doi.org/10.1103/PhysRevLett.103.038702
https://doi.org/10.1103/PhysRevE.84.046116
https://doi.org/10.1016/j.jeconom.2006.11.007
https://doi.org/10.1142/S2382626615500057
https://doi.org/10.1080/14697688.2014.897000
https://doi.org/10.1017/S0021900200099344
https://doi.org/10.1103/PhysRevE.91.012819
https://doi.org/10.1016/j.jfineco.2015.03.002
https://doi.org/10.1371/journal.pcbi.1002059
https://doi.org/10.1371/journal.pcbi.1005390
https://doi.org/10.1080/01621459.1988.10478560
https://doi.org/10.1023/A:1003403601725
https://doi.org/10.1103/PhysRevLett.97.078501
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1103/PhysRevE.87.022815
https://doi.org/10.1140/epjds5
https://doi.org/10.1073/pnas.0704916104


QUANTIFYING UNCERTAINTY IN A PREDICTIVE MODEL … PHYSICAL REVIEW E 101, 062311 (2020)

[53] A. G. Hawkes and D. Oakes, A cluster process represen-
tation of a self-exciting process, J. Appl. Probab. 11, 493
(1974).

[54] K. Ogata, Modern Control Engineering, 4th ed. (Prentice-Hall,
Upper Saddle River, 2002).

[55] E. Lewis, G. Mohler, P. J. Brantingham, and A. L. Bertozzi,
Self-exciting point process models of civilian deaths in Iraq,
Security J. 25, 244 (2012).

[56] N. Masuda, T. Takaguchi, N. Sato, and K. Yano, in Temporal
Networks, edited by P. Holme and J. Saramäki (Springer Na-
ture, Cham, 2013), pp. 245–264.

[57] T. Aoki, T. Takaguchi, R. Kobayashi, and R. Lambiotte, Input-
output relationship in social communications characterized by
spike train analysis, Phys. Rev. E 94, 042313 (2016).

[58] D. Oakes, The Markovian self-exciting process, J. Appl.
Probab. 12, 69 (1975).

[59] D. Sornette, F. Deschâtres, T. Gilbert, and Y. Ageon, Endoge-
nous Versus Exogenous Shocks in Complex Networks: An
Empirical Test Using Book Sale Rankings, Phys. Rev. Lett. 93,
228701 (2004).

[60] R. Crane and D. Sornette, Robust dynamic classes revealed by
measuring the response function of a social system, Proc. Natl.
Acad. Sci. USA 105, 15649 (2008).

[61] H.-H. Jo, J. I. Perotti, K. Kaski, and J. Kertész, Correlated bursts
and the role of memory range, Phys. Rev. E 92, 022814 (2015).

[62] J. K. Cavers, On the fast Fourier transform inversion of prob-
ability generating functions, IMA J. Appl. Math. 22, 275
(1978).

[63] J. Abate and W. Whitt, The Fourier-series method for inverting
transforms of probability distributions, Queueing Syst. 10, 5
(1992).

[64] P. G. Fennell, S. Melnik, and J. P. Gleeson, Limitations of
discrete-time approaches to continuous-time contagion dynam-
ics, Phys. Rev. E 94, 052125 (2016).

[65] A.-L. Barabasi, The origin of bursts and heavy tails in human
dynamics, Nature (London) 435, 207 (2005).

[66] M. Karsai, H.-H. Jo, and K. Kaski, Bursty Human Dynamics
(Springer, Berlin, 2018).

[67] A. Helmstetter and D. Sornette, Subcritical and supercriti-
cal regimes in epidemic models of earthquake aftershocks,
J. Geophys. Res. 107, 10 (2002).

[68] G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg,
and G. E. Tita, Self-exciting point process modeling of crime,
J. Am. Stat. Assoc. 106, 100 (2011).

[69] J. G. Rasmussen, Bayesian inference for Hawkes processes,
Methodol. Comput. Appl. Probab. 15, 623 (2013).

062311-15

https://doi.org/10.2307/3212693
https://doi.org/10.1057/sj.2011.21
https://doi.org/10.1103/PhysRevE.94.042313
https://doi.org/10.2307/3212408
https://doi.org/10.1103/PhysRevLett.93.228701
https://doi.org/10.1073/pnas.0803685105
https://doi.org/10.1103/PhysRevE.92.022814
https://doi.org/10.1093/imamat/22.3.275
https://doi.org/10.1007/BF01158520
https://doi.org/10.1103/PhysRevE.94.052125
https://doi.org/10.1038/nature03459
https://doi.org/10.1029/2001JB001580
https://doi.org/10.1198/jasa.2011.ap09546
https://doi.org/10.1007/s11009-011-9272-5

