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Abstract
The establishment of new collaborations among scientists fertilizes the scientific
environment, fostering novel discoveries. Understanding the dynamics driving the
development of scientific collaborations is thus crucial to characterize the structure
and evolution of science. In this work, we leverage the information included in
publication records and reconstruct a categorical multiplex networks to improve the
prediction of new scientific collaborations. Specifically, we merge different
bibliographic sources to quantify the prediction potential of scientific credit,
represented by citations, and common interests, measured by the usage of common
keywords. We compare several link prediction algorithms based on different dyadic
and triadic interactions among scientists, including a recently proposed metric that
fully exploits the multiplex representation of scientific networks. Our work paves the
way for a deeper understanding of the dynamics driving scientific collaborations, and
validates a new algorithm that can be readily applied to link prediction in systems
represented as multiplex networks.

Keywords: Scientific collaboration networks; Computational social science; Link
prediction

1 Introduction
One of the main drivers of scientific discoveries is the establishment of new collaborations
among researchers. The collision of different scientific trajectories, even if they belong to
the same research area, brings together different methods, concepts, and ideas, fostering
the ideal environment for scientific creativity. Understanding the dynamics that drives the
development of scientific collaborations is thus pivotal to characterize the structure and
evolution of science [1]. In this endeavour, two factors play a crucial role. On the one hand,
the digitalization of large scale bibliographic databases has provided comprehensive data
sets of publication records including research from all disciplines, without geographical
limits. By leveraging on these databases [2], researchers have pictured the structure of dif-
ferent research fields [3, 4], measured the emergence of new interdisciplinary areas [5, 6],
mapped the evolution of scientific interests [7, 8], and characterized scientific productivity
at the individual and geographical level [9–12]. On the other hand, network science [13]
has been established as the main tool to analyze and model cooperation in science. Since
the seminal work by Newman [14], scientific collaborations are represented in the form of
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a network, where nodes stand for scientists and a link between two nodes is drawn if two
scientists have co-authored a paper together.

Forecasting a new collaboration translates, within the network science domain, into a
link prediction problem [15], a prolific area of network research with applications rang-
ing from detecting hidden links in economic networks [16] to enhancing user experience
in online social platforms [17]. Many link prediction algorithms are based on similarity
measures computed on the node attributes, i.e. two nodes are likely to be linked if they are
similar with respect to certain features [18]. In social networks, one of the most successful
similarity metrics for link prediction is the presence of common neighbors between two
nodes, e.g. a new friendship on Facebook can be recommended on the basis of the number
of common friends shared [19, 20]. Despite its simplicity, this concept has proven to be
quite successful for link prediction in scientific collaboration networks [21, 22]. Moving
from this simple approach, several attempts have been made to improve the prediction of
collaborations by incorporating additional layers of data, for instance, by adding informa-
tion about the organization the authors work at [23], topical interest [24], time at which
collaborations are established [25], offline relationships among employees of the same uni-
versity [26], weights of the collaboration links [27] or journal information [28]. However,
in most of these approaches, the scores are computed individually for each set of data and
then aggregated into a unique score, possibly after associating a specific weight to each
set.

In this paper, we merge different bibliographic sources to leverage the whole informa-
tion included in publication records to improve the prediction of new collaborations. To
this aim, we reconstruct a multiplex network [29, 30] in which nodes represent scientists
and different kinds of relations among them are encoded in different layers, i.e., a given re-
lational category corresponds to a layer, see Fig. 1(A). In particular, we focus on scientific
credit, represented by citations, and common interests, measured by the usage of common
keywords, to predict new collaborations. We compare several link prediction algorithms
based on different dyadic and triadic interactions between scientists. We also consider a
recently proposed metric for link prediction in multiplex networks, based on a generaliza-
tion of the Adamic-Adar method for single-layered networks [31], able to fully exploit the
multiplex representation of scientific networks. We show that scientific credit and com-
mon scientific interests can be predictive of new collaborations between scientists.

2 Data
Our dataset is composed by merging two different bibliographical sources. First, the
American Physical Society (APS) database, including authors’ names, publication date and
references of over 400,000 papers published from 1893 to 2009 [32]. Here we considered
the disambiguated dataset published in Ref. [12]. Second, the ArnetMiner database [33],
containing title, authors’ list, publication year and keywords for almost 155 billion pa-
pers belonging to multiple research fields. From this dataset, we select only those papers
present in the APS dataset, by matching the DOI number. Our final dataset is composed,
for each paper, by the list of authors with their affiliations, the list of keywords associ-
ated to the paper, and the papers cited as references. Before analyzing the data, we apply a
cleaning procedure to the information related to keywords, see Additional file 1 for details.

We then reconstruct a scientific weighted multiplex network [34], where nodes repre-
sent scientists and different layers account for different interactions among them: collab-
orations, common interests, and scientific credit, see Fig. 1(A). A first layer (c) represents
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Figure 1 Prediction of new collaborations usingmultiplex networks. We first build a multiplex network using
three different kinds of relational data between scientists (panel A) and then use two of them (panel B) to
predict new collaborations among them. See the text for further details

collaborations and it corresponds to a classical co-authorship network: two authors are
linked if they published at least a paper together. A second layer (r) represents scientific
credit, measured by references or citations: a link from author u to author v indicates that
u cited at least one paper from v. Lastly, the third layer (k) represents common scientific
interests, which can be measured by the usage of common keywords: two authors are con-
nected if, out of all the keywords they have ever used, they have at least one in common.
The collaboration and keyword layers are formed by undirected links, while the reference
layer includes directed interactions. Finally, the weight wα

uv of a link represents the number
of co-authored papers (α = c), citations (α = r), or common keywords (α = k) between two
authors u and v.

We consider two subsequent time intervals, first an interval over which link prediction
algorithms will be trained, corresponding to a training network with all authors who pub-
lished a paper between t0 and t1, and a test interval for testing the predictions of new
collaborations, including all authors active between t1 and t2. We then consider the pre-
diction of new links in a subset of nodes of these networks, which we name Core, cor-
responding to the authors that have at least kmin edges in the collaboration layer, i.e., a
minimum number of co-authors equal to kmin both in the training and test intervals. This
choice is to ensure authors to be active in both intervals, as it is common practice in link
prediction problems on social networks [15]. In order to reduce the computational com-
plexity of the prediction algorithms, we restrict our analysis to only papers published in
Physical Review Letters (PRL) between t0 = 1994 and t2 = 2005, split at t1 = 2000, see Ad-
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Table 1 Properties of the different layers of the scientific networks and the Core over which link
prediction is computed. We show the number of nodes N, the total weightW =

∑
ijα wα

ij , the
average degree 〈k〉, the overlap between the collaboration layer and the other layers, and the global
clustering coefficient C. The overlap is defined as the fraction of links in the collaboration layer that
are also present in citations layer or keyword layers

Network N W 〈k〉 Overlap C

Collaborations layer 24,366 78,082 5.42 – 0.5
Citations layer 24,366 275,260 8.9 0.33 0.24
Keywords layer 24,366 28,872,677 1998 1 0.44
Core 5944 17,635 4.27 – 0.45

ditional file 1 for details on how we choose the intervals. The resulting scientific multiplex
network thus includes only authors, citations, and keywords related to papers published
in PRL and is composed by N = 24,366 authors. By setting kmin = 3, the Core set for link
prediction is composed by 5944 nodes, while the number of new links to be predicted is
equal to Ep = 7563. In Additional file 1, we show results for link prediction with a Core
obtained by setting kmin = 5. Table 1 reports several properties of the different layers of
the scientific multiplex network and the Core over which link prediction is computed. In
particular, note that the keyword layer is denser than the others.

3 Link prediction algorithms
To determine if the information provided by the citation and keyword layers is actually
useful to predict the appearance of new links in the collaboration layer (see Fig. 1B), we
propose several novel metrics based on the similarity between nodes in these layers.

First, we consider metrics based on dyadic interactions between scientists, that is, to
predict a new collaboration between nodes u and v (i.e., a new u – v link in the collabora-
tion layer), we consider links between nodes u and v in different layers. For instance, we
consider Mutual Citations (MC): if two authors mutually cite each other, it might be more
likely for them to collaborate. The MC score between nodes u and v is defined simply as
the weight of the link between u and v in the citation layer,

MC(u, v) = wr
uv. (1)

Similarly, we consider Common Keywords (CK ): if two authors show common scientific
interests, using the same set of keywords, the chances that they collaborate in the future
should be higher than if they did not have common interests. Thus, the CK score between
nodes u and v can be expressed as the weight of a link between u and v in the keyword
layer,

CK(u, v) = wk
uv. (2)

For each case, we also define a normalized variant. The Normalized Mutual Citations
(NMC) score normalizes the number of citations between two authors by the total cita-
tions received by each of them. The idea is that mutual citations between very popular
scientists (who attract many citations in general) should count less than mutual citations
between scientists receiving less citations. The NMC is thus defined as

NMC(u, v) =
wr

uv
sr

u
+

wr
vu

sr
v

, (3)
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where sr
u =

∑
v wr

vu is the total number of citations received by u, corresponding to the
total incoming strength. Note that this metric considers the directed citation network,
explicitly differentiating between incoming and outgoing citations. The last dyadic metric
considered is the Normalized Common Keywords (NCK ), computed as

NCK(u, v) =
wk

uv
max(Ku, Kv)

, (4)

where Ku is the keyword list used by node u. Here, the idea is that authors using more
keywords than others are more likely to share keywords with someone else.

Next, we consider metrics based on triadic closure. That is, to predict a new u – v link in
the collaboration layer, we consider triangles involving nodes u and v in different layers.
The most common and successful method of this class has been developed by Adamic and
Adar (AA) [19]. The AA score between nodes u and v is given by counting their common
neighbors w weighted by the inverse of the logarithm of their degree. In this way, more
active authors, which are more likely to be common neighbors of a given pair of nodes,
weight less in the AA score. In a multiplex network, the AA score could be applied to
different layers, i.e. considering neighbors also in layers different from the one where new
links are predicted. Therefore, the AA score computed by counting neighbors in layer α

can be defined as

AAα(u, v) =
∑

w∈�α (u)∩�α (v)

1
ln(kα

w)
, (5)

where �α(u) represents the set of neighbors of node u in layer α and kα
w = |�α(w)| is the

degree of node w in layer α. By applying Eq. (5) to the collaboration layer (α = c), one has
the classical AA score for collaboration networks, AAc: two scientists are more likely to
collaborate if they share many common collaborators. Equation (5) can also be applied
to the citation (α = r) or keyword (α = k) layer, the rationale being that two scientists are
more likely to collaborate if they cite the same set of authors (AAr score for the citation
layer), or have similar scientific interests (AAk score for the keyword layer). Note that in
all cases, the common neighbors of u and v can be both in the Core and outside it.

Finally, we consider a recently proposed generalization of the AA score [19] to multiplex
networks, which takes into account all possible triadic closures in multiplex networks [31].
The MAA score for the prediction of a link between nodes u and v in the collaboration
layer c is defined as

MAA(u, v) =
∑

α,β

∑

w∈Tαβ

ηcαηcβ
√〈k〉α〈k〉β

1
√

ln(kα
w) ln(kβ

w)
, (6)

where Tαβ are different kinds of triadic relations among three nodes u, v and w [31]. While
the link u – v to be predicted is in the collaboration layer, the other two links u – w and
v – w may lay in any layer. For instance, one link u – w in the collaboration layer (α = c)
and the other link v – w in the citation (β = r) or keyword (β = k) layer, or one link u – w
in the citation layer (α = r) and the other link v – w in the keyword (β = k) layer. The
coefficients ηcα and ηcβ before each term control the relative weight of each type of triadic
closure in the total score of the link, thus ηcα corresponds to the weight of layer α, with
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∑
α ηcα = ηcc + ηcr + ηck = 1. The case ηcc = 1, ηcr = ηck = 0, corresponds to the classical

AAc score on collaboration networks, while ηcr = 1 (ηck = 1) corresponds to the AAr (AAk)
score applied to the citation (keyword) layer, see Fig. 1 for a schematic illustration of this
process.

4 Results
The quality of link prediction algorithms is usually evaluated by the Receiver Operat-
ing Characteristics (ROC) curve, with the corresponding Area Under the Curve (AUC)
value. However, due to the limited amount of links present in a network, the AUC of any
similarity-based link prediction algorithm is bounded [31, 35]. For this reason, we also
consider the Precision of different scores, computed as n∗/n, where n is the number of
new links that we want to predict and n∗ is the amount of correct predictions among the
top n links.

As a first step, we explore the coefficients ηcα of the MAA metric to find the combina-
tion that maximizes the prediction of new collaborations. Figure 2 shows the AUC and
Precision of the MAA metric, given by Equation (6), as a function of the coefficients ηcα .
Figure 2(a) shows that the AUC value has an important contribution from triads involving
the citations and keywords layers, as shown by the discontinuity for ηcc < 1. This result is
consistent with the fact that citations and keywords relationships contribute to increase
the amount of information carried by the collaboration layer, see Table 2. The Precision
is maximum for ηck = 0.05 and ηcr = 0.1 (see Fig. 2(b)), showing that the contribution of
the collaboration layer is important to keep high precision. Next, we compare other scores
with the MAA metric with this combination of coefficients.

Table 2 shows the Precision and AUC values obtained for all proposed metrics, together
with the theoretical bounds of the AUC. Interestingly, the AAc score (classical AA met-
ric for collaboration networks) has an AUC value quite close to the random one, but the
second highest Precision after the MAA score. This reflects the fact that, even though the
heuristic behind the AAc metric seems to be a good proxy of the real dynamics, the limited
amount of information hinders the prediction process. On the other hand, the keywords
layer is the densest one and thus it carries much more information than the others, yield-
ing a larger theoretical maximum for the AUC of the metrics based on this layer, such

Figure 2 AUC and Precision values of the MAAmetric for different values of the coefficients ηcα . Varying the values
of ηcr and ηck , the third parameter ηcc is naturally fixed
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Table 2 Precision and AUC values obtained for different metrics proposed, with the theoretical
bounds of the AUC. We consider dyadic metrics given by Eqs (1)–(4), triadic closure given by the AA
metric, Eq. (5), applied to each layer (AAc , AAr , and AAk ), to the aggregated network (AAa), and the
MAA score given by Eq. (6), with coefficients ηck = 0.05 and ηcr = 0.1 which maximize both AUC and
Precision (see Fig. 2). Note that dyadic (MC, NMC, CK , and NCK ) and triadic (based on AA) methods
use different amount of information, so the theoretical bounds for the AUC are different

Method Precision AUC AUC [worst–best]

Random 4.3 · 10–4 0.5 [0.50–0.50]

MC 0.025 0.5421 [0.5420–0.5422]
NMC 0.023 0.5422 [0.5420–0.5422]
CK 0.012 0.6648 [0.6082–0.6952]
NCK 0.005 0.6618 [0.6082–0.6952]

AAc 0.041 0.5635 [0.5633–0.5636]
AAr 0.017 0.6361 [0.6282–0.6393]
AAk 0.006 0.6481 [0.0171–0.9951]
AAa 0.006 0.6495 [0.0147–0.9971]

MAA (all triads) 0.042 0.7620 [0.0147–0.9971]

as the CK , NCK , and AAk scores. However, the Precision of these scores is not as good
as other metrics, indicating that sharing keywords is not such a good descriptor of the
dynamics behind establishing new collaborations. Note that the AA score applied to the
aggregated, single-layered network given by the projection of all layers onto a single layer
(AAa) is indistinguishable from the AAk score, given that the projected network is domi-
nated by the keywords layer. Metrics based on the citation layer show a behavior between
the other two: the citation layer carries less information than the keyword layer but more
than the collaboration one. Therefore, the AUC value of the AAr method is larger than
the AUC of the AAc. Note, however, that dyadic metrics such as the MC and NMC scores
have a much lower AUC (also lower than the AAc score), even if they show a slightly larger
Precision. This indicates that simple dyadic metrics cannot outperform scores based on
triadic closures with respect to citations. Finally, the MAA metric given by Equation (6)
with coefficients ηck = 0.05 and ηcr = 0.1, which maximize both AUC and Precision, has a
much larger AUC and Precision than all other single layered metrics.

The detailed ROC of different dyadic and triadic scores are showed in Fig. 3. Note that
the curves obtained by normalized scores (NMC and NCK) are not shown, since they
exactly overlap the corresponding ROC for non-normalized scores (MC and CK, respec-
tively), indicating that the normalization factor has no effect. Also, the ROC obtained by
applying the AA score to the aggregated network, AAa, is equivalent to the ROC of the
AAk score, and thus it is not shown, for clarity. This behavior is also confirmed by the
AUC values reported in Table 2. Figure 3 unveils that the ROC curve of the MAA metric
given by Eq. (6), with coefficients ηcα that maximize the AUC, clearly outperforms all other
metrics. Finally, Fig. 3 clearly shows the point of the ranking beyond which only scoreless
links remain, and thus the curves start to follow a linear trend. This point is different for
different metrics and it is responsible for the theoretical bounds of the AUC indicated in
Table 2. Consistently with this behavior, the only curves that do not show such inflection
points are the ones corresponding to the metrics with no theoretical bounds on the AUC,
namely the AAk , AAa, and MAA scores.
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Figure 3 ROC curves corresponding to dyadic metrics, AA single-layered scores, and the MAAmetric. In solid lines,
MC, CK and MAA scores. The MAAmetric obtained with coefficients ηck = 0.05 and ηcr = 0.1 shows the best
performance of the whole set of metrics. The single-layer versions of the AA metric are shown in dashed
(collaboration layer), dot-dashed (citation layer) and dotted (keywords layer) lines. The normalized metrics
(NMC and NCK ) completely overlap their non-normalized counterparts, and thus are removed for clarity.
Similarly, the AAmetric applied over the aggregated network (not shown) completely overlaps with the AAk
curve, showing that the main contribution in the aggregated network comes from the keywords layer

5 Conclusions
To sum up, we have shown that scientific credit and common scientific interests can be
predictive of new collaborations between scientists. For this purpose, we reconstructed a
dataset of publication records by merging different bibliographic sources, including key-
words that indicate the topics of papers. We represent this dataset as a multiplex network,
in which each layer encodes a different kind of interaction, directed or undirected. Next,
we compare several link prediction algorithms, based on different dyadic and triadic in-
teractions between scientists. Our findings show that metrics based on triadic closure
generally outperform simpler dyadic scores, and that the contributions of different layers
are bounded by the amount of information available in each layer. For this reason, the best
results, both in terms of Precision and AUC, are obtained by combining the information
present in different layers by means of the Multiplex Adamic-Adar score [31], that fully
exploits the multiplex nature of the scientific networks reconstructed here.

The coefficients that maximize the Multiplex Adamic-Adar metric indicate how the in-
formation structured in the multiplex network can be optimized for the prediction of new
scientific collaborations. In this regard, one can notice that the major contribution is given,
as expected, by the collaboration layer, while contributions from citation and keywords
layers are smaller. For the keyword layer, this is due to its large density, that improves
AUC but may reduce Precision. A possible improvement to the prediction of new collab-
orations could thus be given by a smaller, more precise set of keywords able to better map
the different fields of Physics [8]. In future works, it would be interesting to incorporate ad-
ditional information from publication records into the scientific multiplex network, such
as institutional affiliations and geographical locations, to see if these features are predic-
tive of new collaborations. While in this work we predict new collaborations only within
the field of Physics due to the computational complexity of link prediction algorithms, the
dataset presented and the prediction metrics proposed here can be applied beyond the
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Physics field, which will enable getting further insights and a better understanding of the
differences across scientific fields.
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