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Abstract. Social media and online networks have enabled discussions
between users at a planetary scale on controversial topics. However, in-
stead of seeing users converging to a consensus, they tend to partition
into groups holding diametric opinions. In this work we propose an opin-
ion dynamics model that starts from a given graph topology, and updates
in each iteration both the opinions of the agents, and the listening struc-
ture of each agent, assuming there is confirmation bias. We analyze our
model, both theoretically and empirically, and prove that it generates a
listening structure that is likely to be polarized. We show a novel ap-
plication of our model, specifically how it can be used to find polarized
niches across different Twitter layers. Finally, we evaluate and compare
our model to other polarization models on various synthetic datasets,
showing that it yields equilibria with unique characteristics, including
high polarization and low disagreement.

1 Introduction

Nowadays opinions are increasingly shaped by online interactions that take
place on social media platforms, including Facebook, Twitter, Reddit, Insta-
gram among others. Users are exposed to a diversity of opinions at a planetary
scale, and to authoritative sources of information. However, instead of observing
a convergence of opinions on important social topics, we observe an increas-
ing amount of polarization [24], and the widespread of misinformation [4]. We
observe that users cluster into groups with diametrically opposite opinions on
numerous important social issues such as gun control, and vaccination against
COVID-19. The negative implications of this phenomenon can be devastating,
leading to a widening political divide, conflict, and radicalization [8]. Further-
more, polarization facilitates the spread of misinformation [7]. One of the roots of
evil behind the polarization phenomenon is a human cognitive bias, confirmation
bias. Specifically, biased assimilation or confirmation bias is the phenomenon ac-
cording to which individuals process new information in a biased way towards
existing beliefs, or expectations. Lord et al. have shown that two people with
initially different opinions/conflicting views can examine the same evidence and
find reasons to increase the strength of their existing opinions [25]. The groups
of users with homogeneous opinions are also known as echo chambers [10].
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Understanding how polarization and echo chambers naturally emerge on so-
cial media, is a subject of paramount importance, and of interest to a diverse
group of researchers, in sociology, economics, and computer science. In recent
years, numerous polarizing opinion dynamics models [6, 12,15,19,22] have been
proposed. In this work, we propose a simple model of opinion dynamics that
extends the model of opinion dynamics used by Abebe et al. [3], that extends
the classic work of Friedkin and Johnsen [13,17]. Our model is iterative (i.e., dis-
crete time), and initially starts with a directed network structure G of n agents
with confirmation bias that have an initial opinion on a given topic. We also
assume that arcs are weighted and normalized; the weight Wu→v corresponds
to the social influence strength of u to v, namely how much v “listens” to u. In
each iteration, the agents update their opinion by taking into account their ini-
tial opinion, and the opinions of their in-neighbors, and also adapt the listening
structure. Originally, the listening structure is identical to the input network,
but the agents due to their confirmation bias tend to strengthen connections
towards neighbors that share the same type of opinion as theirs. We focus on
unidimensional opinions, that are normalized in the range of [−1, 1]; it is known
that despite their unidimensionality, they can capture opinions over a multidi-
mensional set of issues due to the political “left-right” spectrum [9,16]. Our two
main contributions are the following:

• We propose a Friedkin-Johnsen type model of opinion dynamics that in-
corporates confirmation bias (FJCB) to modify in each iteration the listening
structure of each agent. We analyze the dynamics, by finding the equilibrium
opinions and listening structure, and by proving the structural properties of the
listening structure.

• We perform several experiments, both on synthetic and real datasets, and
compare our method to other polarizing opinion dynamics models with respect
to different measures. We show that our method yields listening structures with
high polarization, and low opinion disagreement, resembling echo chambers.

• We show a novel application of our model in predicting the ideological
community participation of Twitter users in the retweet network (i.e., the graph
formed by retweets), using information from the follow network.

Notation. We use the terms agent and node interchangeably. For any agent u,
we denote its opinion at time t as xu(t), and its initial opinion as su. A directed
edge (v, u) means that node u listens to node v. The initial listening structure is
the weighted graph G(V,E,w) and the weights of the incoming edges (if there
exist any) to any node u sum up to 1. The weight w of the edge (v, u) captures
the influence of v on u. The in-neighborhood of a node u at time t is denoted as
N−

u (t). While the weights of the edges may change, N−
u (t+ 1) ⊆ N−

u (t), i.e., no
edges are added but some may be deleted. Similarly, the listening structure at
time t is L(t), and initially it is equal to G. The weight of an edge (v, u) at time
t is denoted as Wv→u(t). To denote the equilibrium, we use ⋆ as a superscript.
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2 Related work

Opinion dynamics is the study of how agents interact with one another and
reach (or perhaps not) consensus. It has been a topic of intense study by multiple
disciplines. We discuss two important models that lie close to our work. DeGroot
introduced a continuous opinion dynamics model [13]. The model is based on
repeated averaging. Specifically an agent updates her opinion to the weighted
average of her neighbors’ and her own opinion from the previous time step.
Friedkin and Johnsen [18] extended the DeGroot model by including in their
model that each individual has certain innate beliefs. Other models allow each
agent to have a different degree of “stubbornness”, see [3]. The stubbornness of
the agents is measured by a vector α ∈ [0, 1]V , where value of αi close to one
means that agent i is more resistant towards keeping their own innate opinion.
According to this model (FJ), the opinion xi(t + 1) of node i at time t + 1 is
equal to

xi(t+ 1) = αisi + (1− αi)

∑
j∈Ni

wijxj(t)

deg(i)
. (1)

Here, deg(i) =
∑

j∈Ni

wij is the weighted degree of node i, and si be the innate

belief of node i. Recently Auletta et al. [5] extended this model by evolving
stubbornness and social relations, and proved such dynamics converges to a
consensus with reasonable conditions. The interested reader may refer to the
survey by Mossel and Tamuz and references therein for more related work on
opinion dynamics [26].

Garimella et al. [20] proposed a pipeline that constructs Twitter network
datasets with controversial topics from different domain. The pipeline first builds
a conversation graph related to a topic, e.g. Twitter follow graph and retweet
graph; Then it splits the graph into two partitions with a graph partitioning
algorithm, e.g. METIS [23]; Finally the controversy of this topic is measuresd
by how well two partitions are connected.

Polarization and disagreement. We use the notions of polarization and dis-
agreement as introduced by Musco, Musco, and Tsourakakis [27]. While these
notions were introduced for the equilibrium point x∗ of a convergent opinion
dynamics model, the same notions are applicable to any vector of opinions x in

a graph G(V,E). Let x̄ be the mean-centered vector, i.e., x̄ = x − xT 1⃗
n 1⃗. The

disagreement duv(x) of edge (u, v) is defined as duv(x) = wuv(xu−xv)
2, and the

total disagreement DG(x) and polarization P (x) that intuitively captures how
agents’ opinions deviate from the average opinion are defined respectively as

DG(x) =
∑

(u,v)∈E

duv(x), and P (x) = x̄T x̄. (2)

Polarization models. In recent years, there has been an increased interest in
developing polarization models. Dandekar et al. [12] propose the model Biased
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Opinion Formation (BOF), and prove that under certain conditions it can ex-
plain why extreme polarization occurs. In their model, each agent at time t+ 1
updates its opinion according to the following equation:

xi(t+ 1) =
Wiixi(t) + (xi(t))

bisi(t)

wii + (xi(t))bisi(t) + (1− xi(t))bi(di − si(t))
. (3)

Here, si(t) =
∑

j∈Ni
wijxj(t) is the weighted sum of the opinions of i’s neighbors,

di is i’s weighted degree and bi ≥ 0 is a bias parameter.
Given d topics, Hazla et al. [21] model an agent’s opinion u ∈ Rd as a

vector that lies on a d dimensional Euclidean sphere. Any global intervention
v affects the opinion vector of the agent proportional to ⟨u, v⟩ · v. They show
that opinions polarize if there are one or more influencers sending interventions
strategically, heuristically, or randomly. Gaitonde et al. [19] further generalize
the study by proving the polarization of opinions exhibits with higher opinion
dimension and network interactions. Vicario et al. [14] develop two variants of
Bounded Confidence Model(BCM), i.e., a class of models where two agents inter-
act only if they are connected and their opinions are close enough. Specifically,
when the distance between opinions from two connected agents is larger than a
pre-defined tolerance, with certain probability, their first model rewire such con-
nection while the second model push agents’ opinions further. Close to this is the
ECHO model proposed by Sasahara et al. [29]. Derived from BCM, it simulates
the phenomenon of biased assimilation on online social media. Specifically, each
agent expresses its opinions by posting messages, and receiving information from
neighbors through checking messages within a sized screen. Furthermore, at the
end of each iteration, ECHO also rewire the connection between two agents if
the distance between their opinions is larger than the tolerance, thus is able to
create echo chambers.

3 Proposed Model

Our proposed model is iterative. At round/time 0, each node u holds its original
value su. Each round consists of two steps during which agents update (i) their
expressed opinion, and the (ii) the strength of their connections. For the former
step we use a popular variation of the Friedkin-Johnsen model that incorporates
stubbornness parameters {αi}i∈V [3]. Equation (4) describes how each node u
updates its value from round t− 1 to t.

xu(t) = αusu + (1− αu)
∑

v∈N−
u (t−1)

Wv→u(t− 1)xv(t− 1) ∀u ∈ V, t ∈ N (4)

Initially, xu(0) = su for all u ∈ V . Once the agents update their values, they
update the strength of their incoming connections; an agent can only control
how much influence other nodes exert on her, rather than how much influence
she can exert on her neighbors. The next step of the proposed method encodes a
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well-known human bias, the confirmation bias (aka biased assimilation) that is
the psychological tendency to value more evidence, regardless its validity, that
reinforces already held beliefs [28]. We do this as follows: an agent i prefers to
increase the (relative) strength of connection j → i according to the values of
its endpoints and a positive parameter η that adjusts the changing scale:

Wi→j(t) = max(0,Wi→j(t− 1) + ηxi(t)xj(t)) ∀(i, j) ∈ A(G(t− 1)) (5)

By convention, an arc of weight of zero does not exist, and we delete an arc if
its weight become nonpositive. Observe that when η = 0, edge weight does not
change at all. And the edges can quickly got enhanced/eliminated as we increase
the value of η, thus reveal community information, or even reshape the graph
structure. Once the weights are updated according to Equation (5), each node
updates the weights of its incoming edges according to the following equation:

Wi→j(t) =

{
Wi→j(t)∑

k∈N−(j) Wk→j(t)
if

∑
k∈N−(j) xk(t)Wk→j(t) ̸= 0 (Case I)

Wi→j(t− 1) if
∑

k∈N−(j) xk(t)Wk→j(t) = 0 (Case II)

(6)
In Case I, once we normalize according to Equation (6), the weights of the
incoming arcs sum up to one. If the incoming influence is equal to 0, we leave the
weights as they were in the previous iteration. This completes one full iteration.
The model proceeds to the next iteration, and continues until convergence or
until the maximum number of iterations is reached. Under the assumption that
an equilibrium point exists, we can find it. This is stated as the next theorem.
Understanding the convergence of our dynamics is an interesting open question.

Theorem 1. Suppose the dynamical system converges to an equilibrium point
(x∗,W ∗). At equilibrium, the opinion of any node u ∈ V (G) satisfies:

x⋆
u =


αusu + (1− αu)

∑
k→u x⋆2

k∑
k→u x⋆

k
if
∑

k∈N−⋆
u

x⋆
k ̸= 0,

∑
k∈N−⋆

u
W ⋆

k→ux
⋆
k ̸= 0,

αusu N−∗
u = {v : W ⋆

v→u > 0} = ∅
0 otherwise

(7)

Proof. We consider three cases, depending on the listening structure at equilib-
rium, and the social influence of the in-neighbors of a node.
Case I: Consider a node u at equilibrium whose local listening structure satisfies∑

k∈N−⋆
u

x⋆
k ̸= 0 and

∑
k∈N−⋆

u
W ⋆

k→ux
⋆
k ̸= 0. By the definition of an equilibrium

we obtain that the following equations are satisfied

x⋆
u = αusu + (1− αu)

∑
k→u

W ⋆
k→ux

⋆
k (8)

W ∗
v→u =

W ∗
v→u + ηx∗

vx
∗
u∑

k→u

(
W ∗

k→u + ηx∗
kx

∗
u

) =
W ∗

v→u + ηx∗
vx

∗
u

1 + ηx∗
u

∑
k→u x

∗
k

(9)
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Simplifying equation (9), yields that the edge weight at equilibrium satisfies

W ⋆
v→uηx

⋆
u

∑
k→u

x⋆
k = ηx⋆

ux
⋆
v ⇒ W ⋆

v→u =
x⋆
v∑

k→u x
⋆
k

.

By substituting this value in Equation (8), we obtain the following expression:

x⋆
u = αusu + (1− αu)

∑
k→u

W ⋆
k→ux

⋆
k = αusu + (1− αu)

∑
k→u

x⋆
k∑

k→u x
⋆
k

x⋆
k →

x⋆
u = αusu + (1− αu)

∑
k→u(x

⋆
k)

2∑
k→u x

⋆
k

.

Case II: Suppose there exists a node u at equilibrium such that
∑

k∈N−
u
Wk→ux

⋆
k =

0. This can happen in two cases, depending on whether the node listens to some
or none of the rest of the nodes.

Case (a): Node u is not listening to any node at equilibrium, i.e., N−⋆
u = ∅.

In this case x⋆
u = αusu.

Case (b): Suppose N−⋆
u ̸= ∅. Without loss of generality, we can partition

the in-neighborhood in three sets Spos, Sneutral, Sneg, depending on whether the
nodes have positive, neutral, or negative opinion respectively. Clearly, Spos, Sneg ̸=
∅, and ∑

k∈Spos

W ⋆
k→ux

⋆
k +

∑
k∈Sneg

W ⋆
k→ux

⋆
k = 0.

Furthermore, node u at equilibrium has to be neutral, i.e., the term x⋆
u = au ·

su has to be equal to 0. If not, then x⋆
u ̸= 0, and this contradicts the equilibrium

property of the edge weights from Spos, Sneg to u, i.e., ∃k ∈ Spos, k
′ ∈ Sneg such

that Wk→u will increase, Wk→u will decrease (i.e., if x⋆
u > 0) or vice versa if

x⋆
u < 0.

Case III: If
∑

k∈N−⋆
u

x⋆
k = 0 and

∑
k∈N−

u
Wk→ux

⋆
k ̸= 0, then with a similar

reasoning, we obtain x⋆
u = 0. ■

It is worth mentioning that in case II(b), one can also prove using contra-
diction that there exist no edges between Spos, Sneg. In the following, we prove
important structural properties of the equilibrium, that show that our model
achieves a certain type of polarization, and exhibits an interesting structure
depending the setting of the various model parameters.

Lemma 1. Let Leq be the listening structure at equilibrium. Consider a non-
neutral node u whose local listening structure N−⋆

u satisfies
∑

k∈N−⋆
u

x⋆
k ̸= 0 and∑

k∈N−⋆
u

W ⋆
k→ux

⋆
k ̸= 0. Then, all the nodes v ∈ N−

eq(u) that node u listens to,
share the same opinion, i.e., they have the same opinion sign.
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u1 u2

v

Fig. 1: At equilibrium W ⋆
ui→v =

x⋆
ui

Z , i = 1, 2 where Z is a normalizing constant.
Since the edge weights W ⋆

u1→v,W
⋆
u2→v > 0 are positive, we observe sgn(x⋆

u1
) =

sgn(x⋆
u2
) = sgn(Z). For details, see Lemma 1.

Proof. The statement trivially holds for any node with in-degree 0 or 1. Consider
an arbitrary node node v with at least two in-coming neighbors; let u1, u2 ∈
N−(v) be two arbitrary such in-neighbors of v in G⋆ as shown in Figure 1. At

equilibrium the positive edge weights W ⋆
u1→v,W

⋆
u2→v satisfy W ⋆

ui→v =
x⋆
ui

Z , i =
1, 2 where Z is a normalizing constant, as shown in Case I of Theorem 1. Since
the edge weights are positive, i.e., W ⋆

u1→v,W
⋆
u2→v > 0, we obtain sgn(x⋆

u1
) =

sgn(x⋆
u2
) = sgn(Z). Thus, at equilibrium sgn(x⋆

u) = σ ∈ {−1,+1},∀u ∈ N−⋆
u .

■

From now on, if the in-neighbors of a node u have a negative (positive)
opinion, we will refer to the in-neighborhood as negative (positive). Can a node
u whose in-neighborhood is negative have a positive opinion x⋆

u at equilibrium?
The answer to this question is not immediately clear, even when one considers
a “stubborn” node u with αu = 1 with a positive initial opinion su. While it is
clear that node u will never change opinion, it is not (perhaps) clear why u will
be connected to nodes of opposite opinion. Should not the edge weight Wv→u

between v ∈ N−
u and u decrease gradually according to equation (5), and become

zero eventually? The answer is no. To see why consider a graph with a single
edge v → u, i.e., node u has in-degree 1, and let xu > 0 > xv. If the edge weight
Wv→u is not zeroed-out after the decrease by ηxuxv according to Equation (5),
then after the normalization step in equation (6) it remains 1. Notice that in
our toy example, the edge weight does not become zero, when the parameter η
satisfies 1 + ηxuxv > 0, or equivalently η < 1

|xu||xv| .

The next lemma answers this question more generally. We consider one case
for the sign of the in-neighborhood at equilibrium, the other case is symmetric
and treated in a similar way. The following lemma is proved in Appendix.

Lemma 2. Consider a node u with a negative in-neighborhood N−∗
u . Then, the

opinion of node u at equilibrium can be positive when conditions (i)-(v) hold:

(i) su > 0 and (ii) su∑
v∈N

−∗
u

W⋆
v→u|x⋆

v|
> 1−αu

αu

and (iii) W ⋆
v→u = 1

|N−∗
u | ∀v ∈ N−∗

u

and (iv) x⋆
v = c and (v) η < 1

|N−∗
u ||x⋆

u||x⋆
v|

To summarize our results, the typical case of a node u at equilibrium is to be
listening to nodes with the same opinion, unless a set of complicated conditions
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hold. Furthermore, neutral nodes (as shown in Case II b) can be listening to
both negative, and positive opinions. Our experimental results show that almost
always on real data, or on data with random opinions, we obtain polarized echo-
chambers, unless we create artifacts as described, e.g., in Lemma 2.

4 Experiments

4.1 Experimental setup

Real-world Datasets. We use five publicly available Twitter datasets [11, 20]
to evaluate our model. The datasets are summarized in Table 1. Each dataset
focuses on a single controversial topic. A follow graph and a retweet graph are
collected based on hashtags related to the topic, and they are converted into
undirected graphs, for details see [11, 20]. Both graphs are partitioned into two
communities using METIS [23], that can thought of as echo chambers with
users with diametric opinions (i.e., positive vs negative). For any Twitter user
u, given its neighborhood Nu and the community Cu it belongs to, we assign

u’s ideological community participation (or polarity in short) as sgn(Cu)
|Nu∩Cu|

|Nu| .

We say that a user u is persistent if its polarity in the follow layer is equal to its
polarity in the retweet layer.

Topic # follows # retweets # common nodes # persistent nodes

russia march [20] 16 471 2 951 482 302
debate [20] 344 088 44 174 5 015 580
beefban [20] 6 026 1 978 284 120
baltimore [20] 28 291 4 505 356 61
vaxnovax [11] 1 806 164 68 543 17 650 2 753

Table 1: Description of Twitter follow and retweet graphs induced by topic
hashtags.

Competitors. We compare our model to three polarizing opinion dynamics
models, the FJ model [18], the ECHO model [29] 3, and the BOF model [12].
For ECHO, the numerous parameters of the model (see [29]) are set to the default
values, unless specified otherwise.

Machine. All experiments run on a laptop with 3.10GHz Intel Core i5-7267U
CPU and 8GB of main memory. The code is written in Python 3 and will become
publicly available upon publication.

4.2 Synthetic Experiments

Evaluation. In order to understand the emergence of polarized communities we
use the stochastic block-model [2]. We construct two equal-sized communities

3 https://github.com/soramame0518/echo_chamber_model

https://github.com/soramame0518/echo_chamber_model
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(a)

(b)

(c)

Fig. 2: Disagreement, polarization, conductance, and kurtosis per iteration for
models on stochastic block model graphs with p = 0.2 and q = 0.05 (a): FJCB
with different η, note with η = 0 it becomes FJ, (b): BOF, (c): ECHO with
different number of initial stubborn nodes nα.

with 100 nodes per each. The probability of an edge between two nodes from
the same (different) community (communities) is 0.2(0.05). Metrics including
polarization, disagreement (see Eq. (2)), conductance of the nodes with positive
opinions, and kurtosis of opinions are reported to show how echo chambers are
created by our model. Specifically, given a node subset S, we can convert the
graph to undirected and calculate its conductance. Kurtosis is a unitless measure
of a distribution’s shape, and becomes a smaller value when the distribution has
a lower tendency for producing extreme values. Formally, given any distribution
D with mean µ, variance σ and random variable X ∼ D, its kurtosis is defined as
Kurt = E[(X−µ

σ )4]. A completely bimodal distribution is reflected by a kurtosis
value of -2.

Initially, we randomly pick nα stubborn nodes from each community and set
their opinions to +1 and -1 respectively, and their stubbornness parameter is set
to be 1. For FJCB and BOF nα = 5, and for ECHO nα is ranged between 5,
20 and 60. The initial opinions of the rest of the nodes are set to 0, and their
stubbornness parameter to 0.001. Figures 2(a), (b) and (c) plot the four metrics
versus the iteration for FJCB, BOF, and ECHO respectively. Note when we set
η = 0, FJCB becomes FJ. Recall the listening structures are directed, but in
the case of conductance we consider it to be undirected. For ECHO, we set its
confidence distance ϵ = 1.01 in order for the model to work, i.e., opinions can
start propagating in the beginning. Some observations follow:
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• All methods except FJ can return equally polarized opinions at equilibrium,
reaching a value of 200. ECHO requires a large number of stubborn nodes for
this to happen (i.e., nα = 60), in contrast to FJCB and BOF. The kurtosis
becomes -2, reflecting a completely bimodal distribution.

• FJCB converges after at most 120 iterations, for all η values. With non-
zero η values, it disconnects the graph into two components whose nodes have
different signs of opinions. This happens, within the first 20 iterations, as the
conductance drops to 0, even for small values of η. In all our experiments FJCB
reaches an equilibrium. FJ, i.e. FJCB with η = 0, shows limited polarization
ability as the changes of its metrics are insignificant compared to other methods.

• FJCB shows the emergence of two polarized niches, with high polarization
and low disagreement. BOF (by design) does not alter the listening structure of
the network, and therefore disagreement remains high. Our model clearly con-
trasts the initial graph topology, to the final listening structure that is polarized,
and is consistent with the creation of echo chambers [1].

• Interestingly, in Figure 2(a) we observe a rise of disagreement before the
final drop. This happens because initially the majority of the nodes are neutral.
As their opinions start changing, an increasing number of neighbors produce
non-zero disagreement terms, which results in the increase of disagreement. As
the method starts converging to echo-chambers, disagreement starts decreasing.

•ECHO does not perform well with respect to creating echo-chambers when
there is a small number of stubborn nodes, resulting in an unpredictable perfor-
mance, as indicated by the fluctuation in the conductance.

Study the effect of η. We also study the effect of parameter η. Figure 2(a)
shows the changes we observe with different η values. Empirically we find larger η
leads to faster convergence as FJCB can break connections between agents with
opposite opinions with fewer iterations. When η becomes 0, the model becomes
to FJ with static network structure and loses the ability to simulate extreme
polarization.

(a) (b) (c)

Fig. 3: Scatter plot of agent opinions over time according to the FJCB model
with different choice of α values, and initial opinions sampled from N (0, 0.3). For
any non-stubborn agent u, its stubbornness parameter is set to (a) αu = 0.001.
(b) αu sampled from the half-normal distribution, and then normalized to be in
the range of (0, 1). (c) αu sampled uniformly at random from (0, 1).
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Effect of α values. What is the effect of the stubbornness parameters {αu}u∈V

on the final opinions? Our results are shown in Figure 3.
We use again the stochastic block model with nα = 1. Additionally, we sample

for every non-stubborn node an initial opinion from the normal distribution
N(µ = 0, σ2 = 0.32), and adjust the signs according to the block structure,
i.e., nodes within the same block have the same opinion, but opposite across
blocks. We then assign stubbornness parameters to the non-stubborn nodes in
different ways, and plot the polarity vs. the iteration. For Figure 3(a) we set
all stubbornness parameters to be 0.001. We see that at equilibrium the non-
stubborn nodes have converged to the sign of the stubborn node from their
own block. For Figure 3(b), the stubbornness parameters are sampled from the
half-normal distribution, and then normalized to be in the range of (0, 1). We
observe that due to the presence of fairly stubborn nodes, they do not converge
to ±1 as in Figure 3(a), but still the resulting distribution is bimodal, and
polarized. Finally, for Figure 3(c) we sample the stubbornness parameters from
the uniform distribution in (0, 1). We observe the same behavior as in (b), with
less polarization due to the presence of more stubborn nodes.

4.3 Predicting Echo Chamber Participation

(a) (b)

Fig. 4: (a) Average error of opinion predicted by methods on five Twitter net-
works. (b) Scatterplot of polarities of the retweet layers vs. the follow layer for
the Beefban dataset.

Polarized niches across Twitter layers. In this application, we are interested
in understanding how the communities in the follow layer of Twitter can predict
the structure of echo-chambers in the retweet layer. As mentioned in Section 4.1,

for any node u we define its polarity in a given Twitter layer as sgn(Cu)
|{Nu∩Cu}|

|Nu| .

Notice that the sign function preserves the polarity of the node with respect to its

community Cu, whereas the second term |{Nu∩Cu}|
|Nu| measures the cohesiveness

of the node within its community; in the extreme case where Nu ⊆ Cu the
cohesiveness is equal to 1. We show here that we can accurately predict the
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polarities in the retweet layer for the non-persistent users, if we have the follow
graph and all persistent users. As a baseline, we use the method Initial that
naively predicts the polarity of a node in the retweet layer to be equal to the
polarity in the follow layer.

On all Twitter datasets, we apply FJCB, FJ, BOF, ECHO. We run these
models as follows: we consider the polarities in the follow layer as the initial opin-
ions of the agents, and we use the opinions at equilibrium as our predictor for the
non-persistent nodes. The follow graph is used as the initial listening structure.
In both FJCB, FJ and BOF, the stubbornness parameters for persistent users
are set to 1, and 0.001 for the rest. We also fix the opinions of persistent users
in ECHO throughout the iterations. In Figure 4, we report the average error in
the ℓ1 norm, i.e., the average difference between the predicted opinions and the
retweet polarities of all users. We observe FJCB has comparable performance
to BOF, and both models outperform the Initial baseline, but not always. The
performance of ECHO is close to Initial. FJ has the worst performance over four
dataset as it tends to give highly biased predictions, see Figure 5 in Appendix for
an example. FJCB is capable of predicting the retweet polarities on vaxnovax
dataset with less than 0.1 average error. By further investigation, we find the
retweet network of this topic is composed of two almost disconnected communi-
ties, making its polarities highly concentrated to 1 and -1. All methods cannot
accurately predict the retweet polarities on Beefban dataset, as the partitions
of its follow and retweet graphs are pretty much orthogonal. In Figure 4(b), we
see blocks of users on all four corners, since a large number of users belong to
different communities on two layers.

Interpretation Given a topic, why models of opinion dynamics can predict the
structure of the retweet layer with the follow layer? In general, follow is a long-
term connection that can exist due to various reasons, including friendship or
interest of an agent in any posted content by the other agent. Such a relation-
ship describes a user’s community belonging and stance comprehensively from a
high level. On the other hand, retweets without quote usually indicate endorse-
ment [20]. In our Twitter datasets, the retweet connections can be considered as
users’ agreements with respect to a specific topic. Therefore, it is reasonable to
regard users’ follow polarities as their initial opinions, and the retweet polarities
as their final opinions after all the propagation of information.

5 Conclusion
In this work, we propose FJCB, a Friedkin-Johnsen (FJ) opinion dynamics
model that in addition to the classic FJ model incorporates confirmation bias.
The model iteratively updates both the opinions of the agents and the listening
structure, i.e., to whom each agent listens. We analyze the dynamics, and show
that at equilibrium the listening structure is in principle polarized, but it also
exhibits interesting structure due to the existence of neutral nodes. We evaluate
our model both on synthetic and real data, showing the effect of the various
parameters, and its applicability to predicting the echo chamber community
participation. An interesting open direction is to prove the convergence of our
dynamics, and explore more properties of the equilibrium.
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A Appendix

A.1 Proof of Lemma 2

Proof. Consider the opinion x⋆
u of node u at equilibrium with a negative in-

neighborhood, it has to satisfy equation (4), i.e.,

x⋆
u = αusu + (1− αu)

∑
v→u

W ⋆
v→ux

⋆
v.

When x⋆
u > 0, it is necessary that su > 0, otherwise x⋆

u < 0 since the sec-
ond term in the summation is negative. By rearranging the inequality αusu +
(1 − αu)

∑
v→u W

⋆
v→ux

⋆
v > 0 we obtain su∑

v→u Wv→u|x⋆
v|

> 1−αu

αu
. Furthermore,

Wv→u = 1
|N−∗

u | for all in-neighbors v ∈ N−∗
u . To see why, for the sake of contra-

diction, assume without loss of generality4 that there exists an arc v → u such
that W ⋆

v→u < 1
|N−∗

u | . Observe that each arc weight is updated in every itera-

tion according to Equations (5) and (6). It is straight-forward to check that in
that case W ⋆

v→u will decrease in an iteration, contradicting its equilibrium prop-
erty.Furthermore, in order for all the incoming arcs to u have the same weight,

4 The sum of the arcs is 1, so if they are not all equal there exists an arc less than the
average 1

|N−∗
u |

.
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the update term ηx⋆
vx

⋆
u must be equal for all v ∈ N−∗

u , and it must not zero-out
the weight. These two facts imply that x⋆

v = x for some value x for all v ∈ N−∗
u ,

and 1
|N−∗

u | − ηx⋆
vxu > 0 which implies the last condition. ■

A.2 Example of section 4.3

Fig. 5: Histogram of user retweet polarity ground truth and the prediction by FJ
model on debate dataset.
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