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The mathematical modelling of contagion processes is crucial 
in gaining insight into a broad range of phenomena from the 
spreading of infectious diseases to social collective behaviour. 

While this avenue of research has a long tradition both in the bio-
logical and social sciences, in recent years there have been consid-
erable advancements triggered by increasing computational power 
and data availability characterizing socio-technical systems. These 
advances are particularly evident in the area of infectious disease 
forecasting where current models now incorporate realistic mobil-
ity and interaction data of human populations1–6. Analogously, 
social contagion phenomena that were initially modelled using the 
same mathematical framework as epidemics7–10 are now described 
by complex contagion models11–13 aimed at specifically characteriz-
ing processes such as the establishment of shared social norms and 
beliefs14–16, the diffusion of knowledge and information17,18, and the 
emergence of political consensus19. These models consider complex 
factors such as reinforcement and threshold mechanisms20–23 and 
the loss of interest mediated by social interactions24,25. Furthermore, 
many of these theoretical approaches have put networks at the cen-
tre of our understanding of social contagion phenomena and the 
information spreading process8,12,17,26–32. However, most theoretical 
and numerical work on the dynamics of social contagion focuses on 
highly stylized models, trading off the realistic features of human 
interactions for analytical transparency and computational effi-
ciency. As a result, social contagion models able to integrate the 
effects of human mobility, community structure and time-varying 
behavioural patterns are largely unexplored.

Here we consider the classic rumour spreading model24,25 to 
study the effects of structured populations on the global diffusion 
of a rumour or piece of information. More specifically, we model 
the spatial structure of realistic populations and the behaviour of 
individuals in virtual social networks through a reaction–diffusion 
model in a metapopulation network and an activity-driven model 
with communities, respectively. We first identify analytically the 
necessary conditions for the social contagion to spread to a macro-
scopic fraction of the population. This analysis shows that although 

the rumour model is lacking any critical threshold, the population 
structure introduces a dynamical phase transition (global invasion 
threshold33) that is a function of the interactions between subpopu-
lations. We validate the analytical results with large-scale numerical 
simulations on synthetic networks with different topological struc-
tures. Additionally, we recover the global threshold of the conta-
gion process in data-driven models of the European transportation 
network and the Digital Bibliography and Library Project (DBLP) 
collaboration network.

Understanding how the social structure in both the physical 
and virtual worlds affects the emergence of contagion phenom-
ena has the potential to indicate novel ways to utilize the network 
connectivity to develop efficient network-based interventions. 
The framework developed here opens a path to study the effects 
of communities and spatial structures in other complex contagion 
processes that can incorporate agent memory34 and social rein-
forcement22, or introduce other heterogeneous features such as age-
dependent contact patterns and socio-economic conditions35.

Model definition
Here we use a variant of the original rumour model24, known as 
the Maki–Thompson model25, to describe the spread of information 
through a population based on interactions between agents36. Similar 
to epidemic models, individuals can be classified into three compart-
ments: ignorants, those who do not know the rumour; spreaders, 
those who know and are actively sharing the rumour; and stiflers, 
those who know the rumour but are no longer spreading it. The 
contagion process evolves through interactions between individuals 
in a population. If a spreader contacts an ignorant individual, with a 
probability λ, the ignorant will transition into a spreader. However, 
when a spreader contacts either a stifler or another spreader, with a 
probability α, the spreader will transition into a stifler. The stifling 
mechanism describes an individual’s tendency to become uninter-
ested in the rumour once the appeared novelty of the information 
is lost. In homogeneously mixed populations, this feature does not 
allow the presence of a rumour threshold24,37, meaning that for any 
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λ > 0 the rumour will always spread to a macroscopic proportion of 
the population (see Methods). We investigate the behaviour of this 
model on two types of structured populations that incorporate the 
complexity observed in socio-technical systems (Fig. 1).

Rumour model in spatially structured populations. We first 
consider a population where spatially defined groups of indi-
viduals (subpopulations) are coupled together by a mobility rate  
(Fig. 1a)32,38. This structure, also called a metapopulation network, 
is used to model species persistence in ecosystems39, the evolution 
of populations40 and the global spreading of infectious diseases41. 
Specifically, we consider a metapopulation network with V sub-
populations, each with an average population size of N

I
 individu-

als. Reaction–diffusion processes are used to characterize both the 
local interaction and global mobility dynamics. Individuals first 
react within their current subpopulation according to the rumour 
model dynamics and then diffuse between subpopulations based on 
a Markovian diffusion process. The probability that an individual 
will leave their current subpopulation and travel to a specific neigh-
bour is p∕k, where p is the mobility parameter and k is the number 
of neighbouring subpopulations.

Rumour model in virtual structured populations. In contrast to 
the reaction–diffusion scheme, rather than moving between com-
munities, individuals may belong to a specific virtual community 
such as an interest or disciplinary group, online forum, or political 
affiliation, but interact occasionally with individuals in other virtual 
communities through collaborations, forum posts or direct mes-
sages (Fig. 1b). We model these interaction dynamics using a modu-
lar activity-driven network scheme42,43. In particular, we consider a 
population with V communities whose sizes (s) follow a specific dis-
tribution, P(s). Every individual is assigned an activity ai that is sam-
pled from a preset distribution F(a). The activity of an individual 
corresponds to the rate with which the individual becomes active 
during a given time step t (ref. 42). Each active individual will form 
a single connection to another individual in the population creat-
ing an instantaneous network. To induce a community structure, 
an activated individual will choose to form a link to a randomly 
selected individual outside of their home community with a prob-
ability μ, otherwise, an intra-community link will be formed. The 
parameter μ allows us to tune the interaction between communities. 
After each single iteration of the rumour model, the network resets 
and a new instance is generated in the same manner.

invasion threshold in structured populations
Although the rumour model in a single homogeneous population 
does not exhibit a spreading threshold, the presence of a subpop-
ulation structure fundamentally alters the contagion dynamics.  
This can be clearly seen for the rumour model in virtual structured  

populations by examining two limits of the inter-community  
interaction term, μ. When μ = 0, individuals will only interact  
with others in their community. Thus, the rumour will never escape 
the seed community. However, in the limit where μ = 1, individ-
uals effectively do not belong to any community and will always  
choose to form an external connection. Therefore, the rumour will 
certainly reach a macroscopic fraction of the population. The same 
reasoning can be applied to the limits of the mobility parameter, 
p, in the case of spatially structured populations. In both model-
ling frameworks, the population structure induces a transition 
point separating a dynamical regime where only local spreading is  
possible from a regime where the rumour spreads globally through 
the network.

To characterize this transition point quantitatively, we use a 
branching process framework to describe the rumour spreading 
dynamics across subpopulations41,44. Let us consider a system that is 
structured into V subpopulations, each consisting of N

I
 individuals, 

on average, at any given time. Within the homogeneous population 
structure, we assume that all nodes are statistically equivalent and 
the connections formed between pairs of nodes are uncorrelated. 
Let Dn be the number of affected subpopulations where the rumour 
is known by at least one individual at generation n. We use a tree-
like approximation to write an expression that captures the number 
of subpopulations that know the rumour at each generation of the 
spreading process, obtaining:

Dn ¼ Dn�1 1�
Pn�1

m¼0 Dm

V

 
CΦ ð1Þ

The above equation assumes that every affected subpopula-
tion in the (n−1)th generation (Dn−1) may seed each one of its 
ð1�Pn�1

m¼0Dm=VÞC
I

 unaffected neighbours with a probability Φ, 
where C indicates the average number of neighbouring subpopula-
tions and 1�

Pn�1
m¼0Dm=V

I
 is the probability that the neighbouring 

subpopulation is not already aware of the rumour during the (n−1)
th generation. In a structured population model, a rumour epidemic 
occurs when each affected subpopulation, early in the contagion 
process, spreads the rumour on average to at least one fully ignorant 
subpopulation. Using equation (1), this global contagion condition 
reads as Dn ∕ Dn−1≥ 1. Given that we are interested in the early time 
dynamics of the process, we assume that 

Pn�1
m¼0Dm=V  1

I
, defining 

the global contagion threshold Dn ∕ Dn−1 ≃ CΦ ≥ 1. This effectively 
defines the subpopulation reproductive number R* = CΦ, that is, 
the average number of communities becoming aware of the rumour 
from a single subpopulation. Analogously to the reproductive num-
ber in biological epidemics, in order for information to spread glob-
ally, R* must be greater than or equal to one41,44. The terms C and Φ 
depend explicitly on the type of structured population model as well 
as on the contagion process. In the following sections we provide 
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Fig. 1 | Types of structured population considered in the modelling framework. a, A schematic representation of a reaction–diffusion process on a 
metapopulation network, where individuals homogeneously interact within their current subpopulation, and then diffuse through the network constrained 
by the global structure. b, A schematic representation of a modular activity-driven network at two points in time, t, where individuals are confined 
to a single community, but when activated choose to form links to those outside their current community based on a probability of inter-community 
interaction. Each instantaneous network is generated independently of prior networks.
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equations for these parameters and the rumour invasion thresholds 
for both spatially structured and virtual populations.

Spatially structured populations. In a homogeneous metapopula-
tion network the number of possible subpopulations that could be 
seeded by each affected subpopulation is C = 〈k〉 − 1, that is, the 
average number of neighbouring subpopulations minus the one that 
originally seeded the contagion process. Owing to the lack of a local 
rumour threshold within a single subpopulation, the probability 
Φ is simply given by the probability that at least one spreader will 
decide to leave an affected community and travel to a neighbouring 
subpopulation where they will start spreading the rumour:

Φ ¼ 1� 1� p
hki

� �β

ð2Þ

where β is the number of spreaders in an affected subpopulation 
that can travel out of their current subpopulation during the rumour 
epidemic. This value Φ, is calculated by considering one minus the 
probability that none of the spreaders will travel to a new commu-
nity, ð1� p

hkiÞ
β

I
. Here, β ¼ 2ð1þλ=αÞN

α
I

, is the product of the total number  
of individual spreaders generated by the contagion process within  
a single population and the average amount of time they are  
actively spreading the rumour (see details in the Methods). Using 
equation (2) and considering a small mobility probability, such that 
p ∕ 〈k〉 ≪ 1, we can approximate the probability Φ ≃ βp ∕ 〈k〉.  
In this limit we obtain an explicit equation for the rumour invasion 
threshold as:

From equation (3) it is possible to rewrite the necessary threshold 
condition to find the critical mobility pc in the system required for a 
global spreading of the rumour as:

pc ¼
hki

ðhki � 1Þ
α

2ð1þ λ
αÞN

ð4Þ

Below the critical value, pc, the amount of individual mobility 
restricts the global propagation of the rumour. In this subcritical 
regime, spreaders in affected communities are generally unable to 
travel to a new subpopulation before they transition into stiflers, 
which consequently causes the rumour to go extinct in the early 
stages. This critical mobility is a function of both the network 
structure and the rumour model parameters, λ and α. However, for 
homogeneous networks with sufficiently large average degrees 〈k〉, 
the effect of the network structure is relatively insignificant. In the 
Supplementary Information we derive the critical mobility for meta-
population networks with heavy-tailed degree distributions and 
find that the analytical expression depends not only on the average 
degree of the network 〈k〉, but also on the second moment 〈k2〉 of 
the degree distribution. Heterogeneous networks are characterized 
by having degree distributions with high variance (large 〈k2〉), thus 
considerably affecting the value of the mobility threshold. We also 
see that pc is linearly dependent on α. When λ is small relative to 
α, the critical mobility is controlled predominantly by the stifling 
probability. Recall that the stifling probability characterizes the ten-
dency for an individual to become disinterested in the rumour (that 
is, transition into a stifler) when interacting with others that know 
the rumour. It is worth noting this feature for the global spread 
of a rumour in a spatially structured environment that places the 
emphasis not on how appealing a rumour is, but rather on the rate at 
which people decide that the rumour is not worth spreading.

Virtual structured populations. Now let us consider a modular 
activity-driven network where we assume discrete time, Δt = 1, a 

R ¼ hki � 1
hki 2 1þ λ

α

� �
pN
α

≥1 ð3Þ

homogeneous activity rate (a) for all individuals in the network and 
a homogenous distribution of community sizes. In this model, if an 
individual chooses to form an inter-community link, by construc-
tion it can choose any of the other C = V − 1 communities. The 
probability Φ that at least one spreader from an affected population 
will choose to connect with another individual outside their current 
community and successfully transmit the rumour can be written as

Φ ¼ 1� ð1� λμ

V � 1
Þβ ð5Þ

In this expression λμ
V�1
I

 is the probability that an inter-community 
link successfully transmits the rumour to one of the V − 1 specific 
subpopulations and β translates to the number of potential chances 
that a single, affected community has to spread the rumour to 
another community. As described in the Methods, β is not explicitly  
dependent on the activity assigned to each individual as long as  
a > 0 and still remains a function of the total number of spreaders  
in the community and the average amount of time they were active. 
Therefore, the same equation used for spatially structured popula-
tions, β ¼ 2ð1þλ=αÞN

α
I

, holds. We can thus calculate the rumour inva-
sion threshold by assuming that λμ

V�1 � 1
I

 in the limit of large V, 
obtaining:

R ¼ 2ð1þ λ

α
Þ λNμ

α
≥1 ð6Þ

The rumour invasion threshold in terms of the critical inter-com-
munity interaction rate, μc reads

μc ¼
α

2λNð1þ λ
αÞ

ð7Þ

This equation resembles the mobility threshold of equation (4) 
except for the addition of the λ parameter in the denominator, 
which comes from the node interaction process. In the spatially 
structured model, the mobility of an individual was the only fac-
tor that controlled whether the rumour spread to a new commu-
nity. However, in the activity-driven model, active individuals do 
not move to another community, but rather may form a single con-
nection through which the rumour has to be successfully transmit-
ted to another individual in order to start the contagion process. 
This introduces a linear dependence on α ∕ λ rather than α alone. 
When the spreading probability λ is high, the more likely it is that an 
ignorant individual will transition into a spreader during a specific 
interaction. Thus, the rumour spreads more readily and does not 
require a high amount of inter-community interaction to globally 
propagate. This result shows the inherent differences between equa-
tion (4) and equation (7) and brings attention to the importance 
of the type of structured population used when modelling a socio-
technical system. In the Supplementary Information we derive the 
critical interaction probability for populations with a heterogeneous 
size distribution.

Simulations on synthetic structured populations. To validate 
the analytical findings, we performed an extensive set of stochas-
tic simulations of the rumour model on synthetic, structured 
populations. In spatially structured populations we examined the 
linear dependence of the critical mobility on α and for virtual 
populations we show the inverse dependence on λ. We generated 
homogeneous metapopulation networks as Erdös–Rényi random 
graphs with average degrees of 〈k〉 = 12 and an average popula-
tion size of N ¼ 103

I
 individuals. To initiate the contagion process, 

one individual is made aware of the rumour in a single, randomly 
selected community. The microscopic reaction dynamics are math-
ematically defined by chain binomial and multinomial processes, 
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which were used to update the stochastic transitions of individuals 
between compartments (details in the Supplementary Information). 
Following the reaction process, individuals diffuse along a specific 
link to a neighbouring subpopulation with a probability p ∕ k, where 
k is the degree of the individual’s current community. Our simu-
lation results show the final fraction of affected communities as 
a function of the mobility probability p for various α parameters 
(Fig. 2a), recovering the critical transition that separates the non-
spreading and global spreading dynamical regimes. The vertical 
lines represent the values predicted from equation (4) and are in 
good agreement with our numerical findings. Furthermore, we see a 
clear dependence of the transition point on the stifling rate α. In the  
Supplementary Information we show similar simulations for  
metapopulation networks with heavy-tailed degree distributions, 
p(k) ~ k−2.2. In this scenario, the network structure significantly 
reduces the threshold since, as mentioned above, it now depends 
on the second moment of the degree distribution that diverges for 
heterogeneous networks when V → ∞.

For the second type of structured population, we generated 
modular activity-driven networks with V = 103 total communi-
ties, each with the same number of individuals, N ¼ 103

I
, and every 

individual assigned the same activity rate, a = 0.1. To start the con-
tagion process, a single individual from a randomly selected com-
munity is made aware of the rumour. An instantaneous network is 
generated by the modular activity-driven network model on which 
the rumour dynamics unfold for a single iteration (Δt = 1). After 
the reaction process, a new network instance is generated and the  
process repeats until all individuals are either still ignorants or sti-
flers (more model details are in the Supplementary Information). In 
Fig. 2b we show the final fraction of communities where a rumour 
epidemic occurred as a function of the inter-community interac-
tion parameter μ, for multiple λ values. The phase diagram supports 
our theoretical findings, and confirms that for higher values of λ 
fewer inter-community interactions are required for the rumour to 
globally propagate. Additionally, we also model this system using 
a heterogeneous size distribution and report the results in the 
Supplementary Information.

Data-driven simulations
To further support the theoretical results obtained in the  
previous section, we analyse the rumour model on two real-world 
networks. Specifically, we simulate a rumour spreading across a 

metapopulation network modelling the transportation patterns in 
Europe and across a modular activity-driven network modelling 
scholarly collaborations from the DBLP collaboration network. 
The mobility of individuals throughout Europe is constructed by 
dividing the continent into spatial regions that are coupled together 
using data about commuting patterns and long-range transporta-
tion fluxes such as airline traffic (details in the Supplementary 
Information). This realistic, synthetic metapopulation network 
has been used in simulations of emerging infectious diseases as 
well as in the analysis and predictions of pandemic events10,45,46. In 
this framework, the mobility of individuals across subpopulations 
(analogous to the p parameter in spatially structured populations) 
is derived from actual transportation data. To study the effects of 
a reduction in mobility, we rescaled the proportion of individuals 
that travel at each time step by a factor ω. We show the results of 
the rescaled mobility on the spatial diffusion of a rumour simulated 
over the transportation network in Fig. 3a,c. Interestingly, we see a 
clear transition in the mobility required for the rumour to spread. 
The phase diagram reveals that the critical ωc in this system is sig-
nificantly small implying that the current human mobility pattern 
across Europe is orders of magnitude above the rumour threshold.

We also model the collaboration process of the DBLP co-author-
ship network using the modular activity-driven network scheme47. 
Nodes in the network are individual researchers that can form col-
laborations with others either within or outside their own com-
munities. In particular, a link represents co-authorship on at least 
one paper and each community is a specific publication venue. We 
measure the amount of interaction μ between communities by cal-
culating the frequency of cross-community links relative to the total 
number of internal and external links. We simulated the rumour 
model to analyse how information would propagate in this system 
by rescaling the actual individual’s tendency to link outside their 
current community (analogous to the μ parameter in the virtual 
structured population framework) by a factor ω to study the effects 
of lowering inter-community interaction rates. In Fig. 3b,d, we show 
the results of this rescaling on the final fraction of affected disci-
plinary communities and observe a transition point characterizing 
the amount of inter-community collaboration needed in order for 
a rumour or idea to spread globally. Similar to the transportation 
network, the critical rescaling value ωc is extremely small. Both 
data-driven network applications extend our modelling framework  
by incorporating heterogeneous and non-trivial subpopulation 
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interactions. Consequently, the assumptions of statistical equiva-
lence of nodes and an uncorrelated network structure made in 
our calculations are no longer valid. Therefore, in these realistic 
systems, the critical value ωc cannot be easily computed analyti-
cally. However, we do see a similar phenomenology between the 
synthetic and data-driven structured populations in that there does 
exist a critical transition point in the amount of interaction between 
subpopulations or communities that is necessary for a rumour to 
propagate. In both cases, the critical transition point (ωc) is very 
small, highlighting the role of our interconnected world in facilitat-
ing the diffusion of information across geographical boundaries as 
well as through disciplinary communities. However, this result is 
not necessarily universal across all types of structured population. 
Information spreading is fundamentally dependent on the strength 
of interactions among elements of the network, thus calling for spe-
cific case-by-case studies on the location of critical transition points 
in real-world situations.

Discussion and conclusion
In this work, by using a classic rumour spreading model lacking 
any critical threshold in a single homogeneous population, we show 
that the contagion process in structured populations exhibits a 
phase transition with a critical threshold dependent on the amount 
of interactions/coupling between subpopulations. The analytical 
and numerical results presented here emphasize the importance of 
accounting for the complex structure observed in socio-technical 
systems when studying social contagion processes. The features 
observed in real-world systems can potentially alter the theoretical 
picture and the understanding provided by only studying stylized 
models. Our results show that successful information or rumour 
spreading is the result of a complex interaction between the intrin-
sic properties of the contagion process and the dynamics of inter-
actions between subpopulations/communities that comprise social 
systems. The flexibility of the framework allows for further study 
of different types of emergent behaviour that may be more com-
plex than the rumour model used here. For example, in order for 
a contagion to spread, individuals must be contacted by multiple 
neighbours in their social network. Additional features can also be 
incorporated into the interaction process and network structure 
such as age-dependent contact patterns, socio-economic conditions 
and data-driven human mobility. These features have the potential 
to not only provide unexpected results of theoretical nature but also 
actionable insights crucial to understand and control social conta-
gion phenomena.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author 
contributions and competing interests; and statements of data and 
code availability are available at https://doi.org/10.1038/s41567-
020-0810-3.
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Methods
Final rumour size in a single population. The mean-field rate equations for the 
Maki–Thompson rumour model in a homogeneously mixed population are listed 
below. The densities of spreaders (S), ignorants (I) and stiflers (R) in a population 
are defined by s = S ∕ N, i = I ∕ N and r = R ∕ N, respectively, where N is the total 
number of individuals in the population, yielding:

di
dt ¼ �λsðtÞiðtÞ
ds
dt ¼ λsðtÞiðtÞ � αsðtÞðsðtÞ þ rðtÞÞ
dr
dt ¼ αsðtÞðsðtÞ þ rðtÞÞ

ð8Þ

Using the initial conditions i(0) ≈ 1 and r(0) = 0, a solution to these differential 
equations can be obtained analytically in the infinite time limit where 
r1 ¼ 1� e�ð1þλ=αÞr1
I

. This transcendental equation has a trivial solution when  
r∞ = 0, but a non-trivial solution when λ ∕ α + 1 > 1, confirming that a rumour will 
propagate through a population and reach a macroscopic fraction of individuals37. 
Assuming that ð1þ λ

αÞr1  1
I

, we can obtain the approximate solution:

r1 ’ 2 λ
α

ð1þ λ
αÞ

2  2
λ

α
ð9Þ

We can see that the final density of stiflers scales with λ ∕ α. This relationship 
is verified through numerical simulations of the rumour model for a single 
homogeneously mixed population as detailed in the Supplementary Information.

Average spreading time. The average spreading time, 〈τ〉, is the time elapsed from 
when the individual was first told the rumour to the time the individual became 
a stifler. Supplementary Fig. 1b shows the average spreading time as a function of 
1
λ þ 1

α
I

 from simulations done on a single population. A linear line is fit to the data, 
producing the equation:

hτi ¼ 1
λ
þ 1

α
þ 1
2

ð10Þ

Number of potential spreaders. The number of potential spreaders β that could 
transmit the rumour to another population can be calculated as β ¼ hτiNr1

I
, 

where 〈τ〉 is the average amount of time an individual remains a spreader and  
Nr1
I

 is the final average number of individuals that know the rumour at the end 
of the spreading process. Using the approximated equations for the final stifler 
density as well as the average spreading time, one obtains:

β ¼ r1Nhτi ¼ 2ð1þ λ
αÞN

α
ð11Þ

In the modular activity-driven network model, the expression for β is not 
altered by the fact that individuals are activated with probability a. The average 

spreading time 〈τ〉 should be measured by considering the duration of the 
contagion process, which should be on the order of 1 ∕ a (average number of 
time steps between activations), and the activity of the individual at each time 
step, which is a. It follows that these terms cancel each other out, so the effective 
number of interactions of each spreader will not be dependent on a as also shown 
numerically in the Supplementary Information.
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reasonable request.

code availability
Code is available upon request from the corresponding author.

references
 48. Leskovec, J. & Krevl, A. SNAP Datasets: Stanford Large Network Dataset 

Collection; http://snap.stanford.edu/data

Acknowledgements
N.P. was supported in part by the US Army Research Laboratory and the US Army 
Research Office under contract/grant number W911NF-18-1-0376. Y.M. acknowledges 
partial support from the Government of Aragón, Spain through grant E36-17R, by 
MINECO and FEDER funds (grant FIS2017-87519-P) and from Intesa Sanpaolo 
Innovation Center. The funder had no role in study design, data collection, and analysis, 
decision to publish, or preparation of the manuscript.

Author contributions
J.T.D., N.P., Y.M. and A.V. designed the research. J.T.D., A.V. and Q.Z. performed 
research and analysed data. All authors wrote the manuscript.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41567-020-0810-3.

Correspondence and requests for materials should be addressed to A.V.

Peer review information Nature Physics thanks Damon Centola, Chris Danforth and 
Hawoong Jeong for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

NATure PhYsics | www.nature.com/naturephysics

http://snap.stanford.edu/data
https://doi.org/10.1038/s41567-020-0810-3
https://doi.org/10.1038/s41567-020-0810-3
http://www.nature.com/reprints
http://www.nature.com/naturephysics

	Phase transitions in information spreading on structured populations
	Model definition
	Rumour model in spatially structured populations. 
	Rumour model in virtual structured populations. 

	Invasion threshold in structured populations
	Spatially structured populations. 
	Virtual structured populations. 
	Simulations on synthetic structured populations. 

	Data-driven simulations
	Discussion and conclusion
	Online content
	Fig. 1 Types of structured population considered in the modelling framework.
	Fig. 2 Results from numerical simulations of the rumour spreading process in homogeneous structured populations.
	Fig. 3 Results from numerical simulations of a rumour spreading in real-world networks.




