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Abstract

Background: The ongoing COVID-19 pandemic has emphasized the necessity of a well-functioning surveillance system to
detect and mitigate disease outbreaks. Traditional surveillance (TS) usually relies on health care providers and generally suffers
from reporting lags that prevent immediate response plans. Participatory surveillance (PS), an innovative digital approach whereby
individuals voluntarily monitor and report on their own health status via web-based surveys, has emerged in the past decade to
complement traditional data collection approaches.

Objective: This study compared novel PS data on COVID-19 infection rates across 9 Brazilian cities with official TS data to
examine the opportunities and challenges of using PS data, and the potential advantages of combining the 2 approaches.

Methods: The TS data for Brazil are publicly accessible on GitHub. The PS data were collected through the Brazil Sem Corona
platform, a Colab platform. To gather information on an individual’s health status, each participant was asked to fill out a daily
questionnaire on symptoms and exposure in the Colab app.

Results: We found that high participation rates are key for PS data to adequately mirror TS infection rates. Where participation
was high, we documented a significant trend correlation between lagged PS data and TS infection rates, suggesting that PS data
could be used for early detection. In our data, forecasting models integrating both approaches increased accuracy up to 3% relative
to a 14-day forecast model based exclusively on TS data. Furthermore, we showed that PS data captured a population that
significantly differed from a traditional observation.

Conclusions: In the traditional system, the new recorded COVID-19 cases per day are aggregated based on positive
laboratory-confirmed tests. In contrast, PS data show a significant share of reports categorized as potential COVID-19 cases that
are not laboratory confirmed. Quantifying the economic value of PS system implementation remains difficult. However, scarce
public funds and persisting constraints to the TS system provide motivation for a PS system, making it an important avenue for
future research. The decision to set up a PS system requires careful evaluation of its expected benefits, relative to the costs of
setting up platforms and incentivizing engagement to increase both coverage and consistent reporting over time. The ability to
compute such economic tradeoffs might be key to have PS become a more integral part of policy toolkits moving forward. These
results corroborate previous studies when it comes to the benefits of an integrated and comprehensive surveillance system, and
shed light on its limitations and on the need for additional research to improve future implementations of PS platforms.
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Introduction

The global COVID-19 pandemic in March 2020 has had
unprecedented consequences around the world. It caused
widespread illness and deaths, as well as worldwide economic,
political, and social repercussions [1]. The occurrence of such
an extraordinary event emphasizes the need for well-functioning
disease surveillance systems to detect and monitor disease
outbreaks and epidemics. Countries use disease monitoring
systems to assess, predict, and mitigate infectious disease
outbreaks [2,3]. Reliable and timely data are critical to protect
populations and build the foundation for governments, policy
makers, and officials to intervene and prevent widespread
infections [4]. As such, developing and improving on existing
surveillance methods remains a rapidly growing and emerging
field [5].

Most current surveillance systems, listed here as traditional
surveillance (TS) systems, rely largely on traditional health care
institutions, such as clinics, hospitals, and laboratories, to
systematically collect data from practitioners as a public health
monitoring tool [2]. Health care providers send reports to public
health officials with certain regional or national data
aggregation. In a few cases (usually, only a small percentage),
these reports are then confirmed by laboratory analysis. Reported
cases are then accounted as official disease cases [6-8]. Since
the data are sourced from different institutions, aggregation
often involves several time lags throughout the chain of data
collection, reducing the timeliness of measures and actions
[4,9,10]. Moreover, the true burden of the disease is often
underestimated. In industrialized countries, healthy adults with
no previous conditions usually do not visit a doctor if their
symptoms remain mild. In emerging countries,
socioeconomically weak communities lack access or financial
resources to seek medical aid and thus are overlooked by TS
[11]. Over the last 2 decades, new digital disease surveillance
approaches have emerged to supplement traditional data
collection, such as participatory surveillance (PS). Participatory
disease surveillance is understood as an approach that directly
engages the public in providing health data. Individuals monitor
and assess their own health status and are encouraged to submit
self-reports through digital platforms using mobile apps,
websites, and phone-based surveys via SMS text messages or
automated calls (interactive voice response [IVR]) [12]. Any
individual can register on the platform (if they live in a country
where a PS platform is deployed) and participate on a voluntary
basis. As such, digital crowdsourced data can be aggregated
and analyzed in large numbers [13-15]. Users are asked to
regularly complete a questionnaire aimed at gathering
information about their current (lack of) symptoms, access to
health care, risk exposure, and medications. In the case of
COVID-19, the main difference compared to TS is the lack of
laboratory-confirmed testing; positive cases are categorized as
such only based on the reporting of certain symptoms, with a
so-called syndromic surveillance approach. The added value of
PS systems is that they can even reach individuals who do not
engage with health care providers because of financial or cultural
factors, because they live too remotely to have access to health
care facilities, or because their symptoms are too mild to cause

concern [12]. The rapid global increase in the use of mobile
phones and wide access to the internet are largely responsible
for the rise of such digital surveillance systems [3]. By
integrating an additional subset of the population not covered
by TS, the complementary data provide an additional layer of
surveillance, potentially enabling more accurate detection of
ongoing infections as well as anticipation of trend changes
[13,14].

PS systems have so far proven to be accurate and reliable for
influenza-like illness (ILI) surveillance [15,16]. Most recently,
as testing capacities were exhausted across many countries in
the context of the pandemic, PS systems were implemented to
support traditional systems in monitoring and controlling
COVID-19 infections [17,18]. So far, Brazil is the first and only
Latin American country that has implemented a PS system on
a large scale to carry out syndromic surveillance, specifically
during the 2014 FIFA World Cup [19] and the 2016 Olympic
Games [20]. Lately, a local Brazilian health authority has used
a PS platform to complement the traditional system, with the
goal of optimizing the targeting of test areas during the
COVID-19 pandemic [17]. This PS system has been shown to
be beneficial in identifying risk clusters for infections in this
context; in particular, it was able to cover blind spots of the TS
system, showcasing the potential to increase its sensitivity by
complementing it with additional data, and to allocate scarce
resources more efficiently by prioritizing certain areas for the
distribution of test kits. Notably, in Europe and the United
States, health agencies and governments are increasingly prone
to using the innovative and digital PS approach as a
complementary source of disease surveillance.

Low public funding and suboptimal resource allocation persist
in the Brazilian health sector [21]. The limitations of the TS
system stress the need to reduce the burden of diseases among
vulnerable and socioeconomically weak communities. This
motivates the study to examine the opportunities and challenges
of a PS system in the context of COVID-19 case detection across
9 Brazilian cities. During 7 months of the global pandemic in
2020, several city-level governments implemented the Brazil
Sem Corona PS platform to gather additional insights on the
spread of the disease. Brazil Sem Corona was an initiative led
by Colab in partnership with several local governments from
Brazilian cities, with the purpose of leveraging PS data to
complement TS systems in order to mitigate COVID-19 risk at
the local level. For our analysis, we focused on 9 cities with the
largest PS participation across Brazil. Our objective was to
investigate the capability of PS data to approximately mirror
traditional infection rates captured through TS, as well as the
relevance of citizen participation for the identification of trends
in COVID-19 cases. Furthermore, we investigated the potential
benefits of combining the PS and TS systems for forecasting
case trends. Among the benefits, we showed that the PS system
captures a part of the population that is so far overseen by
traditional sources.
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Methods

Goal
In this work, the goal was to compare daily official COVID-19
infections at the municipality level with daily PS infection
numbers.

TS Data
TS data for Brazil are publicly accessible on GitHub [22]. These
data aggregate the official laboratory-confirmed daily new
COVID-19 cases at the municipality level. Using the 2020
population size estimates for each city [23], we calculated the
infection rate per 100,000 inhabitants as follows:

where i denotes the city and t denotes the day.

PS Data
PS data for this study were collected through the Brazil Sem
Corona platform, a Colab participatory platform developed
previously [24]. To gather information on an individual’s health
status, each participant was asked to fill out a daily questionnaire
in the Colab app on symptoms as well as exposure. The app
was available on the Apple Store as well as the Google Play
Store. The list of symptoms was based on the COVID-19 case
definition and contained the following: fever, cough, shortness
of breath, runny nose, sore throat, headache, fatigue, nausea,
rash, joint pain, chills, diarrhea, and loss of taste. Additionally,
participants were asked to report about medication intake and
whether they sought a health care facility for their symptoms.
For this study, Colab subsequently provided access to the
anonymized data set of Brazil Sem Corona.

Ethical Considerations
Before filling out the questionnaire, participants were asked to
agree with an informed consent form in the registration phase.
The form described the study and the purpose of the project,
and provided information about how the data could be used by
third parties for research analysis purposes. Access to the data
and study was approved by the Colab Institutional Management
Board. All methods were carried out in accordance with
guidelines and regulations, including but not limited to the Lei
Geral da Proteção de Dados – LGPD, the official regulation
on data privacy and protection valid in Brazil. All collected
study data were anonymous and deidentified. No compensation
was provided to the participants. The data used in this study
can be made available through a formal request to the Colab
team.

Data Collection
The platform was set up online on March 20, 2020, right after
the World Health Organization officially declared COVID-19
as a public health issue with pandemic implications on March
11, 2020 [25]. During the period following this official
statement, Brazilian newspapers and magazines extensively
advertised the Brazil Sem Corona platform, leading to an
increase in self-report submissions [26-28].

The increase in the number of participants allowed the creation
of a database of symptom-based reports that could be used for
the analysis. Each report was categorized into one of the
following categories: (1) no symptoms, (2) light symptoms, (3)
suspected COVID-19 case, (4) severe suspected COVID-19
case, and (5) confirmed case. In order to be categorized as a
suspected case, the user must report fever together with at least
one other symptom. If along with these symptoms either
medication intake is reported or a health care facility is sought,
the report is labeled as severe suspected case [29]. Only those
users reporting a positive laboratory COVID-19 test result were
categorized as confirmed cases. All the suspected, severe
suspected, and confirmed cases were then treated as possible
COVID-19 cases, while light and no symptom cases were treated
as negative cases. The inclusion of not only confirmed cases
but also suspected cases is one of the key differences with
respect to case counts performed in TS settings.

For each city in which data were collected, we aggregated the
reports submitted for each day and calculated the daily infection
rate:

where i denotes the city and t denotes the day.

Data sparsity and fluctuations were addressed by applying a
simple but powerful tool called LOESS to the PS data. It fits
smooth lines to empirical data using a nonparametric approach
[30]. For all 9 cities, the smoothed PS and TS infection rates
were then compared.

Pearson Correlation Calculation
To measure the statistical relationship between the 2 time series,
we calculated the Pearson correlation (PCt) coefficient for the
original time series. Additionally, we used a 7-day and 14-day
lagged PS series to calculate PCt-7 and PCt-14. Finally, we
determined the coefficients over a reduced 4-month observation
period during which public engagement and participation rates
were the largest.

Finally, we looked at the proportion among self-reported cases
of confirmed cases and the percentage of confirmed cases
seeking health care assistance.

Forecasting Models
In order to further assess the added value of insights generated
by PS systems, we used the PS data to inform 3 different
forecasting models to predict incidence rates for COVID-19
with a time horizon varying between 1 and 3 weeks (Figure 1).
TS data were used to generate a baseline model that represents
the “ground truth” against which the forecasting models were
compared.

Thus, the first model (further referred to as the baseline model)
was a univariate model based on only TS data. The second and
third models (referred to as the combination model and lagged
combination model, respectively) were bivariate models
integrating both TS and PS data. The third model also used a
14-day lag in the PS incidence rate series. For all 3 models, we
used a linear autoregression function with n daily lagged
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components. For each city, the optimal number of independent
variables was selected based on the Akaike Information
Criterion (AIC) that estimates the prediction error and quality
of statistical models. Thereby, the explained part of the variation
was maximized while using only the lowest possible amount
of time lag.

To evaluate the performance of the forecasting models, we
calculated the root mean squared error (RMSE) and mean

absolute error (MAE). The RMSE measures the difference
between predicted and true values as follows:

The MAE measures the average of the absolute errors between
predicted and true values as follows:

Figure 1. Model overview. stands for the estimation, whereas TS stands for the true value. By weighing n past components, 1-, 7-, and 14-day

forecasts are estimated. The model parameters and are estimated based on a training subsample that contains the first 80% of the data. The
out-of-sample forecasting accuracy is then calculated based on the remaining 20% of the data. Thus, the first 80% of the observation period is used to
fit the models, while the remaining 20% is used to evaluate its performance. PS: participatory surveillance; TS: traditional surveillance.

Results

Reports were collected between March 20, 2020, and October
20, 2020. The analysis covered the whole 7-month observation
period. Even though the platform was accessible all around
Brazil, nearly 65% of the reports were submitted from 9 cities.
Therefore, the study focused only on those cities with the largest
number of submitted reports. People from Teresina, Caruaru,
Santo Andre, Niteroi, Recife, Porto Alegre, Campinas, Sao
Paulo, and Rio de Janeiro submitted an aggregated total of
83,005 reports (13,582 individuals).

To assess the importance of participation, we compared the
capability of the PS data to mirror the infection rates reported
by the TS systems implemented in the 9 cities. In Table 1, we
present the 9 cities with the largest PS participation (the highest
number of submitted reports across Brazil). As the population
size varied between the cities, we additionally weighted the
number of submitted reports by the population size displayed
by the variable “number of reports by 100.” As participants
could report several times throughout the observation period,
there was a relatively large number of submitted reports
compared with the number of participants. Even though São
Paulo recorded a relatively large number of submitted reports,
it was ranked only second to last due to its large population size.
Teresina, Caruaru, and Santo André were ranked as the top 3
based on the variable “number of reports by 100.” The large
participation in those 3 cities was not coincidental but rather
driven by massive local media campaigns led by local officials
[26-28]. Those social media campaigns seem to have impacted
the participation behavior, underlining the government’s role.
Additionally, we displayed the variable “share of zeros,” which
captures the share of observation days on which no possible
COVID-19 case was recorded on the platform within a city.
This problem is often referred to as zero inflation (as the sample

contains an excess of zeros) and is equivalent to censored data.
Those numbers were negatively correlated with the level of
engagement, as the cities at the bottom of the ranking displayed
a striking share of zeros (as high as 96%).

As mentioned in the Methods section, every submitted report
was categorized as either a negative COVID-19 case or
suspected COVID-19 case based on the symptoms reported in
the survey. In Figure 2, we show the TS and PS incidence rates
over the entire 7-month observation period to compare
differences in detected infection rates between the 2 surveillance
methods. The 9 cities have been arranged according to the
participation ranking (Table 1) from top left to bottom right.
The top row displays the 3 cities with the largest community
engagement (Teresina, Caruaru, and Santo André). Here,
infections identified through PS and TS followed a relatively
similar pattern, at least between March and August 2020. For
most cities, the trend of detected cases diverged between the 2
methods toward the end of the observation period, which can
be explained by the relatively low number of submitted reports
over that interval. More details on the daily number of submitted
reports can be found in Figure S1 in Multimedia Appendix 1.
From the graphical analysis, it follows that the capability of the
PS system to potentially point to the trend of infections seemed
to decrease with low participation rates. This finding is
supported by Table 2, which reports the Pearson correlation
coefficients between the PS and TS time series within each city.

Table 2 confirms that the largest correlation between the 2 data
sources was indeed noted for the cities with the largest
participation rates (namely, Teresina, Caruaru, and Santo
André). The Pearson correlation coefficients for those 3 cities
were above 0.5, indicating a moderate to high positive
correlation between the 2 data sources.

We next analyzed the participation behavior of individuals
across all 9 cities. A significant share of 40%-50% of individuals
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participated only once throughout the observation period, while
roughly 6%-13% were considered as frequent participants, with
at least 15 submitted reports. Detailed numbers can be found
in Table S1 in Multimedia Appendix 1.

In order to assess the effect of lag on the time series correlation,
we also determined the Pearson correlation coefficients for the
3 key cities with the largest public engagement, using 7-day
and 14-day lags in the PS data series. Table 3 shows the lagged
Pearson correlations for the full observation period, while Table
4 presents the results for the reduced period from April 1 to July
31, 2020.

In Table 3, an increased correlation can only be found for
Teresina, where the coefficient increased from 0.82 to 0.89 for
the 14-day lag. For Caruaru and Santo André, the coefficients

declined from 0.79 to 0.71 and from 0.56 to 0.45, respectively.
However, the correlations for the 7-day lag remained at roughly
the same level. While these results are ambiguous and rather
weak, the picture appears clearer in Table 4.

In Table 4, the coefficients remain either constant or show an
increase using 7-day and 14-day lags across all 3 cities. By
removing the tails of the observation period, the focus was set
on the months with the strongest engagement, as shown by the
higher daily average of submitted reports in Table 4.

Table 5 presents the proportion of confirmed COVID-19 cases,
proportion of cases for which health care assistance was sought,
and proportion of cases involving medication intake among all
submitted reports that were categorized as potential COVID-19
cases.

Table 1. Participation ranking for the 9 Brazilian cities under examination.

Share of zerosb, %Number of participantsNumber of reports per 100aNumber of reportsCity

7.044493.1727,558Teresina

32.013632.8110,279Caruaru

46.728661.9714,207Santo Andre

62.98971.316757Niteroi

73.94920.243895Recife

96.13360.192779Porto Alegre

92.93070.172006Campinas

70.723600.1012,453Sao Paulo

74.67340.053071Rio de Janeiro

aThe ranking is based on the variable “number of reports per 100,” from the largest to the smallest. This variable shows the number of submitted reports
per 100 inhabitants and is calculated as the number of submitted reports divided by population size times 100.
bThe variable “share of zeros” shows the share of observation days on which no possible COVID-19 case was recorded within a city.
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Figure 2. Daily PS and TS infection rates per city. The graphs are arranged according to the weighted participation from top left to bottom right. PS:
participatory surveillance; TS: traditional surveillance.

Table 2. Pearson correlations for each study city.

P valuePearson correlationCitya

<.0010.82Teresina

<.0010.79Caruaru

<.0010.56Santo Andre

<.0010.24Niteroi

<.0010.23Recife

<.0010.18Porto Alegre

<.001−0.34Campinas

<.0010.32Sao Paulo

.190.09Rio de Janeiro

aThe cities are ranked according to population-weighted participation from the largest to the smallest.

Table 3. Lagged Pearson correlations for the full observation period (full 7-month period).

Average daily reportsPC (14-day lag)PC (7-day lag)PCaCity

1280.890.870.82Teresina

490.710.770.79Caruaru

660.450.560.56Santo Andre

aPC: Pearson correlation coefficient.
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Table 4. Lagged Pearson correlations for the reduced observation period (April to July 2020).

Average daily reportsPC (14-day lag)PC (7-day lag)PCaCity

1930.930.910.86Teresina

760.880.850.85Caruaru

880.880.890.82Santo Andre

aPC: Pearson correlation coefficient.

Table 5. Characteristics of potential COVID-19 case reports.

Santo Andre (N=189), n (%)Caruaru (N=356), n (%)Teresina (N=987), n (%)Variable

108 (57.1)152 (42.7)362 (36.7)Confirmed cases

65 (34.6)112 (31.4)270 (27.4)Cases seeking health care

110 (58.0)185 (50.2)495 (50.2)Cases involving medication intake

Forecasting Models
For the 3 cities with an at least moderate (higher than 0.8)
positive Pearson correlation coefficient, we compared the
RMSEs and MAEs from the baseline model with those from
the combination as well as lagged combination model (Tables
6-8). We show the results for 1-day, 7-day, and 14-day forecasts.

Even though improvements were only modest, there was a
pattern that could be identified across all 3 cities. The
combination model outperformed the baseline model for the
14-day forecast by up to 2.7%. The results for the 7-day forecast
were ambiguous; while there were improvements of up to 4.1%,
only 2 out of the 3 cities showed reduced RMSEs.

Table 6. Forecasting errors using different models for 1-day, 7-day, and 14-day forecasts in the city of Teresina.

MAEcRMSEbForecast period and modela

1-day forecast

0.01330.0195Baseline model

0.01400.0198Combination model

0.01370.0193Lagged combination model

7-day forecast

0.03020.0410Baseline model

0.02810.0393Combination model

0.03100.0409Lagged combination model

14-day forecast

0.02450.0347Baseline model

0.02460.0338Combination model

0.02490.0340Lagged combination model

aThe models used n=13 lagged components as independent variables.
bRMSE: root mean squared error.
cMAE: mean absolute error.
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Table 7. Forecasting errors using different models for 1-day, 7-day, and 14-day forecasts in the city of Caruaru.

MAEcRMSEbForecast period and modela

1-day forecast

0.01620.0214Baseline model

0.01600.0212Combination model

0.02200.0290Lagged combination model

7 -day forecast

0.02340.0316Baseline model

0.02370.0318Combination model

0.02440.0329Lagged combination model

14-day forecast

0.01900.0293Baseline model

0.01870.0288Combination model

0.01900.0292Lagged combination model

aThe models used n=5 lagged components as independent variables.
bRMSE: root mean squared error.
cMAE: mean absolute error.

Table 8. Forecasting errors using different models for 1-day, 7-day, and 14-day forecasts in the city of Santo Andre.

MAEcRMSEbForecast period and modela

1-day forecast

0.00940.0137Baseline model

0.01810.0236Combination model

0.01570.0203Lagged combination model

7 -day forecast

0.01690.0225Baseline model

0.01740.0219Combination model

0.02450.0321Lagged combination model

14-day forecast

0.02450.0292Baseline model

0.02360.0284Combination model

0.02510.0299Lagged combination model

aThe models used n=14 lagged components as independent variables.
bRMSE: root mean squared error.
cMAE: mean absolute error.

Discussion

The goal of this study was to show how PS systems, already
well established as a routine surveillance monitoring approach
for ILI, can also complement and enhance TS systems for
monitoring pandemic diseases such as COVID-19. The results
showed that the validity of the approach strongly depends on
the rate of participation among the general population.

We found that the PS infection rates from the 3 cities with the
largest participation approximately mirrored the TS infection
rates, even though the representativeness of the PS

subpopulation was most likely biased in terms of sex and age.
The 3 cities were able to engage a large group of individuals
due to social media campaigns promoted by local officials and
governments. The insights from the other cities were less reliable
as the data were not able to represent the traditional infection
rates due to low engagement and zero inflation. In Campinas,
the city with the lowest total number of submitted reports, PS
performed so poorly that its data displayed a negative correlation
with TS data. With a total of only 2006 submitted reports over
a period of 210 days (Table 1), a daily average of self-reports
of just under 10 was observed, implying that the sample size
was far too small. The same was true for the other cities at the
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low end of the ranking, with Pearson correlations below 0.25.
The only exception was São Paulo, whose correlation was
smaller than the correlations of the top 3 cities. Even though it
was ranked as second to last regarding population-weighted
participation, the total number of submitted reports for São
Paulo was relatively large at 12,453 reports. This corresponded
to an average of nearly 60 submissions per day, resulting in a
Pearson correlation coefficient of 0.32. Overall, low
participation is considered one of the main limitations for the
capability of PS data to mirror traditional infection rates. Even
though it is known for ILI that participation of 1%-2% is
reasonable in epidemic periods, additional work is necessary
to better estimate a reasonable cutoff for COVID-19.

A stronger correlation between the TS and lagged PS time series
supports the theory of early trend detection, which is one goal
pursued by PS. However, this was only conducted for 3 cities,
which showed a strong positive PCt above at least 0.5. It was
found that toward the end of the observation period, only few
people participated on the platform, such that around 80% of
the reports were submitted within the period from April 1 to
July 31, 2020.

The results from the forecasting analysis were also consistent
with this conclusion. The errors for the 1-day ahead forecasts
were generally smaller than the errors found in the 7-day and
14-day forecasts for all 3 cities. This is not surprising, as
uncertainty rises with longer forecast horizons, and hence, the
forecast accuracy of a model is lower. When looking at the
1-day forecasts, the baseline model seemed to outperform the
combination model, at least for Teresina and Santo André. As
mentioned before, uncertainty grows with longer horizons,
which might explain the lack of value addition that comes from
integrating PS data in a 1-day forecast. In Teresina, however,
both the 7-day and 14-day forecasts from the combination and
lagged combination models performed better than the baseline
model, with slightly lower RMSEs. The combination model
showed a 4.2% reduction in the RMSE for the 7-day horizon
and a 2.6% reduction for the 14-day horizon, while the lagged
combination model showed reductions of 0.2% and 2.1%,
respectively. In Caruaru, the combination model performed
slightly worse for the 7-day forecast relative to the baseline
model, with a 0.5% increase in the RMSE, but an improvement
was noted for the 14-day forecast, with a 1.7% reduction in the
RMSE. Similar results were found for the lagged combination
model, whereby the 7-day forecast showed a 4.1% increase in
RMSE, while the 14-day forecast showed an improvement by
0.4%. The combination model applied on the data from Santo
André again reduced the RMSEs for both the 7-day and 14-day
forecasts by 2.8% and 2.7%, respectively. However, the lagged
combination model was not able to improve the forecast for any
of the applied horizons. This shows how complementing
traditional disease surveillance systems may further increase
the possibility for the early identification of outbreaks under
the condition of sufficiently large participation. Slight
improvements in the forecasting accuracy of up to 3% were
identified for the models integrating data from both surveillance
sources compared to the baseline model relying entirely on
traditional data. Even if forecasting improvements are only
weak, the detection of infections is improved as PS can cover

an additional subset of the population that is overseen by the
traditional system. The above findings contribute to a deeper
understanding of the benefits of a complementary digital
surveillance layer. They corroborate previous literature,
emphasizing that the 2 approaches can be complements for
timely health threat identification [3,14,16]. Even though some
of the results indicate only small improvements in accuracy,
the possibility of enhancing case detection through broader
coverage cannot be neglected.

Some limitations related to the PS approach should be
mentioned. Studies conducted in the United States and Western
Europe suggest that the population subgroup captured by the
Brazil Sem Corona PS system does not necessarily represent
the general Brazilian population [31-33]. In previous PS data,
female participants were significantly overrepresented compared
to the general population. Besides that, age groups below 30
years and above 80 years were underrepresented. Moreover,
the average participant most likely held a higher educational
degree than the average population [34]. Furthermore,
individuals living in bigger cities were more likely to participate,
leading to clusters around more urban areas and information
gaps in more remote regions. This is supported by the
geocoordinates from the submitted reports on the Brazil Sem
Corona platform, which indicate that a significant share of
participants live in or around urban areas. Targeting the
underrepresented population may prospectively improve the
complementary benefit of the platform, particularly among those
not seeking medical attention. Despite the biases found in the
population covered by PS, studies highlight that PS systems
that engage a sufficiently large group of participants can still
adequately capture TS infection trends [33,35]. Ideally, PS
tracks individuals throughout the season. Knowing that nearly
half of the participants did not continue their engagement after
the first report submission stresses the need for efforts to ensure
more frequent participation in the future. Previous studies from
the United States and Canada have found significant differences
in participation across age groups, along with a 25% lower
probability of frequent participation by women relative to men
[33].

Another important aspect of complementing disease surveillance
systems is the goal of early trend detection to identify disease
outbreaks. Integrating multiple data sources not only aims at
improving data insights and detecting more cases but also ideally
leads to the detection of outbreaks at an earlier stage. The
finding of greater coefficients in the lagged Pearson correlation
indicates that the timeliness of the PS system helps in identifying
slightly preceding trends. This supports the idea that a PS
system, which engages a larger volunteer network, is more likely
to depict infection trends, resulting in better data insights and,
eventually, in earlier anticipation of trend changes. Recognizing
outbreak patterns only slightly in advance might already have
great benefits for health agencies when it comes to fighting
pandemics. Improvements in 14-day forecasts allow health
officials to respond more quickly and prioritize certain areas
identified as more likely to suffer from rising infection numbers.
This may be of particular importance for low-income countries
or for regions that suffer from a considerable scarcity in health
services. The PS system brings value by producing information
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that can be used to reduce uncertainty in allocation decisions.
Furthermore, infection monitoring can be improved thanks to
the geolocation information provided by PS data, which allows
for a typically higher spatial resolution. Aside from preventing
local transmissions, improvements in the surveillance system
may result in externalities, such as lower infections in other
regions [36].

We hypothesize that the severity of COVID-19 likely influenced
individuals’ motivation to engage in a voluntary surveillance
system. Governments have adjusted their behavior during the
ongoing pandemic and made significant efforts to improve the
timeliness of traditional data reporting. Many countries,
including Brazil, have overcome administrative burdens and
were ultimately able to report daily new infections. As such,
the timeliness that usually distinguishes a PS system from a TS
system has most likely vanished. We see this as a reasonable
explanation for why the magnitude of the results from the
forecasting is weaker compared to the findings of previous
studies conducted in the field of ILI [14,15]. Besides that, ILI
tracking allows for data collection across several flu seasons,
increasing the amount of available data and allowing for
consistency checks across seasons, whereas the novelty of
COVID-19 only allows for a single 7-month observation period
in Brazil.

We emphasize the successful collaboration among governments,
locals, and professionals when it comes to maximizing the use
and gain of the Brazil Sem Corona platform. The 3 cities with
extensive social media campaigns clearly demonstrated the
capabilities of the PS system, under the condition of sufficient
participation. Defining sufficient participation remains relevant
for future research; so far, previous studies only highlighted the
number of reports as a critical element and claimed the need to
maintain sufficient coverage without setting a certain threshold
[13,32,37]. Factors, such as population density, urbanization,
and area size, most likely cause regional variations, making it
significantly more difficult to determine a specific number that
is generally valid.

The implementation of a proper surveillance system remains
an important challenge in developing countries. While the PS
system aims to address disparities in health outcomes, it
currently reaches more urban regions and relatively more
educated people. Therefore, voluntary crowdsourced information
likely contains a population bias. Assessing the potential benefits
for more rural communities remains open to future research in

order to realize the system’s full potential. Engaging and
motivating a greater diversity of individuals remain key
challenges that must be addressed in future PS platform
implementations. Obstacles, such as lack of access to modern
technologies, illiteracy, and simply lack of awareness of the
benefits from participation, might hinder progress toward a
more diverse reporting population.

Nearly half of the participants in Brazil submitted only a single
report. This prevents monitoring the health status of individuals
over a longer observation period, and as a result, reduces the
insights that can be gained from PS systems. This stresses the
need to evaluate incentives to induce more frequent
participation. Additionally, in-depth research is needed to
determine the reasons that lead to discontinuation of
participation after the first submission. Addressing the above
issues in future PS platform implementations is likely to lead
to even greater benefits.

The unavailability of data on participants’ sociodemographic
characteristics in the Brazil Sem Corona platform prevents an
important analysis of the representativeness of participants
versus the general Brazilian population. Performing further tests
and extending the method could confirm the validity of the
results and deepen the insights. The forecasting models were
kept rather simple on purpose, with only the TS and PS data as
independent variables. Adding mobility data or contact tracing
data, for instance, could improve accuracy, leading to a better
understanding of transmission. There are further limitations to
keep in mind, such as the impact of the criteria of categorization
of a submitted report into either a suspected COVID-19case or
a negative case, as this can influence the number of reports
included in the case counts and the likelihood of false positives.
Furthermore, the applied local regression (“LOESS”) remains
an approximation for smoothing the highly sparse data.
Alternative smoothing techniques might produce different
results, which could lead to divergent interpretations.

Public engagement remains a challenge. Future research needs
to identify determinants of participation and proper incentives
to induce larger coverage and higher diversity of participants.
As the quality of data insights improves, PS benefits may further
expand. Deeper insights allow for greater acceptance and
credibility among governments and health authorities.
Expanding collaboration among researchers, officials, and health
authorities is needed to leverage data insights for timely response
plans, which can ultimately lead to better health outcomes.
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