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The spatial propagation of many livestock infectious diseases critically depends on the animal
movements among premises; so the knowledge of movement data may help us to detect,
manage and control an outbreak. The identification of robust spreading features of the
system is however hampered by the temporal dimension characterizing population inter-
actions through movements. Traditional centrality measures do not provide relevant
information as results strongly fluctuate in time and outbreak properties heavily depend on
geotemporal initial conditions. By focusing on the case study of cattle displacements in
Italy, we aim at characterizing livestock epidemics in terms of robust features useful for plan-
ning and control, to deal with temporal fluctuations, sensitivity to initial conditions and
missing information during an outbreak. Through spatial disease simulations, we detect
spreading paths that are stable across different initial conditions, allowing the clustering of
the seeds and reducing the epidemic variability. Paths also allow us to identify premises,
called sentinels, having a large probability of being infected and providing critical information
on the outbreak origin, as encoded in the clusters. This novel procedure provides a general
framework that can be applied to specific diseases, for aiding risk assessment analysis and
informing the design of optimal surveillance systems.

Keywords: modelling; livestock disease; surveillance; dynamic networks;
disease prevention and control; livestock movements
1. INTRODUCTION

Livestock infectious diseases represent a major concern
as they may compromise livestock welfare and reduce
productivity, induce large costs for their control and
eradication [1] and may in addition represent a threat
to human health, because the emergence of human
diseases is dominated by zoonotic pathogens [2]. Dis-
ease management and control are thus very important
in order to reduce such risks and prevent large economi-
cal losses [3–7], and strongly depend on our ability to
rapidly and accurately detect an outbreak and protect
vulnerable elements of the system. The major difficulty
lies in the assessment and prediction of the potential
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consequences of an outbreak, and how these depend
on specific conditions of the epidemic event. Control
may be hampered by the non-localized nature of disease
transmission, with animal movements facilitating the
geographical spread of the diseases on large spatial
scales [1]. The knowledge of the pattern of movements
among populations of hosts is thus crucial in that it
represents the key driver of infection spread, defining
the substrate along which transmission can occur. The
availability of detailed datasets of animal movements
allows for the explicit analysis of these patterns and
the simulation of the spatial spreading of animal
diseases among premises, aimed at the characteriza-
tion of premises in terms of their risk of exposure or
spreading potential [8–22].

A network representation [23–26] is a natural
description of the set of animal movements with nodes
corresponding to livestock-holding locations, and links
This journal is q 2012 The Royal Society
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referring to livestock movements. Network approaches to
epidemic spreading are widely used, leading to valuable
and important results in the understanding of the sys-
tem’s properties relevant to the disease spreading.
Different centrality measures have been investigated in
order to identify the nodes with largest spreading poten-
tial that should be targeted for disease control [26–32],
with a focus mainly on the static properties of the spatial
and topological aspects of contact and movement pat-
terns. The study of livestock trade movement data,
however, has shown the presence of large heterogeneities
characterizing the network from the geographical and
temporal point of view [8–10,12,13,15,19,20,33,34],
and of a strong dynamical activity at the local level
that limits the usefulness of projections into static
properties [22]. The temporal nature of the pattern of
livestock movements thus opens novel challenges limiting
our understanding of the epidemic process because of (i)
the strong dependence of the spreading pattern on the
initial conditions, both geographical and temporal [11],
and (ii) the lack of meaningful definitions of the
importance of nodes, given the observed large temporal
fluctuations of centrality measures based on static struc-
tural properties [22]. Both aspects limit our ability to
design robust and efficient surveillance and containment
measures by strongly increasing the number of degrees of
freedom responsible for the outbreak outcomes.

Here, we address these challenges by considering the
spread of livestock diseases on the dataset of cattle dis-
placements among Italian animal holdings [15,22],
where the full temporal resolution of the dataset is con-
sidered. In order to gain a general understanding of the
interplay between the spreading dynamics and the tem-
poral features of the animal movements, we consider a
simple model of a notifiable highly contagious disease
characterized by short time-scales where the single epi-
demiological unit corresponds to the farm (i.e. the node
of the network) and transmission can occur from farm
to farm through animal movements (i.e. the links of
the network) [6]. We propose a novel method, applied
to the dataset under study, that uncovers the presence
of similar spreading patterns allowing the clustering of
initial conditions, thus reducing the number of degrees
of freedom and the identification of sentinel nodes to
be targeted for disease surveillance. Appropriately para-
metrized applications can be considered for specific
livestock diseases where movement-related transmission
is a considerable risk factor.
2. MATERIAL AND METHODS

2.1. Dataset and network representation

The data on cattle trade movements used in the present
study are obtained from the Italian National Bovine
database, which provides a daily description of the
movements of each bovine in Italy, specifying the pre-
mises of origin and destination, and the date of the
movement for each animal (identified through a
unique ID) [15]. The dataset refers to the year 2007
and contains the movements of almost 5 million bovines
between more than 170 000 premises involving 96 per
cent of the Italian municipalities (figure 1a) [15]. The
J. R. Soc. Interface
dataset can be described through a dynamical net-
work [11,18,22,35] where the nodes correspond to
premises and a directed link represents a displacement
of bovines between two premises. By aggregating all
the displacements that take place within a given time
interval ½nDt; ðn þ 1ÞDt�, it is possible to construct a
series of temporally ordered static networks describ-
ing the movements at a temporal resolution Dt. The
365 daily networks (Dt ¼ 1) correspond to the finest
available temporal resolution, but other time-scales
(such as Dt ¼ 7, Dt ¼ 28, Dt ¼ 365) may be used
[8–10,12,15,19,20,33].
2.2. Epidemic simulations on the dynamical
network of cattle movements

The disease spread on the dynamical network is mod-
elled using a simple Susceptible–Infectious–Recovered
(SIR) compartmental model [36]. We assume that pre-
mises are the discrete single units of the process,
neglecting the possible impact of within-farm dynamics,
as commonly assumed in the study of the spread of
highly contagious and rapid infectious diseases through
animal movements [6]. Premises are labelled as Suscep-
tible, Infectious or Removed, according to the stage of
the disease. All premises are considered susceptible at
the beginning of the simulations, except for the single
seeding farm. At each time step, an infectious farm i
can transmit the disease along its outgoing links to its
neighbouring susceptible farms that become infected
and can then propagate the disease further in the net-
work. Here, we consider a deterministic process for
which the contagion occurs with probability equal to
1, as long as there is a directed link of cattle movements
from an infectious farm to a susceptible one at a given
time step [11]. Although a crude assumption, this
allows us to simplify the computational exploration of
the initial conditions, focusing on the fastest infection
patterns. The corresponding stochastic case is reported
in the electronic supplementary material, where both
high and intermediate transmissibility rates are
considered. After m21 time steps, an infected farm
becomes recovered and cannot be reinfected. The simu-
lation is fully defined by the choice of the timescale Dt,
used to define the successive aggregated networks and
of the initial conditions ðx0; t0Þ; where x0 is the seeding
node and t0 indicates the outbreak start.
2.3. Invasion paths and seeds’ cluster detection

Given the limited applicability of quantities defined a
priori to characterize the spreading potential of a
node in such a highly dynamical network, here we
exhaustively explore the dependence of the spreading
process on the initial conditions and investigate the
possible emergence of recurrent patterns, aiming at
identifying similar spreaders in such a complex environ-
ment. The disease spreading pattern is encoded in an
invasion path G characterized by a set of nodes n, a
set of directed links l (indicating the transmission),
and a seed x0. We define the overlap Q12 between
two paths G1 and G2 as the Jaccard index
jn1 > n2j=jn1 < n2j, measuring the number of common
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Figure 1. Properties of the cattle movement dataset. (a) Geographical representation of the total number of animals moved
during the year 2007 for each municipality of the country. The colour code is assigned according to the outgoing fluxes of dis-
placed bovines. (b) Median (black) and 95% CI (grey) of outgoing traffic of each premises. For the sake of visualization, the
premises have been ranked by the median values. The traffic has been evaluated on a (i) daily and (ii) monthly basis. (c)
Two consecutive monthly networks (n ¼ 3 and n ¼ 4) have been considered. A list of premises with decreasing number of con-
nections are calculated on the snapshot n ¼ 3, and is applied as a removal strategy for both networks, i.e. from best connected
premises to least connected ones, calculated on the snapshot n ¼ 3 only. The relative size of the giant component GC (i.e. the
largest fraction of premises that are connected with each other and thus potentially reachable by the disease) is shown as a func-
tion of the fraction of premises removed.
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nodes over the total number of nodes reached by the
two paths. This measure does not consider the infor-
mation on the links of transmission from one farm to
another, as we are interested in the observable outcome
of the outbreak, namely the fact that a farm is infected
or not, rather than the precise transmission path. We
also tested an alternative definition of the overlap,
taking into account the directed links composing the
paths (see the electronic supplementary material).

We have computed, at fixed Dt ¼ 1 day and initial
time t0, the overlap Q12 between the invasion paths of
deterministic SIR outbreaks generated by every pair
of potential seeds (x1, x2) and constructed the initial
conditions similarity network (ICSN) as a weighted
J. R. Soc. Interface
undirected network in which each node is an initial
condition of the epidemic and the link between two
nodes x1 and x2 is weighted by the value of the overlap
Q12, measuring the similarity of the invasion paths they
produce. By filtering the ICSN to disregard values of
the similarity smaller than a given threshold Qth, sub-
sets of nodes with similar spreading properties may
emerge (figure 2).

The method described earlier unveils a partition
Pðt0Þ of the possible seeds that depends on the starting
time t0 of the spreading. In order to measure the robust-
ness of the clusters Ciðt0Þ at time t, we define the vector
riðt; t0Þ with components ri;jðt; t0Þ ¼ jCjðtÞ> Ciðt0Þj=
jCiðt0Þj, representing the fraction of nodes of Ciðt0Þ

http://rsif.royalsocietypublishing.org/
http://rsif.royalsocietypublishing.org/


i

j
cluster 1

cluster 2

initial
conditions

spreading
patterns

Q ij

(a) (b) (c)

Figure 2. Schematic of the cluster detection procedure. (a) Different simulated invasion paths (coloured lines) obtained for differ-
ent seeders (corresponding coloured nodes) are shown on the network. (b) The initial conditions similarity network (ICSN) is
obtained by calculating, for any pair of initial conditions i and j, the overlap Qij measuring the similarity between the invasion
paths originated by i and j. Thicker lines in the ICSN indicate a higher overlap. (c) By removing all links of the ICSN with an
overlap lower than a given threshold Qth, clusters of nodes leading to similar propagation paths emerge.
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present in the cluster CjðtÞ. If the partitions are equal at
times t0 and t, each vector riðt; t0Þ will have one com-
ponent equal to 1, and all the others equal to 0. If
instead the nodes of Ciðt0Þ are homogeneously redis-
tributed into the C clusters CjðtÞ of PðtÞ, riðt; t0Þ will
have all components equal to 1/C. Here, we consider
the C ¼ 20 largest clusters for each t and measure the
conditional entropy

Hiðt;t0Þ¼
1

siðt;t0Þlogðsiðt;t0Þ=CÞ
X

j

ri;jðt;t0Þlogri;jðt;t0Þ

ð2:1Þ

of observing a specific redistribution among the largest
C clusters at time t, given that only a fraction
siðt; t0Þ ¼

P
j rijðt; t 0Þ of the original nodes are found

within those clusters, rescaled by its maximum value.
If Ciðt0Þ is also a cluster of PðtÞ, HiðtÞ ¼ 0. If its
nodes are equally divided into the C clusters of PðtÞ,
the entropy is equal to 1. In general, the entropy
takes values in the interval ½ð1� log C= logsiÞ�1; 1�,
where its minimum value, minHiðtÞ, represents the
best possible configuration; all the nodes of Ciðt0Þ are
in the same cluster of PðtÞ, except the fraction
ð1� siÞ that do not belong anymore to the largest C
clusters. We explore in the electronic supplementary
material additional quantities to measure the stability
of the partitions.

2.4. Uncertainty in the identification of the
seed cluster

The presence of similar invasion paths may be exploited
for the identification of the seed cluster starting from a
specific infected premises. In order to investigate
whether this is possible, we explore all paths of infec-
tions and measure the number of times that any node
in the network is reached by the epidemic, breaking
down this number according to the seed cluster orig-
inating the epidemic. We then associate to each node
k, reached by the disease nk times, a vector pðkÞ
J. R. Soc. Interface
whose components pjðkÞ represent the probability of
being infected by a seeder belonging to the cluster j.
If k is reached each of the nk times by invasion paths
rooted in premises belonging to the same cluster m,
the vector has components pm ¼ 1 and p j=m ¼ 0.
On the contrary, for a node k infected by epidemics ori-
ginated in farms belonging to a different cluster each of
the nk times, the vector elements assume the values
pj ¼ 1=nk . In the case an epidemic is detected at node
k by the surveillance system, the vector pðkÞ encodes
valuable information restricting the possible set of
initial conditions. In particular, it is possible to define
an uncertainty jðkÞ in the identification of the seeding
cluster, by using an entropy-like function defined as
jðkÞ ¼ �ðlog nkÞ�1P

jpj logpj . In the mentioned ear-
lier examples, jðkÞ ¼ 0 when k is always infected by
the same cluster, and jðkÞ ¼ 1 if k is infected each
time by a different cluster. The normalization log ðnkÞ
is chosen because it represents the most homogeneous
situation, given that nk is always smaller than the
total number of clusters. An alternative normalization
factor has also been tested in the electronic supplemen-
tary material.
3. RESULTS

3.1. Dynamical properties of cattle
movement network

The dynamical network of bovine displacements exhi-
bits complex features both in the structure of the
various static snapshots [8,10,15,19,20], and in the tem-
poral fluctuations of links and nodes [22]. In particular,
the links lifetime and the number of displaced bovines
are not characterized by a well-defined time scale, and
the centrality measures commonly used in the context
of static networks appear unable to identify the most
important nodes of the network [21,22,37]. An aggre-
gated view of the system over a temporal window Dt
indeed yields a ranking of the importance of premises
that may not reflect their properties at different moments

http://rsif.royalsocietypublishing.org/
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of the system evolution, or at other aggregation time-
scales (figure 1b) [22].

Such fluctuations may strongly affect spreading pro-
cesses, as premises that are poorly connected on a given
day (or week/month) may become largely connected on
the next day (respectively, week/month) and vice versa.
Their impact on the efficacy of intervention measures is
clearly important.

Figure 1c shows the efficacy in the reduction of the
maximum possible epidemic size, indicated by the
number of premises in the giant connected component
(GC), when quarantine measures are adopted that are
based on the movement knowledge at a given time
only. More specifically, premises are removed from a
network in decreasing order of the number of connec-
tions; however, this information is measured only in
the third month and applied to the third and fourth
monthly networks. While such a targeted removal is
effective in rapidly decreasing the size of the largest con-
nected component in the network of the third month, it
is not at all effective for the network of the successive
month. This highlights how using past information
might result in ineffective containment strategies
through isolation of premises for such a highly varying
temporal network, and that the characterization of
the spreading properties of premises cannot be assessed
from a topological static point of view: the full dynami-
cal nature of the trade system and of the epidemic
propagating on it has to be taken into account.

3.2. Epidemic profiles and dependence on the
initial conditions

We first explore the role of the aggregation timescale Dt
of the dynamical network on disease propagation, by
analysing the spreading patterns resulting from out-
breaks starting at each x0 of the approximately
1:7� 105 premises on the seeding date t0¼ 1 January,
assuming an infectious period m21 ¼ 7 days. The simu-
lated epidemics markedly depend on the aggregation
J. R. Soc. Interface
timescale, as shown in figure 3 for daily, weekly, monthly
and yearly networks. Spreading becomes faster and
reaches a larger proportion of the nodes [18] with increas-
ing Dt, as expected, because the temporal aggregation
allows propagation paths that would otherwise be pre-
vented by causality. Most importantly, the epidemic
profiles show for shortDt an intrinsic variability as a func-
tion of the initial conditions of the outbreak, with
multiple peaks and strong differences in peak times for
different initial conditions. The aggregation on large Dt
values leads to a loss of the network intrinsic variability
and therefore to a smaller impact of the seeds on the
epidemic profiles. The large temporal fluctuations
describing the activity of the premises [22] does not
allow the identification of an upper bound of the time-
scale Dt that could be a good approximation to the
system description, because any given infectious period
m21 would have a non-negligible interplay with a broad
set of timescales that are part of the full spectrum of time-
scales of the dynamical system. Therefore, in order to
realistically account for the impact of the seeding on
the spread of epidemics on the dynamical network, in
the following we focus on the finest temporal scale,
Dt ¼ 1 day, for the description of the bovines mobility
in the epidemic simulations.

3.3. Similar spreaders and seed cluster
emergence

By fixing Dt ¼ 1 day, we explored the results of the
epidemic simulations starting from all possible geo-
graphical initial conditions corresponding to t0 ¼ 1
January. We calculated the overlap values among all
possible pairs of initial conditions and filtered the
ICSN by applying a threshold value for the overlap
equal to 0.8. The network separates into several con-
nected components, leading to a natural emergence of
clusters of initial conditions. These represent sets of
nodes that, if at the origin of an outbreak, would lead
to similar invasion paths. Clusters are organized in a

http://rsif.royalsocietypublishing.org/
http://rsif.royalsocietypublishing.org/


(a) (b)

Figure 4. Topological representation of clusters and invasion paths corresponding to t0 ¼ 1 January. (a) The nodes belonging to
each cluster are represented in the network of bovines displacement aggregated over the whole spreading period (grey network).
The zoomed frame shows the absence of community-like structures or chain-like motifs. (b) Each network represents the union of
all invasion paths starting from the nodes of a given cluster. The initial conditions are not shown for the sake of visualization; the
link thickness is proportional to the number of invasion paths propagating along that connection and the size of the nodes is
proportional to the number of incoming invasion paths. Different topological structures of the invasion paths are found for differ-
ent seed clusters. All nodes belonging to a given cluster are shown with the same colour, and the same colour is used in both
panels for each cluster.
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hierarchy depending on the value of Qth, and it is inter-
esting to note that, given the distribution of similarity
values obtained, even large enough values of Qth lead
to the emergence of a number of non-trivial clusters of
initial conditions, i.e. different from simply isolated
nodes. The distribution of the sizes of the clusters is
shown in the electronic supplementary material, along
with a sensitivity analysis on the value of Qth.

In figure 4, we show the 12 largest clusters along with
the displacement network aggregated over the entire
spreading period. Some important characteristics of
the clusters emerge clearly. First, the nodes of a given
cluster are not tightly connected in the aggregated dis-
placement network. In addition, there is a lack of chains
of infections: the nodes in the clusters are not trivially
connected to each other by links that bring the disease
from one node to the next. A direct analysis of the
aggregated displacement network, based for instance
on the search of communities or chain-like structures,
would therefore not be able to detect the similarity of
their spreading properties, even if performed using
different aggregation timescales Dt.

The spatial analysis of the georeferenced represen-
tation of the clusters (where each node is assigned the
location of the corresponding municipality) shows more-
over that, although some clusters are formed by nodes
that are geographically rather close, most clusters are dis-
persed, with a distribution of distances between nodes
spanning several hundreds of kilometres (figure 5). Clus-
ters can also geographically overlap and do not have
mutually separated geographical boundaries. Therefore,
the geographical proximity of two nodes does not necess-
arily imply that they will lead to similar invasion paths.
J. R. Soc. Interface
Overall, neither the structural nor the geographical
analysis of the dynamical network of displacements
would be able to reveal the existence and composition
of groups of nodes leading to similar spreading patterns,
and a detailed analysis of the dynamical process is
needed. Interestingly, the mixed shapes observed in
the profiles of figure 3 are automatically classified into
a set of specific and well-defined behaviours by consi-
dering initial conditions belonging to the same cluster,
as shown in figure 6a. Grounded in the comparison
of the infected nodes and disregarding the explicit
links of transmission, the clustering method is able to
group the spreading histories into similar patterns
characterized by the same timing and size. An alternative
version of the clustering method based on the overlap
of the full invasion paths leads to a similar partition,
despite the fact it relies on a much larger amount of
information (see the electronic supplementary material).
Similar findings are also obtained with a stochastic
infection dynamics, as reported in the electronic
supplementary material.
3.4. Longitudinal stability of the seeds’ clusters

Given the strong variability of the network’s properties
on all timescales [22], partitions obtained for spreading
processes starting at different times could substantially
differ. In order to investigate this aspect, we compare
the partition obtained at time t0 with the one obtained
at time t . t0 by means of the entropy function H
defined in §2. H measures the level of fragmentation of
the cluster partition in time, with small values indicat-
ing a large stability and values close to 1 indicating the

http://rsif.royalsocietypublishing.org/
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are shown in different colours on the georeferenced network of bovine displacement aggregated over the whole spreading period
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ters coloured in red and in blue. (b) Cluster geographical dispersion, calculated as the distance between each pair of nodes
belonging to the same cluster (identified by the colour).
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disruption of the original partition. The lower bound
(minH) represents the most stable configuration and
takes into account the possible disappearance of nodes
from the partition at time t. We present in figure 6b
the results corresponding to t0 ¼ 1 January and t ¼
t0+7w with w ¼ 1, 2, 3, . . . , i.e. successive times
separated by w weeks from t0. The cluster temporal
stability can roughly be classified into four main beha-
viours, shown through four examples: (i) a substantial
fraction of the nodes of the cluster already disappears
for w ¼ 1 (minH = 0), and small groups of nodes are
redistributed in other clusters (small H �minH ), quite
stable in time (cluster 0); (ii) high stability at w ¼ 1, fol-
lowed by a similar behaviour (cluster 1); (iii) high
stability at w ¼ 1, followed by a robust preservation
of the partition for several weeks (cluster 9); and
(iv) very unstable behaviour, as the cluster’s nodes dis-
appear almost completely from the partition at time t
(very high minH, cluster 8). The most robust behaviour
in time (shown by the example of cluster 9) was found
for two clusters out of the 20 largest clusters considered
for t0¼ 1 January. Interestingly, it turns out that the
size of a cluster is not correlated with its stability, as
J. R. Soc. Interface
shown in the electronic supplementary material, where
the stability of all clusters is investigated, along with
additional measures of stability and a sensitivity on
the C values considered.
3.5. Disease sentinels

The success of control and mitigation measures
critically depends on the ability to rapidly detect an
outbreak and identify its source. Ideally, a timely detec-
tion of the origin of the disease would allow a targeted
strategy to isolate the infected premises and contain
the propagation further. Longer delays between the
start of the outbreak and its detection mean larger
numbers of infected farms, more difficult identification
of the starting point of spreading, and therefore of
propagation paths, overall leading to increasing difficul-
ties in preventing further spread and to increasingly
expensive containment measures. The high temporal
variability and the complex nature of the network of
displacements makes identification of the possible
origin of the outbreak, following the detection of an
infected node, a particularly difficult task. This has to
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be factored in with partial or missing knowledge
on the epidemic situation due to under-reporting
and/or the presence of a silent spread phase that
would delay the first detection of the outbreak while
propagation occurs. The heterogeneous nature of the
network allows however the identification of clusters
of seeds leading to similar invasion paths, which may
be used to enhance surveillance and help the inference
of the origin of a disease, once an epidemic unfolds on
the network.

On the basis of cluster partition Pðt0Þ obtained from
the epidemic simulations starting at time t0 from all
possible initial conditions, we calculate the uncertainty
j of all premises infected by the epidemic in identifying
J. R. Soc. Interface
the seed cluster originating the outbreak. Figure 7a
shows the cumulative distribution of the uncertainty
j. The number of times nk that a holding is infected
may strongly vary from one holding to the next; in par-
ticular, many nodes are in fact infected just once
ðnk ¼ 1Þ, yielding trivially high jðkÞ values. We thus
focus on premises that have been infected at least 10
times. Interestingly, even with this restriction, the
seeder uncertainty is less than 40 per cent for almost
70 per cent of the infected nodes, meaning that most
premises reached by the infection are able to provide
valuable insights about the origin of the disease in
terms of the identification of the cluster from which
the spreading originated. As a result, information
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Figure 7. Sentinel premises. (a) Cumulative probability dis-
tribution of the uncertainty j of a given premises in the
identification of the seeding cluster. Slaughterhouses are dis-
carded from the analysis, as they cannot spread the disease
further to other farms. (b) For a set of initial conditions
ðx0; t0Þ; with t0 ¼ 1 January, each infected farm is represented
by a dot in the n � j phase space, with n being the number of
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of the seeding cluster that led to the outbreak (i.e. j , js). The
plot shows the trajectories in the n � j phase space of the 15
sentinels obtained by imposing ns ¼ 30 and js ¼ 0:4, for eight
consecutive weeks starting from 1 January.
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about the invasion paths and the epidemic timing is
also obtained, following the findings of figure 6a.

The uncertainty jðkÞ on the identification of the
cluster of initial conditions infecting node k and the
number of times nk node k is reached by the epidemic
clearly depend on the time t0 of the start of the epi-
demic. In the following, we explore the variation of
these two quantities for all nodes of the network when
we consider epidemics starting at time t0 ¼ 1 January
þ7w with w ¼ 0, 1, 2, 3, . . . , 8, i.e. spanning an eight-
week interval from 1 January. In figure 7b, we represent
each farm k as a point with coordinates ðnk ; jðkÞÞ in the
n � j phase space, for t0 ¼ 1 January. As t0 changes, a
variety of different behaviours is obtained, as expected
given the large variability of the network. Large
J. R. Soc. Interface
fluctuations of the number of times a node is infected
are observed, as a node with a large nk (i.e. often
reached by the disease) for an initial time t0 may be
rarely reached if the outbreak starts later, given the
change in the network of displacements, or may even
disappear from the plot if it is not infected for a given
explored initial time (i.e. it has nk ¼ 0). Similarly, also
the values of the uncertainty in the identification of
the seeding cluster can strongly fluctuate. From the sur-
veillance perspective, we are interested in the nodes that
are infected a large number of times (i.e. are probably
reached by the epidemic, given any temporal and geo-
graphical initial conditions) and for which we have a
low uncertainty in the identification of the seeding clus-
ter, providing important insights into previous and
future spreading patterns. We define these premises as
sentinel nodes by imposing that they are infected at
least ns times and are characterized by an uncertainty
at most equal to js for all initial conditions. Their tra-
jectories in the n � j phase space for varying t0 are
shown in figure 7b for ns ¼ 30 and js ¼ 0:4. The
choice of the ðns; jsÞ threshold values depends on the
resources available to monitor these sentinels: smaller
ns and larger js lead to a larger number of sentinels.
In the electronic supplementary material, table S1, we
report the number of sentinels for different ðns; jsÞ
values. It is also possible to be less conservative and
enlarge the group of possible sentinels for efficient
detection of an infectious disease by including farms
with discontinuous trajectories that may have nk ¼ 0
for one value of the starting time but have nk � ns and
j ðkÞ � js for the other starting times. By relaxing these
constraints, it is possible to build a hierarchy of disease
sentinels with different levels of reliability, and specific
to the available surveillance resources. In the electronic
supplementary material, we also tested an alternative
definition of the entropy function showing that it does
not alter the results.

The interest of the definition of sentinel nodes in the
perspective of a surveillance system is quantified further
in figure 8a. Given a set of sentinels, we measure
the fraction of detected outbreaks as a function of the
outbreak final size, where an outbreak is considered
detected if it infects at least a sentinel farm. Figure 8a
shows that sentinels are not good indicators for the
presence of small outbreaks (i.e. corresponding to sizes
smaller than 5–10 infected farms); however, a surveil-
lance system based on only 15 sentinel nodes (out of a
total number of more than 170 000 premises) would
detect more than 55 per cent of the outbreaks with
final size being larger than 10 and, if the number of sen-
tinels is increased to 32, the fraction of outbreaks
detected would be more than 75 per cent. Finally, it
is also important to consider that the information pro-
vided by the sentinel farms is meaningful as long as
the detection occurs rather early in the outbreak
evolution. We evaluated the rapidity of detection by
plotting the infection time of each of the 15 sentinel
farms (obtained with ns ¼ 30 and js ¼ 0:4) relative to
the full outbreak duration, for outbreaks of size larger
than 10 (figure 8b). Interestingly, almost all sentinels
are able to detect most outbreaks within the first
third of the outbreak duration. Similar results are also
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valid for the stochastic case, as reported in the elec-
tronic supplementary material.

Finally, it is interesting to note how sentinel nodes
cannot be identified through geographical, topological
or flux analyses only. Figure 8c–d shows the properties
of the sentinel nodes in terms of the number of in- and
out-connections, and of the number of batches moved in
and out of the premises, highlighting how sentinels do
not share similar properties and span largely fluctuating
values in the parameter space.
4. DISCUSSION

The full knowledge of livestock movements on a daily res-
olution makes it possible to investigate in detail the
spreading patterns of livestock emerging diseases.
Through simulations on the fully dynamic network,
where daily bovine movements are explicitly captured,
we have studied the role of the initial conditions in
J. R. Soc. Interface
shaping the propagation process. Clusters of seeds
emerge that lead to similar spreading patterns in terms
of infected premises, and are also characterized by similar
epidemic profiles and peak times. These clusters cannot
be identified from purely structural or geographical con-
siderations. The proposed clustering method can be
used in order to optimize surveillance systems and
define rapid and efficient containment strategies, target-
ing farms that are at a high risk of being infected and
further spread the disease. Although the displacement
network is characterized by a large temporal variability,
intrinsically altering the centrality role of nodes from a
given observation time to another, it is possible to ident-
ify sentinel nodes representing premises, which are often
reached by the disease and, when detected as infected,
are able to provide valuable information on the seeding
farms of the outbreak and thus on the likely spreading
path, allowing targeted intervention strategies to be
designed. A hierarchical classification of sentinels can
be provided by tuning the constraints imposed for their
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definition, leading to different levels of surveillance.
Remarkably, the bare knowledge of animal movements
would not be enough to estimate the origin of a disease,
once detected, as the outbreak results from the complex
interplay of the dynamical network and the disease
dynamics. On the other hand, this interplay leads to
the emergence of a very small number of sentinels, with
respect to the total number of premises present in the
system, that may be efficiently used for disease preven-
tion and control.

Applications to specific diseases, where the timescale
of the epidemic is set by the parameters describing the
disease aetiology, can be performed to tune this frame-
work to particular cases. These findings clearly depend
on the full knowledge of the displacement dataset, and
can thus be obtained as a priori information during a
non-emergency period to help orienting control strat-
egies, as commonly done with the static analysis of the
contact network structure, strengthening the importance
of such data collection. The ability to make useful predic-
tions for current and future livestock movements patterns
depends on the level of similarity across different years of
data. The analysis of successive years of movement data,
uncovering possible recurrent patterns and seasonal
behaviours, may thus contribute to make this framework
a general tool to be used in real-time emergencies.
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by the Italian Ministry of Health to L.S. and V.C.
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