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We address the experimental determination of entanglement for systems made of a pair of polarization qubits.
We exploit quantum estimation theory to derive optimal estimators, which are then implemented to achieve
ultimate bound to precision. In particular, we present a set of experiments aimed at measuring the amount of
entanglement for states belonging to different families of pure and mixed two-qubit two-photon states. Our scheme
is based on visibility measurements of quantum correlations and achieves the ultimate precision allowed by
quantum mechanics in the limit of Poissonian distribution of coincidence counts. Although optimal estimation of
entanglement does not require the full tomography of the states we have also performed state reconstruction using
two different sets of tomographic projectors and explicitly shown that they provide a less precise determination
of entanglement. The use of optimal estimators also allows us to compare and statistically assess the different
noise models used to describe decoherence effects occurring in the generation of entanglement.
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I. INTRODUCTION

The sort of quantum correlations captured by the notion
of entanglement represents a central resource for quantum in-
formation processing. Therefore, the precise characterization
of entangled states is a crucial issue for the development of
quantum technologies. In fact, quantification and detection of
entanglement have been extensively investigated (see [1–3]
for a review), and different approaches have been developed
to extract the amount of entanglement of a state from a
given set of measurement results [4–7]. Of course, in order to
evaluate the entanglement of a quantum state one may resort
to full quantum state tomography [8] that, however, becomes
impractical in higher dimensions and may be affected by large
uncertainty [9,10]. Other methods, requiring a reduced number
of observables, are based on visibility measurements [11],
Bell tests [12,13], entanglement witnesses [14–18], or are
related to Schmidt number [19–21]. Many of them have been
implemented experimentally [22–27], also in the presence of
decoherence effects [28,29].

As a matter of fact, any quantitative measure of entan-
glement corresponds to a nonlinear function of the density
operator and thus it cannot be associated to a quantum
observable. As a consequence, ultimate bounds to the pre-
cision of entanglement measurements cannot be inferred from
uncertainty relations. Any procedure aimed to evaluate the
amount of entanglement of a quantum state is ultimately a
parameter estimation problem, where the value of entangle-
ment is indirectly inferred from the measurement of one or
more proper observables [30]. An optimization problem thus
naturally arises when one looks for the ultimate bounds to
precision (i.e., the smallest value of the entanglement that
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can be discriminated according to quantum mechanics), and
tries to determine the optimal measurements achieving those
bounds. This optimization problem may be properly addressed
in the framework of quantum estimation theory [31–33], which
provides analytical tools to find the optimal measurement and
to derive ultimate bounds to the precision of entanglement
estimation. In particular, entanglement being an intrinsic
property of quantum states, we adopt local quantum estimation
theory and look for optimal estimators maximizing the Fisher
information [30,34].

In this paper, we address experimental determination of
entanglement for two-qubit optical systems and apply quantum
estimation theory to derive optimal estimators and ultimate
bound to precision. This technique has been successfully
applied in [35] to estimate the entanglement of a pair of
polarization qubit with the ultimate precision allowed by
quantum mechanics. Here we refine and extend the results
of [35] in two directions: On the one hand we present a set of
experiments aimed at estimating the amount of entanglement
of a larger class of families of two-qubit mixed photon states.
On the other hand, we have performed full state reconstruction
using two different tomographic sets of projectors in order
to show explicitly that the evaluation of entanglement from
the knowledge of the reconstructed density matrix provides
a less precise determination. In our scheme, entanglement is
evaluated through visibility measurements and estimators are
built by a suitable combination of coincidence counts with
different settings. Those estimators turn out to be optimal
and to provide estimation with the ultimate precision in the
limit of Poissonian distribution of coincidence counts. In
addition, we demonstrate experimentally that optimality is
robust against deviation from the Poissonian behavior. Our
approach allows entanglement estimation at the quantum limit,
and it is also useful to compare different noise models using
only information extracted from experimental data.

The paper is structured as follows. In the next section
we briefly review the basic notions of local estimation
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theory, whereas in Sec. III we apply them to estimation of
entanglement of states belonging to two relevant families of
mixed states. Section IV describes in detail the experimental
apparatus used to demonstrate our theoretical results, which
are described in Sec. V. A detailed discussion of the
experimental results is given in Sec. VI, whereas Sec. VII
closes the paper with some concluding remarks.

II. LOCAL QUANTUM ESTIMATION THEORY

We now give the basis ingredients for the local estimation
theory starting with the classical case. Suppose we have a set
of parameters λ = (λ1, . . . ,λn) ∈ � ⊆ Rn labeling different
states of the physical system of interest. A statistical model of
our system is a set of probability distributions S = (pλ(x)|λ ∈
�) such that � is the sample space of the random variable
x. The fundamental question in estimation theory is how to
optimally estimate the unknown true values of the parameters
λ given a sequence of outcomes of measurement on the system
{x1, . . . ,xM}. From a geometrical information perspective, this
problem was first treated by Fisher who introduced for the case
N = 1 the now-called Fisher information metric F (λ):

[F (λ)]ij =
∫

�

dx pλ(x) ∂i ln pλ(x) ∂j ln pλ(x)

=
∫

�

dx
∂ipλ(x)∂jpλ(x)

pλ(x)
, (1)

where ∂i ≡ ∂λi
. F (λ) is a positive definite matrix that repre-

sents a metric on the parameter space � and whose information
geometric content is given by the best resolution with which
one can distinguish neighboring points in the parameter
space. The Fisher information metric is additive, therefore
for a sequence of independent and identically distributed
measurements with outcomes {x1, . . . ,xM}, F M(λ) = MF (λ).
The next step in the estimation theory requires the introduction
of the concept of estimator; the latter is any algorithm or rule of
inference, which allows one to extract a value for the unknown
parameters on the basis of the sole knowledge acquired via
the measurement process (i.e., the sequence of outcomes
{x1, . . . ,xM}). We say that the random variable λ̂ : �M → �

is an unbiased estimator if E[λ̂] = λ [i.e., its expected value
coincides with the true value of the parameter(s)]. The ultimate
bound on the precision with which one can estimate the
parameters λ is given by the Cramer-Rao theorem, which
can be stated in terms of the covariance matrix Cov[λ̂]ij =
E[λ̂i λ̂j ] − E[λ̂i]E[λ̂j ] as

Cov[λ̂] � 1

M
F (λ)−1. (2)

In particular, for a single parameter the inequality reads

Var[λ̂] � 1

MF (λ)
,

that is, the variance of the estimator, and therefore the precision
of any estimation procedure, cannot be smaller than the
inverse of the Fisher information times the number of repeated
measurements. In the general case, the inequality for the

variance of each of the parameters, that is,

Var[λ̂i] � 1

M
[F (λ)−1]ii ,

holds only at fixed values of the other parameters.
The previous results can be extended to the quantum realm,

also taking into account all the possible measurements that
one can implement on the systems. The quantum statistical
model is given by a set of density operators depending on the
parameters λ: S = {ρλ|λ ∈ �}. A measurement corresponds
to a positive operator valued measure (POVM), that is, a set
of positive operators E = {Ei} such that

∑
i EiE

†
i = 1 and

such that pλ(i) = Tr[Eiρλ] is the probability of having the ith
outcome. The Fisher information matrix FE (λ) in Eq. (1) for a
specific measurement process E can then be written in terms
of the classical probabilities pλ(i). What is now specific to
the quantum estimation process is that the optimization over
measurement processes E may be carried out. The problem
has been solved in terms of the inequality (A > B means that
A − B is a positive matrix),

FE (λ) � H (λ), (3)

that states that the Fisher information of any measurement pro-
cess is upper bounded by the quantum Fisher information H (λ)
(QFI). The latter is an n × n positive definite real matrix which
can be expressed in terms of a set of n positive, zero mean
operators called symmetric logarithmic derivatives (SLD) Li ,
each satisfying the following partial differential equation:

∂iρλ = 1
2 (Liρλ + ρλLi). (4)

In particular, if one expresses the density matrix in its spectral
decomposition,

ρλ =
∑

i

pi |ψi〉〈ψi |, (5)

the SLD pertaining to the ith parameter is

Li = 2
∑
n,m

〈ψn|∂iρλ|ψm〉
pn + pm

|ψn〉〈ψm|, (6)

where

∂iρλ =
∑

n

∂ipn |ψn〉〈ψn| (7)

+
∑

n

pn(|∂iψn〉〈ψn| + |ψn〉〈∂iψn|)

accounts for the dependence of both the eigenvalues and the
eigenvectors on the set of parameters λ. In terms of the Li’s
the elements of the QFI can be written as

[H (λ)]ij = Tr

[
ρλ

LiLj + LjLi

2

]
. (8)

By using the spectral decomposition of ρλ, the QFI can be
expressed in terms of the partial derivatives of the eigenvalues
and of the eigenvectors of �λ as

[H (λ)]ij =
∑

n

(∂ipn)(∂jpn)

pn

+
∑
n,m

(pn − pm)2

pn + pm

× (〈ψn|∂iψm〉〈∂jψm|ψn〉 + 〈ψn|∂jψm〉〈∂iψm|ψn〉).
(9)
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III. ESTIMATION OF ENTANGLEMENT FOR
TWO-QUBIT SYSTEMS

We now apply the formalism described in the previous
section to obtain explicitly the ultimate bound to precision
on the estimation of entanglement for two relevant statistical
models (i.e., for two families of two-qubit states that will be
used in the following).

A. The decoherence model

The first statistical model we are going to deal with
corresponds to the set of the states described by the following
two-parameter family of density operators:

� = p|ψ〉〈ψ | + (1 − p)D, (10)

where

|ψ〉 = √
q |HH〉 +

√
1 − q |VV〉 (11)

represents a pure polarization two-photon state with horizontal
H and vertical V polarization, and D = q |HH〉〈HH| + (1 −
q) |VV〉〈VV| describes a mixed contribution coming from the
decoherence of |ψ〉, p ∈ [0,1]. We will refer to this set as
the decoherence model for |ψ〉. For the state �, both the two
nonzero eigenvalues,

λ± = (1 ±
√

1 − 4(1 − p2)q + 4(1 − p2)q2),

and their respective eigenvectors,

v± = 1√
N±

{−f±(p,q),0,0,g(p,q)} ,

N± =
√

g2(p,q) ± f 2±(p,q),

(12)

f±(p,q) = 1 − 2q ±
√

1 − 4(1 − p2)q + 4(1 − p2)q2,

g(p,q) = 2p
√

q(1 − q),

depend on the parameters p,q. The straightforward calcula-
tions of the partial derivatives in Eq. (9) show that both the
eigenvalues and the eigenvectors contribute to the diagonal
and off-diagonal terms of the QFI. However, the sum of the
different contributions results in a simplified expression, and
the QFI,

H (p,q) = diag

(
4(1 − q)q

1 − p2
,

1

q − q2

)
, (13)

is diagonal. From this expression we see that the variance on
any estimator q̂ for the parameter q is independent on the
mixing parameter p and is bounded, apart from the statistical
scaling, by the inverse of the corresponding element of the QFI
matrix,

Var[q̂] � q(1 − q)

M
.

The lower bound is maximal in correspondence of q = 1/2
(i.e., when the state |ψ〉 is maximally entangled). We are
now interested in estimating the value of entanglement of the
overall state �. To this aim we remind that the negativity of
entanglement, defined as

ε = ||�TA ||1 − 1, (14)

is a good measure of entanglement for two-qubit systems. In
Eq. (14) TA denotes partial transposition with respect to system
A, and || · · · ||1 is the trace norm. Entanglement negativity for
states belonging to the decoherence model is given by

ε = 2p
√

(1 − q)q. (15)

In order to reexpress the QFI in terms of the negativity we make
the change of variable p → p,q → (p −

√
p2 − ε)/2p; the

QFI changes according to the Jacobian of the transformation
and the lower bound to the covariance matrix of the estimators
p̂,ε̂ now reads

Cov[p̂,ε̂] � H−1(p,ε)

=
(

p2(1 − p2) ε−2 p(1 − p2) ε−1

p(1 − p2) ε−1 1 − ε2

)
. (16)

From this expression we see that the lower bound for the
variance of any estimator ε̂ of the negativity of the state
� is independent on p and is minimal in case of maximal
entanglement,

Var[ε̂] � 1

M
(1 − ε2). (17)

B. The Werner model

A second statistical model of interest for our analysis
corresponds to the set of states described by the following
two-parameter family of the density operator,

�′ = p|ψ〉〈ψ | + 1 − p

4
1 ⊗ 1. (18)

The states of Eq. (18) are obtained by depolarizing the pure
entangled state |ψ〉. We will refer to this family as the Werner
model for |ψ〉. As in the previous example upon varying the
parameter p we may tune the purity of the state, whereas
the amount of entanglement depends on both parameters. The
eigenvalues of �′ depend only on p, whereas the eigenvectors
depend only on q. The QFI matrix is thus given by the diagonal
form,

H (p,q) = diag

{
3

1 + (2 − 3p)p
,

p2

q(1 − q)(1 + p)

}
, (19)

and the inverses of the diagonal elements correspond to the
ultimate bounds to Var(p̂) and Var(q̂) for any estimator of p

and q, either at fixed value of the other parameter or in a joint
estimation procedure. Entanglement of Werner states may be
evaluated in terms of negativity,

ε = max
{
0, 1

2 [p(1 + 4
√

q(1 − q)) − 1]
}
, (20)

which implies that Werner states are entangled for

[1 + 4
√

q(1 − q)]−1 < p � 1.

Upon inverting Eq. (20) for p or q we may parametrize the
Werner states using (p,ε) and evaluate the QFI matrix H (p,ε),
their inverses and, in turn, the corresponding bounds to the
precision of entanglement estimation. The main result is that
the ultimate bound to the variance depends only very slightly
on the other free parameter (q or p). In other words, estimation
procedures performed at fixed value of p or q, respectively,
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show different precision, but the differences are negligible in
the whole range of variations of the parameters. We do not
report here the analytic expression of the inverse QFI at fixed
p or q, which is quite cumbersome. However, as it can be easily
checked, we note that the bound on the variance on ε̂ that can
be derived by the expression of H (p,ε)−1 simply coincides to
first order with the bound in Eq. (17) already evaluated for the
decoherence model. We therefore use in the following, also
for the Werner model, the bound given in Eq. (17). It can be
shown that, for the set of values of p that will be relevant
for our experimental analysis, this approximation is negligible
with respect to all the other sources of uncertainty.

IV. EXPERIMENTAL APPARATUS

The family of entangled states, investigated in our work,
is constituted by polarization-entangled states of the field
obtained by coherently superimposing two orthogonally po-
larized type-I parametric downconversion emissions (PDC),
as schematically depicted in Fig. 1. The linear horizontal
polarization of an argon laser beam, at wavelength λ =
351 nm filtered by the dispersion prism and Glan-Thompson
prism (GP), is rotated at angle φ by using half waveplate
(WP0). It is fundamental for our application that only the
laser line λ = 351.1 nm is used. For this reason we have
introduced in the setup a prism as wavelength selector for
eliminating wavelengths other than λ = 351.1 nm, in particular
the closest one at λ = 351.4 nm, which could realize an
unwanted phase-matching condition in our PDC setup. Then,
the laser beam is addressed to a pair of nonlinear beta barium
borate (BBO) crystals (l = 1 mm), having optical axis in
orthogonal planes, where PDC process occurs, resulting in the
creation of biphotons with orthogonal polarization [36,37].
Upon changing the polarization of the UV pump, we change
the amount of PDC light, generated by each crystal. For
example, PDC occurs only in the crystal one if the polarization
of the pump beam is horizontal, while for having a balanced

FIG. 1. (Color online) Experimental setup to generate polar-
ization entangled two-photon states with variable entanglement
and to estimate its value with the ultimate precision allowed by
quantum mechanics. A continuous wave Argon pump laser beam with
wavelength λ = 351.1 nm is filtered with a dispersion prism and then
passes through a Glan-Thompson prism and a half waveplate WP0
that rotates the polarization by an angle φ. PDC light is generated
by two thin type-I BBO crystals (l = 1 mm). After the crystals the
pump is stopped by a filter (UVF), and the biphoton field is split on a
nonpolarizing 50-50 beam splitter (BS). Then it passes through half
waveplates (WP1, WP2) and interference filters (IF), centered at the
degeneracy 702 nm. Finally the biphotons are focused on commercial
single photon detectors (D1, D2).

PDC process in both crystals we have set the angle φ at 45◦,
having diagonal polarization of pump beam.

In order to compensate phase shifts, due to ordinary and
extraordinary paths in the crystals, we tilt the quartz plates
QP, introduced between the half waveplate WP0 and BBO
crystals, at angle ϕ, thus fixing the relative phase between
biphoton components generated in the first and second crystal.

In order to maintain stable the phase-matching conditions,
BBO crystals and QP are placed in a closed aluminium box
internally covered by polystyrene used as a thermic insulator.
The box is equipped with a controlled heating system with
a standard feedback circuit. We have experimentally verified
that the temperature stabilization system ensures appropriate
control on the phase shift. After the box the pump is stopped by
an ultraviolet filter (UVF), and the biphoton field is split on a
nonpolarizing 50-50 beam splitter (BS). With the postelection
performed by a coincidence count circuit (CC), we can refer
to our state as an optical ququart [38], which is entangled in
two variables: polarization and spatial mode.

In ideal conditions the output state is described by the pure
state,

|ψφϕ〉 = cos φ|HH〉 + sin φei�(ϕ)|VV〉, (21)

where φ/2 is the rotation angle of the pump half waveplate
WP0 and �(ϕ) corresponds to the phase shift between a pair
of horizontal photons created in the first crystal and a pair of
vertical photons from the second crystal. After passing the half
waveplates (WP1,WP2) in each spatial mode, the biphoton
field is projected into a linear vertical polarization state by
means of Glan-Thompson polarizers. Phase plates WP1 and
WP2 are mounted on precision rotation stages with high
resolution and fully motor controlled, which allows rotating
the polarization of the beams in the course of the measurement
process. Spectral selection is performed by interference filters
(IF) with central wavelength λ = 702 nm and full-width at half
maximum (FWHM) = 3 nm. Short focal lenses collimate the
resulting biphoton field into single-photon avalanche detectors
(D1, D2). Electrical signal from the detectors is used by the
coincidence count scheme (CC) with time window τ = 1 ns.

The measurements performed at the output are described
as a projection of state into a factorized linearly polarized
two-photon state:

x(α,β) =
∣∣∣∣α + s

π

2

〉 〈
α + s

π

2

∣∣∣∣ ⊗
∣∣∣∣β + s ′ π

2

〉 〈
β + s ′ π

2

∣∣∣∣,
(22)

where x = {s + 2s ′}, s,s ′ = 0,1.
In Fig. 2 we show the dependence of the probability of the

coincidence counts,

p0(ϕ) = 〈
ψπ

4 ϕ

∣∣0

(
π

4
,
π

4

)∣∣ψπ
4 ϕ

〉
,

as a function of quartz plates QP tilting angle ϕ. The maximum
of this curve corresponds to phase shift between photon pairs
�(ϕM) = 0 and the output state is the Bell maximally entangled
state,

|�+〉 ≡ ∣∣ψπ
4 ϕM

〉 ∝ |HH〉 + |VV〉,
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FIG. 2. Probability of coincidence counts while performing pro-
jection measurement 0( π

4 , π

4 ) on state |ψφϕ〉 having φ = π

4 as a
function of quartz plates tilting angle ϕ.

while the minimum of that curve corresponds to the maximally
entangled state,

|�−〉 ≡ ∣∣ψπ
4 ϕm

〉 ∝ |HH〉 − |VV〉.
In this work we have fixed the tilting angle of quartz plates
to have zero phase shift, thus, the family of states in Eq. (21)
reduce to the one of Eq. (11) where q = cos2(φ).

V. ENTANGLEMENT ESTIMATORS

In order to estimate the entanglement content of the states
produced by the experimental setup described in the previous
section, one has to choose an estimator ε̂ to extract the
value of entanglement from the experimental data. We will
compare three different approaches: two are based on full
tomography of the polarization two-photon state and one is
based on implementing the optimal estimator able to saturate
the ultimate bound derived via the QFI.

Quantum state tomography is an experimental procedure
providing full density matrix reconstruction of a quantum
system. This is realized by means of a set of measurements
performed on an ensemble of identical quantum systems [8].
For a quantum state belonging to four-dimensional Hilbert
space at least 16 linearly independent measurements are
needed to reconstruct a full density matrix and, typically, each
measurement corresponds to a local projection of the input
two-qubit state. To be able to perform this set of 16 linearly
independent measurements we added a quarter waveplate
in each measurement arm just before the half waveplates
(WP1,WP2). The first used tomographic protocol (J16) [39,40]
involves projective measurements performed directly on some
components of the Stokes vector. In particular, the measure-
ment set corresponds to projection onto polarizations HH, HV,
VV, VH, RH, RV, DV, DH, DR, DD, RD, HD, VD, VL, HL, RL,
where H, V, R, L, D, denotes horizontal, vertical, right and left
circular, and 45◦ diagonal polarizations, respectively. Here,
for example, the measurement setting HR means measuring
horizontal polarization on the first qubit and right circular
polarization on the second qubit. Another approach [41,42]

involves local projection of each qubit symmetrically placed
on the Poincare sphere. Extension of this method to the four-
dimensional case (R16) allows for obtaining higher fidelity of
the reconstructed states [43,44] with respect to the previous
one. Once the density matrix of the generated state has been
reconstructed, the negativity of the state can be evaluated
inserting the reconstructed matrix elements in Eq. (14). The
precision of the tomographic estimation of entanglement is
limited by the uncertainties on the matrix elements. The
overall uncertainty on the estimated value of entanglement
may be evaluated by error propagating. In the following, after
describing the implementation of optimal measurement, we
will compare its precision with that of tomographic estimation.

We first start to briefly describe the estimator for the class
of states defined by Eq. (10). As already described in [35],
an optimal estimator of the entanglement can be found by
noticing that the expressions of the probabilities px(ε; α,β) =
Tr[� x(α,β)] obtained by the projection of the state � on
measurement operators in Eq. (22) with x = 0,1,2,3, allows
writing the following set of unbiased estimators,

ε̂(α,β) = V (α,β) − cos(2α) cos(2β)

sin(2α) sin(2β)
, (23)

where V (α,β) = p0 − p1 − p2 + p3 is the expected value
of two-qubit quantum correlations (QC). Furthermore, the
estimators corresponding to the measurement angles α,β =
±π/4 are optimal, as can be seen by evaluating the Fisher
information,

Fε(α,β) =
∑

x

px(ε; α,β)[∂ε ln px(ε; α,β)]2,

which for the chosen angles gives Fε(π
4 , π

4 ) equal to QFI.
Then we have to express these optimal estimators, ε̂ =
V (±π/4, ± π/4), in terms of the coincidences counts, which
are the results of the measurement process. This can be done
by fixing, for example, α = β = −π/4 and then, for each
measurement run j = 1,..,M = 40, one records the vector
kj = {k0,j ,k1,j ,k2,j ,k3,j }, where kx,j ≡ kx,j (−π/4, − π/4),
is the number of coincidence counts for the projector x

defined in Eq. (22) as measured by the coincidence circuit
during a single time window of 10 s, and whose expected
distribution is given:

px(ε; α,β) = Tr[� x(α,β)].

Finally, we have to derive the probabilities px(ε; −π/4, −
π/4) in the expression of V (α,β) in terms of the relative
frequencies kx,j (α,β)/Kj , where Kj = ∑

x kx,j is the total
number of coincidences. For large values of Kj the coincidence
rates kx,j (α,β)/Kj converge to the probability px(ε; α,β).
Therefore, the optimal estimator can be written as desired
in terms of the coincidences’ vector: ε̂ ≡ ε̂(kj ).

A second statistical model, which is a possible candidate to
represent the output of our experiment, is the Werner model
of Eq. (18). From the physical point of view it corresponds
to incorporate in our scheme a portion of “fake” coincidences
that results from dark counts of SPADs and from the influence
of the ambient unpolarized luminescence. Since this light
is unpolarized, its density operator can be described by the
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identity in (18). The distribution of coincidences is given by

p′
x(ε; α,β) = Tr[�′ x(α,β)],

and the unbiased estimators for the mixing parameter and the
entanglement negativity of the state by

p̂′ = V (0,0),
(24)

ε̂′ = − 1
2 + 1

2V (0,0) + V (−π/4, − π/4),

where V (0,0) = V (α = 0,β = 0) has been defined above. The
estimators may be then written in terms of the coincidence
vectors kj , which were previously defined and that is used for
V (−π/4,π/4), and rj = {r0,j ,r1,j ,r2,j ,r3,j }, which is used in
an analogous way to define the probabilities for V (0,0) and
whose elements are defined as rx,j ≡ rx,j (0,0), that is, the
number of coincidence counts for the projector x (22) with
α = 0,β = 0; in this case the total number of coincidences
is Rj = ∑

x rx,j . The estimators can then be written as p̂′ =
p̂′(rj ) and ε̂′ = ε̂′(kj ,rj ).

VI. RESULTS

We first observe that for ε̂(kj ) and finite Kj s the uncertainty
in the estimation of the entanglement are mostly due to
fluctuations δkx in the coincidence counts kx,j around their
average values 〈kx〉 = ∑

j kx,j /M . Thus, if we want to
establish under which conditions on the fluctuations δkx the
variance of the estimator ε̂(kj ) satisfies the required bound, we
have to implement standard uncertainty propagation with the
derivatives ∂x ≡ ∂/∂kx evaluated for kx ≡ 〈kx〉, and assuming
independence among fluctuations at different angles, we have

Var(ε̂) =
∑

x

|∂xε̂|2δk2
x

= 4

〈K〉4

[
(〈k0〉 + 〈k3〉)2

(
δk2

1 + δk2
2

)
+ (〈k1〉 + 〈k2〉)2(δk2

0 + δk2
3

)]
. (25)

If we now assume that the counting processes have Poissonian
statistics [i.e., δk2

x = Var(kx) = 〈kx〉2], then it is straightfor-
ward to prove that

Var(ε̂) = 4

〈K〉3
(k0 + k3)(k1 + k2) = 1

〈K〉 (1 − ε̂2),

that is, QC measurements allow for optimal estimation of
entanglement with precision at the quantum limit. Since the
inverse of QFI is given by [H−1]εε = 1 − ε2 for a wide range
of two-qubit families of states [30], the above calculations
suggest that this is a general result. In particular, following
the discussion at the end of Sec. III, the above result is
true also for the Werner state. In other words, given a
source emitting polarization two-qubit states with coincidence
counting statistics satisfying the Poissonian hypothesis, then
the experimental setup of Fig. 1 allows for optimal estimation
of entanglement at the quantum limit by means of a QC
estimator. We finally note that in order to test the Poissonian
hypothesis in our experiment we evaluated the Fano factor,

which is defined as F = σ 2
τ

µτ
, where σ 2

τ is the variance and µτ

is the mean of a random process in some time window τ . For
a Poissonian process, the Fano factor should be equal to unity.
In our experiment we had slightly different values [35], but
the method still allows for optimal estimation, thus showing
the robustness of optimal measurement against deviation from
Poissonian behavior.

A. Almost pure states

The experimental setup of Fig. 1 allows for the preparation
of quantum states with a high value of purity, namely having
mixing parameter p close to unity. In these conditions both
family of states in Eqs. (10) and (18) described in Sec. III
are expected to give a reliable estimation of entanglement.
In order to verify this assessment, in the first part of our
experiment we have performed measurements with different
values of initial entanglement corresponding to different values
of q (i.e., of the angle φ determined by WP0). We first
consider the decoherence model of Eq. (10). This model can
be considered as a description of the decoherence mechanisms
occurring in the experimental setup due to fluctuations of
the relative phase between the two polarization components,
which results in fluctuation of phase shift between biphoton
created in two crystals. Our experimental procedure is based
on M = 40 repeated acquisitions of coincidence vector kj =
{k0j ,k1j ,k2j ,k3j }. We have randomized the composition of
kj over the sequence of measurements to avoid spurious
correlations, and finally we have estimated entanglement
as the sample mean 〈ε̂〉 = ∑

j ε̂(kj )/M . The correspond-
ing uncertainty has been evaluated by the sample variance
Var(ε̂) = ∑

j [ε̂(kj ) − 〈ε̂〉]2/(M − 1).
In order to verify the compatibility of data with the

decoherence model of Eq. (10) we need to estimate the
negativity with a second procedure, namely we make use of
the estimation of the parameter p, quantifying the amount of
mixing introduced by decoherence processes. We therefore
define an unbiased estimator p̂ by first reversing formula of
the negativity, that is, p = 1

2ε/
√

q(1 − q). We then note that
the values of q and 1 − q in this model are given by the
probabilities relative to the projective measurements 0(0,0)
and 3(0,0), respectively, that can be expressed in terms of
the elements r0,j and r3,j . The estimator for p then reads

p̂(rj ,kj ) = 1

2
ε̂(kj )

Rj√
r0,j r3,j

,

where again Rj = ∑
x rx,j . Rewriting the negativity defined in

Eq. (14) in terms of the pump polarization angle φ we obtain
ε = p sin 2φ. Thus the reference value εt of the negativity
is then inferred as εt = 〈p̂〉 sin 2φ (i.e., using the knowledge
of φ and the estimation 〈p〉 of the mixing parameter). By
making use of the relations in Eq. (24) one can apply the
same arguments to the Werner case and derive an appropriate
expression for εt . Upon evaluating the corresponding sample
means and variances we can therefore obtain the first result
of our analysis. This is illustrated in Fig. 3 where we report
the estimated value of entanglement as a function of the
reference one assuming, for the description of the output sig-
nals, the families � (left plot) and �′ (right plot), respectively.
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FIG. 3. (Color online) Estimated value of entanglement as a
function of the reference one assuming, for the description of the
output signals, the families � (left plot) and �′ (right plot). The
uncertainty bars stays for the 3σ confidence interval.

Here the uncertainty bars denote the 3σ confidence interval
and from these plots it is apparent that the experimental data
are compatible with both models.

Notice that the reference value is built, on the basis of
a given model, in part with information coming from the
experimental settings (the tuning of the angle φ) and in part
from the results of suitably chosen coincidence measurements.
On the other hand, the estimated value of entanglement is
obtained solely with experimental quantities. In principle, we
are not expecting the reference value to be more precise that the
estimated one. The idea here is to use two different estimates
of the same quantity (entanglement) obtained in two different
and independent ways in order to discriminate and validate the
different statistical models. Following our analysis, a given
model is not suitable for the description of our system if the
two different estimates that can be derived by that model,
together with the resulting errors, are not compatible.

It is interesting to compare these results, in particular
the ones which refer to the decoherence model (left plot in
Fig. 3), with those obtained for a different set of measurements
data presented in [35]. In that case a less precise control of
the temperature of the PDC generation system made more
relevant the fluctuation of the phase and thus the state more
mixed. Therefore, in that case, a self-consistent statistical
analysis of the acquired data allowed discriminating between
the two statistical models identifying the decoherence model
of Eq. (10) as the correct one for the experimental setup used in
[35]. In the present case, which includes the already-mentioned
control in temperature, the states obtained are nearly pure and
thus one cannot expect the different characterization of noise to
be relevant. Furthermore, to experimentally obtain more pure
state one should reduce the collection angle of PDC emission.
This obviously reduces the rate of coincidence counts, thus
inducing an increase of the variance of both the estimators, for
the negativity and purity parameter, respectively.

We now pass to evaluate the optimality of our estimation
procedure. In Fig. 4 we show, for the decoherence (left) and
Werner (right) model, the estimated value of entanglement as
a function of the reference one obtained for different values
q = 0.97,0.93,0.88,0.78,0.5 (i.e., φ = 10◦,15◦,20◦,28◦,45◦).
Note that the corresponding estimated mixing parameter in
both models is larger than 0.97 for all points. The uncertainty
bars on 〈ε̂〉 denotes the quantity

√
Var(ε̂) × 〈K〉 (i.e., the

square root of the sample variance multiplied by the average
number of total coincidences 〈K〉). This is in order to allow a
direct comparison with the Cramer-Rao bound in terms of the
inverse of the Fisher information (the gray area). Uncertainty
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FIG. 4. (Color online) Estimation of entanglement at the quantum
limit. The plot shows the estimated value of entanglement 〈ε̂〉
according to the decoherence (left) and Werner (right) models as
a function of the reference one εt . The uncertainty bars on 〈ε̂〉 denote
the quantity

√
Var(ε̂) × 〈K〉 (i.e., the square root of the sample

variance multiplied by the average number of total coincidences
〈K〉). The gray area corresponds to values within the inverse of
the quantum Fisher information εt ± H−1/2

εt
. Uncertainty bars on the

abscissae are due to fluctuations in the estimation of the mixing
parameter.

bars on the abscissae correspond to fluctuations δεt in the
determination of εt , due to fluctuations in the estimation of the
mixing parameter with the procedure outlined above. The plot
shows that our procedure allows estimating the entanglement
with a precision at the quantum limit for any value of q.
From the figure it is also apparent that, due to the high purity
achieved with the experimental setup that includes the active
temperature control, and, therefore, due to the irrelevance of
the decoherence introduced, both the models give optimal
estimation. Notice that this conclusion is robust against the
fact that the statistics is not exactly Poissonian.

B. Comparison with tomographic estimation

We compared our results with estimation of entanglement
from density matrix elements obtained exploiting two different
procedures of quantum state tomography [39,40]. We found
that the reconstructed density matrices are, for both tomog-
raphy protocols, statistically compatible within with both the
two models of Eqs. (10) and (18). As an example we present in
Fig. 5 real and imaginary part of reconstructed density matrices
of maximally entangled state corresponding to q = 1

2 (i.e.,
φ = 45◦).

In fact, the tomographic procedure also allowed us to
estimate entanglement and the corresponding variance. In
order to have a fair comparison of the uncertainties obtained
with different methods we have set measurement time for the
tomographic reconstruction such to have the total number of
registered coincidence counts equal to M〈K〉 (i.e., the total
number of coincidences in the optimal measurement). The
values of negativity calculated directly using the reconstructed
density matrices and its variance (obtained by error propaga-
tion) for the maximally entangled state are presented in Table I
together with the determination obtained from the optimal
measurement maximizing the QFI. All three negativity values
overlap in their uncertainty intervals, i.e. the three methods
give statistically consistent results. Furthermore, it is evident
from the presented results that the optimal method devised
in this paper allows, at fixed sample size, for a consistent
reduction of the uncertainty in entanglement estimation.
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FIG. 5. (Color online) Real (left) and imaginary (right) part of
the tomographically reconstructed density matrix for the maximally
entangled state as obtained using J16 (top) and R16 (bottom)
tomographic set of projectors. All the real elements, except the four
dominant, and the imaginary ones are compatible with zero within
the estimated tomographic uncertainties (not shown in the figure).

C. Statistical mixtures

In order to check our method in different working regimes
we applied the estimation procedure to a set of mixed states
obtained in a controlled way (i.e., by adding some portion of
unentangled light to the pure entangled state). As we have
described in the previous section, our experimental setup
allows us to obtain states with an extremely high purity. In the
following we thus assume that the output state of our apparatus
is the pure state as in Eq. (11). Then, if one is able, for example,
to mix in a controlled way the components |HH 〉〈HH | and
|V V 〉〈V V | to the maximally entangled states one obtains the
states,

� = p|ψ〉〈ψ | + (1 − p) D,
(26)

D = 1
2 (|HH 〉〈HH | + |V V 〉〈V V |),

which correspond to the model (10) with an adjustable mixing
parameter. In practice, in order to tune the value of the mixing

TABLE I. Estimated value of entanglement with different meth-
ods. The uncertainty δε is calculated using Eq. (25) for the optimal
estimation method and with error propagation for tomographic
estimation.

Method ε δε

Optimal estimation 0.972 0.011
Tomography, J16 0.984 0.048
Tomography, R16 0.957 0.046
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FIG. 6. (Color online) Estimation of entanglement at the quantum
limit. The plot shows the estimated value of entanglement 〈ε̂〉 as a
function of the reference one εt . In the left panel we report estimated
entanglement for mixed states generated according to the decoherence
model (26). In the right panel we report estimated entanglement for
mixed states generated according to the Werner model (27). The
points correspond to different portions of incoherent addition from
both crystals.

parameter p we have measured coincidence counts for states
|HH〉〈HH| and |VV〉〈VV| for different time intervals. The
sample of coincidence counts is then added to experimental
data obtained for the maximally entangled pure state and then
analyzed as in the previous section.

In the left panel of Fig. 6 we show the estimated value of en-
tanglement as a function of the reference one for the originally
maximally entangled state (q = 1

2 ) and for states prepared with
mixing parameter p = 99.5%,83%,74%,50%,33%.

A similar analysis may be carried out for the Werner model.
In this case, in order to tune the value of the mixing parameter p

one should supplement the coincidence vectors kj and rj with
values coming from unpolarized light. This can be achieved
by measuring coincidence counts for |HH〉〈HH|, |HV〉〈HV|,
|VH〉〈VH|, and |VV〉〈VV| for different time intervals. The
measured values are then added to the previously measured
values for the pure maximally entangled state. In this way, one
can get data corresponding to

�′ = p|ψ〉〈ψ | + (1 − p)
I ⊗ I

4
, (27)

which correspond to a Werner state, see Eq. (18), with a tunable
depolarizing parameter. After performing the measurement
and analysis set described in the previous section we can
estimate entanglement and mixing parameter value in this
family of states. In the right panel Fig. 6 we show the estimated
value of entanglement as a function of the actual one for the
originally maximally entangled state and mixture parameter
p = 99.5%,76%,62%,52%,45%. As one can evince from the
presented figure our method provides optimal entanglement
estimation also for mixed states.

VII. CONCLUSIONS

In this paper we have addressed in detail the estimation
of entanglement for pairs of polarization qubits. Our scheme
is based on visibility measurements of quantum correlations
and allows optimally estimating entanglement of families of
two-photon polarization entangled states without the need of
performing full tomography. Our procedure is self-consistent
and allows estimating the amount of entanglement with the
ultimate precision imposed by quantum mechanics. Although
optimal estimation of entanglement does not require the
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full tomography of the states, we have also performed state
reconstruction using two different sets of projectors and
explicitly shown that they provide a less precise determination
of entanglement.

The technique has been demonstrated for nearly pure states
as well as for controlled mixtures in order to confirm its
reliability in any working regime. With a suitable choice of
correlation measurements it may be extended to a generic
class of two-photon entangled states. The statistical reliability

of our method suggests a wider use in precise monitoring of
external parameters assisted by entanglement.
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