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On the predictability of infectious disease
outbreaks
Samuel V. Scarpino1,2,3,4,5,6 & Giovanni Petri 6,7

Infectious disease outbreaks recapitulate biology: they emerge from the multi-level interac-

tion of hosts, pathogens, and environment. Therefore, outbreak forecasting requires an

integrative approach to modeling. While specific components of outbreaks are predictable,

it remains unclear whether fundamental limits to outbreak prediction exist. Here, adopting

permutation entropy as a model independent measure of predictability, we study the

predictability of a diverse collection of outbreaks and identify a fundamental entropy barrier

for disease time series forecasting. However, this barrier is often beyond the time scale

of single outbreaks, implying prediction is likely to succeed. We show that forecast horizons

vary by disease and that both shifting model structures and social network heterogeneity

are likely mechanisms for differences in predictability. Our results highlight the importance

of embracing dynamic modeling approaches, suggest challenges for performing model

selection across long time series, and may relate more broadly to the predictability of

complex adaptive systems.
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“If we don't have a vaccine–yes, we are all going to get it1.”
This dire assessment by a Canadian nurse in 2003 reflected
the global public health community’s worst fears about the

ongoing severe acute respiratory syndrome (SARS) outbreak2,3.
These fears—for perhaps the first time in history—were partially
derived from mathematical and computational models, which were
developed in near real-time during the outbreak to forecast trans-
mission risk3,4. However, the predictions for SARS failed to match
the data3,5. Over the subsequent 15 years, the scientific community
developed a rich understanding for how social contact networks,
variation in health-care infrastructure, the spatial distribution of
prior immunity, etc., drive complex patterns of disease transmis-
sion6–11, and demonstrated that data-driven, dynamic, and or agent-
based models can produce actionable forecasts12–17. Additionally,
studies have demonstrated that predicting different components of
outbreaks—e.g., the expected number of cases, pace, and tempo of
cases needing treatment, demand for prophylactic equipment,
importation probability, etc.—is feasible3,13,18–24. Despite these
advances, an ongoing debate continues in the scientific community
about both the need and our capacity to forecast outbreaks25,26.
What remains an open question is whether the existing barriers to
forecasting stem from gaps in our mechanistic understanding of
disease transmission and low-quality data or from fundamental
limits to the predictability of complex, sociobiological systems, i.e.
outbreaks4,6,7,27–30.

In order to study the predictability of diseases in a comparative
framework, which also permits stochasticity and model non-
stationarity, we employ permutation entropy as a model-free
measure of time-series predictability31–33. This measure, i.e per-
mutation entropy, is ideal because—in addition to being a model
independent metric of predictability—recent work has demon-
strated that it correlates strongly with known limits to forecasting
in dynamical systems, e.g., models where we can measure
Lyapunov stability31–33 and can be transformed into an estimate
of Kolmogorov-Sinai entropy34. Additionally, recent studies by
Pennekamp et al.33 and Garland et al.35 demonstrated that per-
mutation entropy correlated strongly with forecast accuracy for
ecological models and with anomalies in climatological data.

Studying the predictability of a diverse collection of historical
outbreaks—including, chlamydia, dengue, gonorrhea, hepatitis A,
influenza, measles, mumps, polio, and whooping cough—we
identify a fundamental entropy barrier for infectious disease time-
series forecasting. However, we find that for most diseases this
barrier to prediction is often well beyond the timescale of single
outbreaks, implying prediction is likely to succeed. We also find
that the forecast horizon varies by disease and demonstrate that
both shifting model structures and social network heterogeneity
are the most likely mechanisms for the observed differences
in predictability across contagions. Our results highlight the
importance of moving beyond time-series forecasting, by
embracing dynamic modeling approaches to prediction36, and
suggest challenges for performing model selection across long
disease time series. We further anticipate that our findings will
contribute to the rapidly growing field of epidemiological fore-
casting and may relate more broadly to the predictability of
complex adaptive systems.

Results
Permutation entropy as the predictability of disease time ser-
ies. Permutation entropy is conceptually similar to the well-known
Shannon entropy31. However, instead of being based on the prob-
ability of observing a system in a particular state, it utilizes the
frequency of discrete motifs, i.e symbols, associated with the growth,
decay, and stasis of a time series. For example, in a binary time series
the permutation entropy in two dimensions would count the

frequency of the set of possible ordered pairs, {[01], [10]}, and the
Shannon entropy, or uniformity, of this distribution is the permu-
tation entropy. In higher dimensions, one can define an alphabet of
symbols over all factorial combinations of orderings in a given
dimension, e.g., {[0, 1, 2],[2, 1, 0],[1, 0, 2], etc.}, over which the
permutation entropy will be defined. A time series that visits all the
possible symbols with equal frequency will have maximal entropy
and minimal predictability, and a time series that only samples a few
of the possible symbols will instead have lower entropy and hence be
more predictable.

More formally, for a given time series {xt}t=1,…,N indexed by
positive integers, an embedding dimension d and a temporal
delay τ, we consider the set of all sequences of value s of the
type s = {xt, xt+τ,…, xt+(d−1)τ}. To each s, we then associate
the permutation π of order d that makes s totally ordered, that
is ~s ¼ πðsÞ ¼ ½xti ; ¼ ; xtN � such that xti<xtj 8ti <tj, hence generat-
ing the symbolic alphabet. Ties in neighboring values, i.e.
xti ¼ xtj , were broken both by keeping them in their original

order in the time series and/or by adding a small amount of noise,
the method of tie-breaking did not affect the results, see ref. 37

for more details on tie-breaking and permutation entropy.
The permutation entropy of time-series {xt} is then given by
the Shannon entropy on the permutation orders, that is
Hp

d;τðfxtgÞ ¼ �P
π pπ log pπ , where pπ is the probability of

encountering the pattern associated with permutation π (see
Supplementary Figure 1).

As described above, calculating the permutation entropy of a
time series requires selecting values for the embedding dimension
d, the time delay τ, and the window length N over which
permutation entropy is calculated. In this study, our goal was to
find conservative values of Hp by searching over a wide range
of possible (d,τ) pairs and setting HpðfxtgÞ ¼ mind;τH

p
d;τðfxtgÞ.

However, the value of Hp should always decline as the embedding
dimension d grows, i.e. no minimum value of Hp will exist
for finite windows sizes N. To address this issue, we follow
Brandmaier38 and exclude all unobserved symbols when
calculating Hp, which acts as a penalty against higher dimensions
and results in a minimum value of Hp for finite length time series.
To control for differences in dimension and for the effect of time-
series length on the entropy estimation, we normalize the entropy
by log(d!), ensure that each window is greater in length than d!,
and confirm that the estimate of Hp has stabilized (specifically
that the marginal change in Hp as data are added is <1%). To
facilitate interpretation, we present results from continuous
intervals by fixing τ= 1. However, our results generalize to
the case where we fix both d and τ across all diseases and where
we minimize over a range of (d,τ) pairs (see Supplementary
Figure 4).

Permutation entropy does not require the a priori specification
of a mechanistic nor generating model, which allows us to study
the predictability of—potentially very different—systems within a
unified framework. What is not explicit in the above formulation
is that the permutation entropy can be accurately measured with
far shorter time series than Lyapunov exponents and that it is
robust to both stochasticity and monotonous transformations of
the data, i.e. it is equivalent for time series with different
magnitudes31,39. Consider—for example—two opposite cases
with respect to their known predictability, pure white noise, and
a perfectly periodic signal. We expect the former, being
essentially random, to display a very high entropy as compared
with the latter, which instead we expect to show a rather low
entropy in consideration of its simple periodic structure.

In Fig. 1, we demonstrate that this is indeed the case, even
when we allow the periodic signal to be corrupted by a small
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amount of noise. We track the short-scale predictability of the
time series by calculating the permutation entropy in moving
windows (with width= 1 year, although the results are robust to
variation in window size). For comparison, we calculate the same
moving-window estimate of the permutation entropy for the time
series of measles cases in Texas prior to the introduction of the
first vaccine. The critical observation is that the moving-window
entropy for the measles time series fluctuates between values
comparable with that of pure random noise and, at times, values
closer to the more predictable periodic signal, which suggests
alternating intervals with different dynamical regimes and, thus,
predictability. The magnitude of the entropy fluctuations for
measles in Texas is statistically significant by permutation test,
p < 0.001, as compared with simulated fluctuations obtained by
building an estimated multinomial distribution over the symbols
and repeatedly calculating the expected Jensen–Shannon (JS)
divergence from simulations.

Pathogen-dependent entropy horizons. We now turn our
attention to a broader set of diseases and ask how the predict-
ability, defined as χ= 1−Hp (where Hp is the permutation
entropy), scales with the amount of available data (i.e. the time-
series length). Specifically, we compute the permutation entropy
across more than 25 years of weekly data at the US state-level
for chlamydia, dengue, gonorrhea, hepatitis A, influenza, measles,
mumps, polio, and whooping cough and plot the predictability
(χ= 1−Hp) as a function of the length of each time series.
Focusing first on the predictability over short timescales (Fig. 2),
for each time series we average Hp over temporal windows of
width up to 100 weeks by selecting 1000 random starting points
from each state-level time series for disease and calculating Hp for
windows of length 10, 12, ..., 100.

We find that all diseases show a clear decrease in predictability
with increasing time series length , which implies that accumulating
longer stretches of time-series data for a given disease does not
translate into improved predictability. However, we also find strong
evidence that the majority of single outbreaks—i.e. temporal
horizons characteristic for each disease—are predictable. The

confidence intervals in Fig. 2 show that there can be large variation
in predictability across outbreaks of the same disease, providing a
first indication of the presence of a changing underlying model
structures and or dynamics on the scale of months. We obtained
similar results, e.g., decreasing predictability with time-series length,
clustering of diseases, and the emergence of barriers to forecasting,
using a weighted version of the permutation entropy, which reduces
the dependence of the standard unweighted permutation entropy
on rare, large fluctuations and by considering estimates of the
permutation entropy where the time delay, τ, is allowed to vary32,40

(see Supplementary Figure 4). By comparison, across all models
with fixed structures studied to date, e.g., white noise, sine waves,
and even chaotic systems, the predictability is constant in time or is
expected to improve with increasing amounts of time-series data41.

Zooming out, what is also conspicuous about the relationship
between time-series length and predictability is that diseases
cluster together and show disease-specific slopes, i.e. predictability
vs. time-series length, which suggests that permutation entropy is
indeed detecting temporal features specific to each disease
(Fig. 3a). After re-normalizing time for each disease by its
corresponding R0 (the average number of secondary infections a
pathogen will generate during an outbreak epidemic when the
entire population is susceptible, very large, and is seeded with a
single infectious individual)—we used the mean of all reported
values found in a literature review (see Supplementary Table 1)—
we find that the best-fit mixed-effect slope on a log scale is 1 and
that the residual effect is well predicted by the times series’
embedding dimension d (see Supplementary Figures 2 and 3).
Moreover, because the embedding dimension d of a time series is
the length of the basic blocks used in the calculation of the
permutation entropy, it encodes the fundamental temporal unit
of predictability in the form of an entropy production rate, thus
implying that predictability decreases with time-series data at a
disease-specific rate determined to first order by R0, which is
further modulated by d. The result that predictability depends on
temporal scale also suggests that the permutation entropy could
be an approach for justifying the utility of different data sets, i.e.
one could determine the optimal granularity of data by selecting
the dimension that maximized predictability.

Year

P
er

m
ut

at
io

n 
en

tr
op

y

1927 1937 1946 1955 1964

0.8

1

0

2265

4530

6795

W
ee

kl
y 

ca
se

s

Measles cases in Texas entropy
White noise entropy

Sine wave entropy
Measles cases in Texas

Less predictable

More predictable

Fig. 1 Permutation entropy varies through time for real-world disease time series. The permutation entropy in windows of size 52 weeks across three time
series of equal length: (1) dark red: Gaussian–white–noise (μ= 0, σ= 1); (2) gray: measles cases reported to the United States Centers for Disease Control
and Prevention from the state of Texas between 1927 and 1965 (gray dashed line, lower panel) as digitized from MMWR reports by Project Tycho60; and
(3) blue: a sine wave with Gaussian noise (μ= 0, σ= 0.01). The fluctuations in the permutation entropy calculated from the measles time series (gray
dashed line) are larger than would be predicted by chance and result in periods of time where model-based forecasts should be accurate (in the range of a
noisy sine wave, blue shaded region) and periods of time (in the range of the white noise, red shaded region) when statistical forecasts based solely on the
time-series data should outperform model-based forecasts
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Fig. 2 Single outbreaks are often predictable. a The average predictability (1− Hp) for weekly, state-level data from nine diseases is plotted as a function
of time-series length in weeks. For each disease, we selected 1000 random starting locations in each time series and calculated the permutation entropy
in rolling windows in lengths ranging from 2 to 104 weeks. The solid lines indicate the mean value and the shaded region marks the interquartile
range across all states and starting locations in the time series. Although the slopes are different for each disease, in all cases, longer time series result
in lower predictability. However, most diseases are predictable across single outbreaks and disease time series cluster together, i.e. there are disease-
specific slopes on the relationship between predictability and time-series length. To aid in interpretation, the black dashed line plots the median
permutation entropy across 20,000 stochastic simulations of a Susceptible Infectious Recovered (SIR) model, as described in the Supplement. This SIR
model would be considered predictable, thus values above the black line might be thought of as in-the-range where model-based forecasts are expected
to outperform forecasts based solely on statistical properties of the time-series data. The dark brown, dashed vertical line indicates the time period
selected for b. In b, the predictability is shown after 4 months, i.e. 16 weeks, of data for each pathogen. The same procedure was used to generate
the permutation entropy as in a. The mean predictability differed both by disease and by geographic location, i.e state (analysis of variance with post
hoc Tukey honest significant differences test and correction for multiple comparison, sum of squares (SS) disease= 98.22, degrees of freedom (DF)
disease= 8, p-value disease < 0.001; SS location= 94.7, DF location= 53, p-value location < 0.001). The solid line represents the median, boxes enclose
the 25th to 75th percentiles of the distributions, and whiskers cover the entire distribution
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Fig. 3 Permutation entropy and time-series length show regularity by disease. a The predictability (1−Hp) for chlamydia, dengue, gonorrhea, hepatitis A,
influenza, measles, mumps, polio, and whooping cough is plotted as a function of time-series length in weeks. Although the slopes are different for each
disease, in all cases, longer time series, i.e. more data, result in lower predictability. However, we again find that single outbreaks should be predictable and
that diseases show a remarkable degree of clustering based on the slope of entropy gain. In this analysis, each dot represents the predictability for an entire
state-level time series for a disease, i.e. the window size is the entire time series. b Rescaled time-series length based on the mean published basic
reproductive number. Here we plot the log of time normalized by the basic reproductive number, i.e. R0, from the literature (see Supplementary Table 1)
against the log of the permutation entropy
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Drivers of disease time-series predictability. One might assume
that this phenomenon, i.e. decreasing predictability with increasing
time-series length, could be driven purely by random walks on the
symbolic alphabet used in the permutation entropy estimation.
However, n-dimensional Markov chain models built from the time-
series embeddings (n= d the time-series embedding dimension)
consistently produced stable and smaller predictability values in
comparison with those obtained from data, corroborating that the
predictability behavior we observe does not stem from random
fluctuations but is an actual fundamental feature of spreading
processes (see Supplementary Figure 6 and Methods for details on
the Markov chain simulations). This observation that Markov chain
models of the same embedding order do not reproduce the
observed predictability indicates that either the model structure is
changing in time and/or the system has a very long memory, which
is consistent with our current understanding of the entanglement
between mobility and disease3,42. That the best-fit n-dimensional
Markov chain models over-predict the amount of entropy in real
systems, also supports our earlier results that predictable structure
does exist across most long outbreak time series.

To gain insight into what mechanisms might be driving
changes in the predictability, we take advantage of the repeated,
natural experiment of vaccine introduction. For diseases, such as
measles, where we have data from both the pre- and post-vaccine
era, we ask whether the permutation entropy changes after the
start of widespread vaccination. We consistently observe that
predictability decreases after vaccination, again with significance
determined by permutation test (Fig. 4a). We also find that the
symbol frequency distribution changes significantly after vaccina-
tion, as measured by the Jensen–Shannon divergence, across all
states in the United States (Fig. 4b). Critically, because—as stated
earlier—permutation entropy is not affected by changes in
magnitude, the difference in entropy cannot simply be accounted
for by a reduction in cases. Instead, it means that the temporal
pattern of cases changes after vaccination. This leads us to the
hypothesis that the distribution of secondary infections, its first
moment or R0 and its higher moments, drives predictable changes
in the permutation entropy, a phenomenon originally discovered
in synthetic directed networks by Meyers et al.43.

To further evaluate the hypothesis that heterogeneity in the
number of secondary infections produces predictable changes in
permutation entropy, we simulate an SIR model with probabil-
istic restart at end of each outbreak (details in the Supplement)
on two classes of temporal networks constructed from the
Simplicial Activity Driven (SAD) model43, a modified activity
driven (AD) model in which an activated node contacts s other
nodes and induces new links between the contacted nodes (see
Methods). In this model we can control the epidemic threshold
and the number of secondary contacts by changing the activity
and the number of contacted nodes per activation. We simulated
two scenarios, one in which the number of contacted nodes per
activation is fixed (regular SAD) and one in which we allow
fluctuations in contact number (irregular SAD), which generates
fluctuations in the number of secondary infections. For both
models, we investigated the predictability from below to above
the epidemic or critical transmissibility threshold (set to 1 here).
From the resulting epidemic curves, we calculated the
permutation entropy. Figure 5a shows that we find the same
pattern of decreasing predictability observed in real data with
longer time series. Figure 5b shows the predictability obtained
for the two scenarios below and above the transition: we see that
that the strongest difference is present below the transition,
where the lack of peculiar structure (the regular contact pattern)
induces lower predictabilities than for heterogeneous contact
distributions. Above the transitions, we find a reduced effect of
the difference in contact structure.

Discussion
From these results, we can draw three conclusions. First, differ-
ences in the average reproductive number, coupled with hetero-
geneity in the number of secondary infections, can drive
differences in predictability across diseases and outbreaks, which
is related to results on predicting disease arrival time on net-
works44 and to recurrent epidemics in hierarchical meta popu-
lations45. Second, the permutation entropy could provide a
model-free approach for detecting epidemics, which is similar to a
recent model-based approach based on bifurcation delays46–48.
Finally, as outbreaks grow and transition to large-scale epidemics,
they should become more predictable, which—as seen in Figs. 1
and 3—appears to be true for real-world diseases as well and
agrees with earlier results on how permutation entropy relates
to the predictability of nonlinear systems32.

Our finding that horizons exist for infectious disease forecast
accuracy and that aggregating over multiple outbreaks can actually
decrease predictability is supported by five additional lines of evi-
dence. First, Hufnagel et al., using data on the 2004 SARS outbreak
and airline travel networks, demonstrated that heterogeneity in
connectivity can improve predictability27. Second, de Cellés et al.
noted a sharp horizon in forecast accuracy for whooping cough
outbreaks in Massachusetts, USA49. Third, Coletti et al. demon-
strated that seasonal outbreaks of influenza in France often have
unique spatiotemporal patterns, some of which cannot be explained
by viral strain, climate, nor commuting patterns50. Fourth, Artois
et al. found that while it was possible to predict the presence human
A(H7N9) cases in China, they were unable to derive accurate
forecasts for the temporal dynamics of human case counts51.
Finally, using state-level data from Mexico on measles, mumps,
rubella, varicella, scarlet fever, and pertussis, Mahmud et al. showed
evidence that while short-term forecasts were often highly accurate,
long-term forecast quality quickly degraded52.

Research in dynamical systems over the the past 30 years has
demonstrated that prediction error increases with increasing forecast
length41. However, across that same body work, researchers typically
find that predictions improve when they are trained on longer time
series, even for chaotic systems41. Indeed, even for permutation
entropy, an active area of research is how spurious aspects of time
series can lead to spuriously increasing predictability with increasing
time-series lengths37. Our data-driven results suggest that for
infectious diseases the opposite is true, more time-series data might
often lead to lower predictability. Then, by integrating our biological
understanding of each pathogen and simulated outbreaks, we found
that changing dynamics, e.g., empirical changes in vaccination
coverage and simulated shifts in the number of secondary infections
as a disease moves through a heterogeneous social network, can
cause the prediction error to increase with increasing data, which is
related to earlier findings on the role of airline travel networks and
disease forecasting36. What this implies is that different models
generate data at different time points and suggests that the optimal
coarse-graining of complex systems might change with scale and
or time53. The potential for scale-dependent models of infectious
disease transmission is supported by a recent analysis of US city-
level data on influenza outbreaks that found consistent, mechanistic
differences in outbreak dynamics based on city size54.

The global community of scientists, public health officials, and
medical professionals studying infectious diseases has placed a
high value on predicting when and where outbreaks will occur,
along with how severe they will be3,27,55,56. Our results demon-
strate that outbreaks should be predictable. However, as out-
breaks spread—and spatiotemporally separated waves become
entangled with the substrate, human mobility, behavioral chan-
ges, pathogen evolution, etc.—the system is driven through a
space of diverse model structures, driving down predictability
despite increasing time-series lengths. Taken together, our results
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agree with observations that accurate long-range forecasts for
complex adaptive systems, e.g., contagions beyond a single out-
break, may be impossible to achieve due to the emergence of
entropy barriers. However, they also support the utility and
accuracy of dynamical modeling approaches for infectious disease
forecasting, especially those that leverage myriad data streams

and are iteratively calibrated as outbreaks evolves. Lastly, our
results also suggest that cross-validation over long infectious
disease time series cannot guarantee that the correct model for
any individual window of time will be favored, which would
imply a no free lunch theorem57 for infectious disease model
selection, and perhaps for sociobiological systems more generally.
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Fig. 5 Predictability decreases with time-series length and contact homogeneity. a For two classes of contact patterns in a synthetic temporal network—
regular (reg.), blue and irregular (irr.), brown—we calculate permutation entropy for time series of variable length. For each time-series length we randomly
select 1000 starting points and find consistent decreases in the permutation entropy for longer time series. The lines (solid, irr.) and (dashed, reg.)
represent the smoothed conditional means, i.e. trend, as determined by fitting a generalized additive model with a thin-plate spline penalty. b When
considering the uniform (reg., blue) and heterogeneous (irr., brown) scenarios separately, we find that the largest difference in predictability is found below
the corresponding epidemic transition consistent with the idea that noisy, sputtering infection trees are harder to predict than the epidemic waves above
the transition. The solid line represents the median, boxes enclose the 25th to 75th percentiles of the distributions, and whiskers cover the entire
distribution. See the “Epidemic simulations” section in the Supplementary Materials for details on the simulation models
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Methods
Permutation entropy. Here we make use of permutation entropy as a model-
independent measure of the growth in complexity and unpredictability of infectious
disease time series. Given a time series {xt}t=1,…,N indexed by positive integers, an
embedding dimension d and a temporal delay τ, one can consider the set of all
sequences of values s of the type s= {xt,xt+τ,…,xt+(d−1)τ}. Note that successive values
xt+iτ,xt+(i+1)τ for generic i can be in an arbitrary relative order. To each s, one can
associate the permutation π of order d that makes s totally ordered, that is ~d ¼
πðdÞ ¼ fxti ; ¼ ; xtN g such that xti <xtj 8ti <tj . In this way, via π we associate a rank-

order quantity that is independent of the actual values the time series takes and we can
associate a probability pπ to each permutation by simply counting how many times
it appears in the data as compared to the total number of sequences appearing. The
permutation entropy of time series {xt} is then given by the Shannon entropy on the
permutation orders, that is Hp

d;τðfxtgÞ ¼ �P
π pπ logpπ . We find that diseases cluster

based on the best-fit dimension, d (see Supplementary Figure 2), and that the disease-
specific slopes for a random effects model of (log)entropy and (log)time series can be
predicted based on the embedding dimension (Supplementary Figure 3).

In the manuscript, we show results obtained by fixing τ= 1 to aid the intuition
of the reader and select the most conservative (smallest) value of HpðfxtgÞ ¼
mind H

p
d;τ¼1ðfxtgÞ by sweeping over a wide range of possible d values. However,

the qualitative results do not change even when we allow for a full sweep across
(d,τ) pairs and setting HpðfxtgÞ ¼ mind;τ H

p
d;τðfxtgÞ (see Supplementary Figure 4).

In addition, we also confirmed that similar results were obtained by using the
weighted permutation entropy, as presented in refs. 32,40 and implemented in the R
package statcomp v. 0.0.1.100058, see Supplementary Figure 5. Although, it is worth
pointing out that weighted permutation entropy attempts to normalize away
exactly the kind of structure infectious disease modelers aim to predict.

Markov chain simulations. In order to assess the amount of non-random struc-
ture in the real outbreak time series, we build synthetic symbolic time series by
simulating Markov chains over the symbol distributions obtained from the
empirical time series. For each real time series {xt}i, we extract the set of permu-
tation symbols {π} as in the standard calculation for permutation entropy. We
utilize τ= 1 and the embedding dimension di previously selected during the per-
mutation entropy computation as described by Brandmeier38. For a time series
with embedding dimension d, there is a maximum number of d! states, corre-
sponding to the possible permutations of length d. Using the permutations as
states, we then count the number of transitions nij in the real time series between
each pair of symbols (i,j) and use it to build a Markov chain with transition
probabilities between states given by pij ¼ nijP

j
nij
. In order to obtain a synthetic

symbolic series, we repeatedly start from a randomly selected node and use the
Markov Chain described above to produce symbolic series with the same number
of symbols as the corresponding real time series. For each iteration, we calculate the
associated symbolic entropy. In Supplementary Figure 6, we compare the synthetic
entropies versus the permutation entropy of the original time series and show that
the former are systematically higher than the real ones, implying that there is
additional structure in the outbreak time series that is not captured simply by
the probabilistic transition structure.

Epidemic simulations. We simulated a standard SIR model with restart on a class
of temporal networks in which it is possible to control the expected number of
secondary neighbors of nodes. The temporal networks were constructed using the
SAD model, a modified version of the well-known activity driven (AD) model59, in
which activations of nodes can involve two (like in the standard AD model) or
more nodes establishing reciprocal links. We simulated two types of networks: in
the first the number of nodes contacted in every activation was kept constant
(regular SAD with s= 4); in the second we allowed the number of contacted nodes
to fluctuate between interactions (irregular SAD, we sampled s from a normal
distribution with mean 〈s〉= 4 and coefficient of variation= 0.4). All networks had
N= 1000 nodes. Node activities were sampled from a power-law distribution ~a−α

with α= 2.2 and rescaled in order to have an average activity ~10−2, such that
nodes activated on average every 100 time steps.

Crucially, for this class of networks it is possible to calculate explicitly the (SIS)
critical threshold λc= β0/γ0, where β0 and γ0 are respectively the matched infection
and recovery probabilities at the transition. In order to investigate the behavior of the
predictability across the epidemic transition, we fixed γ0= 0.1 and let β vary from
0.5β0 (below the transition) to 4β0 (far above the transition), where β0= λcγ0 is
the threshold infectivity matching γ0. The values of γ0 was chosen in order to match
the average outbreak peak length to those observed in the data (roughly around
4 weeks). We then simulated the SIR model on the networks described above for
T= 5000 steps: each outbreak was seeded with five randomly infected nodes and let
run its course; at the end of the outbreak, we repeated the seeding until we reached the
prescribed time-series length. We calculated the permutation entropy of the synthetic
time series in the same way we processed the empirical ones.

Significance tests on moving-window permutation entropy. We use a permu-
tation test to determine whether different time-series windows have distinct symbol

distributions. Specifically, we fit a multinomial distribution to the normalized symbol
frequency distributions and repeatedly simulate data from the estimated multi-
nomials. Then, we calculate the Jensen–Shannon divergence between each pair of
simulated distributions. With these simulated distributions, we can ask how often
we see fluctuations in our estimate of the permutation entropy just due to sampling.
More formally, we use these simulated distributions as a null distribution for
calculating a frequentist p-value based on the observed Jensen–Shannon divergence
between the symbolic frequencies in time series windows.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability. All code associated with this study can be found here: https://
github.com/Emergent-Epidemics/infectious_disease_predictability.

Data availability
Empirical data for all diseases—aside from dengue—were obtained from the U.S.A.
National Notifiable Diseases Surveillance System as digitized by Project Tycho60. Dengue
data were obtained from the Pandemic Prediction and Forecasting Science and
Technology Interagency Working Group under the National Science and Technology
Council61. All data associated with this study can be found here: https://github.com/
Emergent-Epidemics/infectious_disease_predictability.
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