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We study the emerging large-scale structures in networks subject to selective pressures that simultaneously
drive toward higher modularity and robustness against random failures. We construct maximum-entropy null
models that isolate the effects of the joint optimization on the network structure from any kind of evolutionary
dynamics. Our analysis reveals a rich phase diagram of optimized structures, composed of many combinations of
modular, core-periphery, and bipartite patterns. Furthermore, we observe parameter regions where the simultane-
ous optimization can be either synergistic or antagonistic, with the improvement of one criterion directly aiding
or hindering the other, respectively. Our results show how interactions between different selective pressures can
be pivotal in determining the emerging network structure, and that these interactions can be captured by simple
network models.
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I. INTRODUCTION

The observed large-scale structure of network systems
emerges as the outcome of various kinds of generative pro-
cesses, which tend to vary substantially depending on their
empirical context. Nevertheless, in a large class of network
formation mechanisms, in particular in biological, engineer-
ing, and technological settings, an important driving force is
the fitness to a specific purpose [1–7], e.g., the survival of an
individual, the efficiency of a production line, or the capacity
of a transportation system. This results in a selective pressure
toward particular network structures, depending on the kind of
fitness that is desired. However, in realistic scenarios, selective
pressures occur in combination with other kinds of dynamical
rules, exogenous constraints, and historical artefacts. Further-
more, a given system may be subject to multiple selective
pressures at the same time, e.g., it may need to run efficiently
while being simultaneously robust to errors or damage. Since
very seldom do we get to observe any given process of for-
mation in detail, we are forced to disentangle these different
driving forces from each other based only on the structural
patterns they produce.

In this work, we contribute to the disentangling effort by
constructing null models of optimized networks [8]. These
models correspond to network ensembles that possess a pre-
specified level of fitness but otherwise are maximally random.
By investigating the emerging structural features in these
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models, we are able to understand the inherent effect a par-
ticular kind of fitness criterion has on the structure of the
network, without the interference of any other kind of con-
straint. We can also combine multiple fitness criteria together
to determine how they interact with each other in determining
the preferred network structure. This gives us a controlled
platform to delineate the effects of different kinds of selective
pressures on network structure in a principled manner.

In the following we will employ this approach to inves-
tigate two central properties of networked systems, namely
the robustness of a network against the random failure of its
components [9] and its modularity [10], characterized by the
existence of groups of nodes that are more connected among
themselves than with the rest of the network. Robustness to
failure is believed to play a key role in infrastructure [11]
as well as technological networks such as the internet [12]
but also on biological systems [13]. Modularity, on the other
hand, has been associated with the adaptability of biological
networks [6] and is a necessary ingredient for the scheduling
of interdependent processes with minimal amount of com-
munication [14]. By enforcing these two optimization criteria
simultaneously, we analyze which large-scale network struc-
tures are most likely to emerge as a result of their interaction.
Our main result is the identification of a series of phase transi-
tions at which the optimal structure of the network changes in
response to the varying selective pressures. We also identify
regions in the parameter space where the interplay between
the selective pressures gives rise to synergistic effects, i.e., one
kind of fitness pressure contributes to the second, such that it
becomes easier to optimize for both at once, as well as antago-
nistic effects, where both optimizations compete against each
other.
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The work is divided as follows. We begin in Sec. II by
introducing our modeling framework. In Sec. III, we apply
our framework to network ensembles subject to varying de-
grees of selective pressures in favor of robustness against
random failures as well as modularity. We begin by consider-
ing each fitness criterion separately and subsequently combine
them to analyze the effects that their interaction has on the
emerging network structures. Finally, in Sec. IV, we draw our
conclusions.

II. NULL MODELS OF OPTIMIZED
MODULAR NETWORKS

We approach the problem of characterizing network struc-
tures via generative models. This means that instead of
describing individual networks, we are interested in formulat-
ing network ensembles, such that the probability of observing
a given network is associated with its particular fitness value,
given a predefined fitness criterion. There are many ways
to address this problem, but here we constrain ourselves to
networks that exhibit modular structure, i.e., the nodes are
divided into groups, which share a similar role in the network
structure. More specifically, we consider networks that are
generated from the stochastic block model (SBM) [15–17],
where N nodes are divided into B groups, such that to each
node i is given a group membership label bi ∈ {1, . . . , B}, and
an edge between a node in group r and another in group s
exists with probability prs. This yields a network ensemble
where a network A occurs with probability

P(A|b, p) =
∏
i< j

p
Ai j

bi,b j
(1 − pbi,b j )

1−Ai j , (1)

where Ai j = 1 if an edge exists between nodes (i, j) or Ai j =
0 otherwise. Although this is just one of a large set of possible
network ensembles, the SBM is capable of capturing arbitrary
mixing patterns between groups by appropriate choices of the
matrix p, and if the number of groups is increased it can
account for arbitrarily elaborate network structures [18]. In
fact, setting B = N means that the probability of each edge
can be individually controlled, although we will constrain
ourselves to the situation where B � N and the network is
composed of a relatively small number of modules. Although
this does not give us the full breadth of all possible network
structures—in particular we lack the ability of describing
the details of the network structure at a local level, e.g., by
stipulating desired propensities of observing triangles or other
small subgraphs—as we will see, this is a sufficiently flexible
framework to express the kind of null models we have in mind.

For a given arbitrary fitness function R(A), which maps a
network to a scalar fitness value, the average fitness over the
SBM ensemble is then given by

R(b, p) =
∑

A

R(A)P(A|b, p). (2)

Based on such a function, we could in principle proceed by
finding the SBM parameters b and p such that the mean
fitness R(b, p) is maximized and in this way finding how a
fitness criterion favors certain patterns of network structures.
However, this kind of optimization problem is ill defined in
the general case, as many parameter choices yield the same

optimal fitness value, since the values of scalar functions
cannot fully constrain the corresponding network structure.
Therefore, we formulate our question differently. Instead of
optimizing the mean fitness R(b, p), we impose its value as a
predetermined parameter, and we select the SBM parameters
that yield the most random network ensemble and therefore
is the most agnostic about the unimportant properties of the
network structure. More formally, this means we employ the
principle of maximum entropy [19], such that for any imposed
fitness value R(b, p) = R∗, the choice of the model parameters
b and p from all those that fulfill this constraint is the one that
maximizes the ensemble entropy [20],

�(b, p) = −
∑

A

P(A|b, p) ln P(A|b, p). (3)

In this way, if we specify a set of fitness functions {Ri(b, p)}
and their imposed set of values {R∗

i }, then we are interested in
the following constrained optimization problem:

b̂, p̂ = argmax
b,p

�(b, p), subject to Ri(b, p) = R∗
i ∀i. (4)

The SBM parameters obtained in this way can be interpreted
as null models of networks, which contain only the most es-
sential ingredients to achieve the prespecified values of fitness
and otherwise are maximally random. The imposed fitness
values themselves can be increased arbitrarily to achieve any
level of optimized structures, as we will show.

We can compute the entropy of the SBM ensemble by
substituting Eq. (1) into Eq. (3), which yields [21]

�(b, p) =
∑
r<s

nrnsHb(prs) +
∑

r

nr (nr − 1)

2
Hb(prr ), (5)

where nr = ∑
i δbi,r is the number of nodes in group r

and Hb(x) = −x ln x − (1 − x) ln(1 − x) is the binary entropy
function. This can be further simplified if we take into account
that most networks in the real world are sparse with prs =
O(1/N ), so that using Hb(x) = −x ln x + x + O(x2), and tak-
ing the limit N � 1 we obtain

�(b, p) = −1

2

∑
rs

nrns(prs ln prs − prs). (6)

For some choices of fitness functions, arbitrarily high fitness
values can be obtained simply by increasing the network den-
sity. In order to differentiate between the effect of increased
density and favored mixing patterns, we will take the aver-
age degree 〈k〉 = ∑

rs nrns prs/N as an external parameter not
subject to optimization. With this in mind, it will be useful for
our calculations to use the following reparametrization over
intensive variables,

ωr = nr

N
, mrs = nrns prs

N〈k〉 . (7)

Note that the above implies the normalization
∑

r ωr = 1
and

∑
rs mrs = 1. Given this choice, the (intensive) ensemble

entropy can be written as

�(ω, m) = �(ω, m)

N
= −〈k〉

2

∑
rs

mrs ln
mrs

ωrωs
+ 〈k〉

2
. (8)

Note that we no longer reference the actual partition b itself
but rather the fraction of nodes ωr that belong to a given
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group r, since these are the relevant macroscopic quantities
as N � 1.

Based on the above model parametrization, we can perform
the constrained optimization of Eq. (4) by employing the
method of Lagrange multipliers, which involves finding the
saddle points of the Lagrangian function

�(ω, m,β) = �(ω, m) +
∑

i

βi[Ri(ω, m) − R∗
i ], (9)

where βi are the Lagrange multipliers that enforce each
constraint. This means we need to find ω, m, and β such
that the gradient of � is zero, i.e., ∂�(ω, m,β)/∂ωr =
∂�(ω, m,β)/∂mrs = ∂�(ω, m,β)/∂βi = 0. Note that the
last derivative yields simply the equation Ri(ω, m) = R∗

i ,
which means that the problem of fixing R∗

i and finding ω, m,β

is equivalent to first taking β as fixed parameters and minimiz-
ing the function

F (ω, m) = −
∑

i

βiRi(ω, m) − �(ω, m), (10)

with respect to ω and m alone and then varying β until we
obtain Ri(ω, m) = R∗

i .
The above formulation puts us in a standard setting in

equilibrium statistical physics, as the function F (ω, m) can be
interpreted as the free energy of the network ensemble where
the sum −∑

i βiRi(ω, m) plays the role of the mean energy.
Following this analogy, the values of βi play the role of inverse
temperatures, or perhaps more appropriately to our setting, se-
lective pressures, which if increased cause the corresponding
energy functions to decrease (and thus the fitness values to
increase), and thus settling on a particular balance between
energy and entropy.

To summarize, our protocol to generate null network mod-
els is as follows:

(1) We establish a set of fitness functions {Ri(ω, m)}.
(2) Given a choice of selective pressures {βi} we find the

parameters ω, m which minimize the free energy F (ω, m) of
Eq. (10).

(3) We vary the values {βi} to investigate the trade-off
between competing fitness functions as well as entropy.

The constrained optimization of step (2) is the most cen-
tral part of our approach. Although it is straightforward to
compute the gradient of the entropy �(ω, m) analytically, in
the general case this will not be possible for arbitrary fitness
functions Ri(ω, m), and even when it is, setting the gradient
of F (ω, m) to zero usually just yields an implicit system
of nonlinear equations that cannot be solved in closed form.
Therefore, in the following we will proceed by performing the
minimization numerically, via the L-BFGS-B conjugate gra-
dient descent algorithm [22], using automatic differentiation
[23] whenever the gradient cannot be obtained in closed form.
As a final implementation note, the used algorithms require us
to convert step (2) into an unbounded optimization problem,
which we do via a simple exchange of variables given by

ωr = eμr∑
s eμs

, mrs = eνrs∑
tu eνtu

, (11)

with μr ∈ [−∞,∞] and νrs ∈ [−∞,∞], which keep both ωr

an mrs bounded in the range [0,1], and enforces normalization.

III. FITNESS CRITERIA

We consider two kinds of fitness criteria, namely the ro-
bustness against random failures, and modularity. We begin
by considering the criteria in isolation, and we follow by
combining them simultaneously.

A. Robustness against random failures

We consider a situation where a random fraction 1 − φ of
the edges are removed from the network, and we measure the
fraction S of nodes that remain connected afterward, forming
a giant connected component [24]. Following Ref. [8], we can
compute this quantity for the SBM by first defining ur to be the
probability that a node in group r does not belong to the giant
component via one of its neighbors, which can be obtained by
solving the set of equations

ur = 1 − φ + φ
∑

s

mrs

mr
f s
1 (us), (12)

where mr = ∑
s mrs, and f r

1 (z) = f r′
0 (z)/ f r′

0 (1) is the gen-
erating function of the excess degree distribution of nodes
belonging to group r, defined in terms of the corresponding
degree distribution generating function f r

0 (z) given by

f r
0 (z) =

∑
k

pr
kzk, (13)

where pr
k is the fraction of nodes in group r that have degree k,

which for the SBM is a Poisson distribution with mean κr =
〈k〉mr/ωr (i.e., κr is the average degree of nodes that belong
to group r), which means we have

f r
0 (z) = f r

1 (z) = f r (z) = eκr (z−1). (14)

After solving Eq. (12), which can be done simply by re-
peated iteration from a starting point ur < 1 until a desired
convergence criterion, we can finally obtain the fraction S of
nodes that belong to the giant component by averaging over
the complementary probability of the excluded nodes in all
groups,

S = 1 −
∑

r

ωr f r
0 (ur ). (15)

For any given SBM, the behavior of S as a function of the
fraction φ of edges that are not removed is that we have S = 0
for φ ∈ [0, φ∗], where φ∗ is a critical value, so that for φ >

φ∗ we have a positive fraction of connected nodes S > 0 that
increases continuously [8].

If we now consider the fitness function R(ω, m) =
S(ω, m), then our resulting free energy becomes

F (ω, m) = −βSS(ω, m) − �(ω, m). (16)

By minimizing the above function we find null models of
networks that are robust against random failures, with the
robustness increasing for higher βS values.

In Fig. 1 we show the properties of the obtained models
for 〈k〉 = 5 and B = 2 groups. As βS increases, the network
ensemble undergoes two abrupt transitions (i.e., the rate of
change of S with βS is discontinuous), where the structure first
changes from fully random (I) to a core-periphery structure
(II) and, finally, to an asymmetric bipartite structure (III). The
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FIG. 1. Relative size of the giant component S as a function of
the selective pressure for robustness to damage βS for different values
of the edge dilution probability φ. The dashed vertical lines indicate
the value βS = β∗ at which we observe a transition from a random
structure to a core-periphery one. The solid vertical lines indicate
the value βS = β̃ at which the network structure transitions from a
core-periphery to a bipartite pattern. The optimized network struc-
tures are shown schematically in the insets, where each square node
corresponds to one of the groups of our model, with size proportional
to wr and edge thickness between them proportional to mrs.

core-periphery structure corresponds to a smaller and denser
set of “core” nodes which are connected among themselves,
and a larger and sparser set of “periphery” nodes which con-
nect mostly to the core nodes, and not among themselves. The
asymmetric bipartite structure is similar to the core-periphery
pattern, but the “core” nodes no longer preferentially connect
to themselves, instead they predominantly connect to the pe-
riphery nodes, although they remain a smaller and denser set.
An illustration of these structures can be seen in Fig. 2, where
we show network samples from the obtained ensembles. In
Figs. 3 and 4 we also show the size and density of the two
groups as a function of the selective pressure for different
values of the edge dilution probability φ.

It easy to understand why a core-periphery structure in-
creases the robustness to random edge removal: The core
group corresponds to a denser subgraph which remains con-
nected with a large probability after the removal of a given
fraction of edges, and the peripheral nodes benefit directly
from this by connecting directly to the core, rather than among
themselves. What is perhaps more surprising is the eventual

(a) (b) (c)−−−−−−−−−−−−−−−−−→
βS

FIG. 2. Ensemble samples depicting the typical evolution of the
core-periphery structure as a function of the selective pressure βS .
(a) When the core-periphery structure first appears, it is composed
of a small high-degree core. (b) As βS increases, the size of the core
group becomes larger (c) before eventually transitioning to a bipartite
structure.

onset of the bipartite structure, at which point the core group
becomes so dense that its nodes tend to remain in the gi-
ant component even if they are not connected preferentially
among themselves, which would incur a large entropy cost for
no significant additional benefit but instead connect mostly to
periphery nodes. The latter group tends to remain connected
since its nodes tend to receive multiple connections to the
denser core nodes. (Similar structures to the core-periphery
one encountered here were also seen in similar setups where
the robustness was integrated over all possible dilution values
φ [8,25] as well different ones based on dynamical robustness
against noise [26], but the onset of the bipartite structures were
not seen in these other cases.)

In most cases, the results tend to change predictably with
different values of the edge dilution probability φ; however,
a qualitative change in behavior is seen when we cross the
φ = φc value, where φc = 1/〈k〉 is the critical percolation
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FIG. 3. Fraction of nodes and average degree of the core groups
as a function of the selective pressure βS . Panels on the left display
curves for values of φ � φc. Panels on the right display curves for
values of φ > φc. The black dashed line in the plots for κr indicates
the average degree of the network, which has been externally fixed
to 〈k〉 = 5.
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FIG. 4. Average degree of the periphery groups as a function of
the selective pressure βS . Panel (a) displays curves for values of φ �
φc and (b) for values of φ > φc. The black dashed line indicates the
average degree of the network, which has been imposed as 〈k〉 = 5.

value for a fully random graph. For φ > φc a fully random
graph has a nonzero giant component even for βS = 0, and
thus the progression to core-periphery and bipartite structures
proceeds as discussed above. However, for φ < φc a fully
random graph gets completely disconnected, and therefore
the response of the structural changes to increasing βS is
not continuous but happens more abruptly, with the onset of
core-group that is typically much denser. We observe also an
interesting behavior for sufficiently large values of φ, where
the core group spans almost the entire network at its onset,
with an average degree coinciding with the whole network.
The mechanism driving the network structure as βS increases
appears to be slightly different in this case, as it is the smaller
set of “periphery” nodes that end up forming the smaller group
of the eventual bipartite structure.

For φ = φc we also observe a different behavior, where the
onset of the core-periphery structure ceases to be abrupt and
the change happens continuously. This seems to indicate that
an infinitesimal optimization of networks that lie on the criti-
cal percolation threshold has an infinitesimal entropic cost (a
similar behavior had been observed previously in the context
of Boolean networks optimized against stochastic fluctuations
[26]).

A more detailed overview of the combined effect of βS

and φ can be seen in Fig. 5, which shows both the value
of S(βS, φ) but also the relative improvement �S(βS, φ) =
S(βS, φ) − S(0, φ) with respect to a fully random graph. In-
deed, most of the improvement happens around the critical
value φ = φc.

Changing the value of the imposed averaged degree 〈k〉
only shifts the position of the transitions, which remain qual-
itatively the same. The value of the number of groups B
does not change at all the results obtained. Indeed, for any
value B > 2, we find that it is possible to merge together two
or more groups, without changing the ensemble properties,
until only two groups remain. The structures identified above
are then to be considered the only ones to emerge when the
selective pressure against random removal of edges is the only
driving mechanism.

B. Modularity

Some networks tend to be clustered into groups of nodes
that are more connected to themselves than to the rest of the
network. This feature can be beneficial for the adaptability
[6,27] and stability [28] of biological systems and also to the
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FIG. 5. (a) Value of the fraction of nodes S which are part of the
giant connected component as a function of the selective pressure βS

and dilution probability φ. (b) Variation in S with respect to the case
where no selective pressure is applied as a function of the selective
pressure βS and dilution probability φ.

efficiency of technological systems where these modules are
associated with tasks that can be executed in parallel.

The most typical way to quantify of this kind of assortativ-
ity pattern is via the modularity function [10]

Q(A, b) = 1

2E

∑
i j

(
Ai j − kik j

2E

)
δbi,b j , (17)

where E is the total number of edges in the network and
ki = ∑

j A ji is the degree of node i. The quantity above simply
counts the frequency of edges observed between nodes of the
same group, subtracted by the expected fraction in a fully
random graph with the same degree sequence.

Here we are interested in maximizing the expected modu-
larity conditioned on a known partition, i.e.,

max
b,p

∑
A

Q(A, b)P(A|p, b). (18)

Notably, this is different from maximizing the modularity
conditioned on a specific network with respect to an unknown
partition, i.e.,

max
b,p

∑
A

P(A|p, b) max
b′

Q(A, b′), (19)

as is usually done in the context of community detection [29].
This is because here we consider the node types responsible
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FIG. 6. Modularity Q as a function of the selective pressure βQ

for different choices of the allowed number of groups B.

for the value of Q to be an intrinsic property of the system,
based on which the modularity is being optimized. For ex-
ample, these node types could correspond to the assembly
of distinct items in a production line, or different types of
metabolites in a metabolic network, and the overall fitness
of the system would be improved if there would be fewer
interdependencies between these subset of nodes. This means
that if there would be alternative partitions of the generated
networks with a higher modularity value, but unrelated to
these intrinsic types, this would be irrelevant for the fitness
of the system.

The expected value for modularity for the SBM can be
easily computed as

Q(m) =
∑

A

Q(A, b)P(A|p, b), (20)

=
∑

r

mrr − m2
r , (21)

where again we use mr = ∑
s mrs. Note that for completely as-

sortative SBMs with mrs = δrs/B, we have Q(m) = 1 − 1/B,
so we achieve maximal modularity Q(m) → 1 for an infinite
number of perfectly isolated groups.

We can include the modularity as a fitness criterion into our
framework by making R(ω, m) = Q(m) and coupling with its
selective pressure βQ and proceeding to minimize the free
energy

F (ω, m) = −βQQ(m) − �(ω, m). (22)

In Fig. 6 we see the value of the modularity of the network
ensemble as a function of the selective pressure βQ. As the
selective pressure increases, the network splits smoothly and
progressively into fully symmetric groups of equal size with
a larger number of connections inside each group. For low
values of βQ, the results obtained with different number of
groups coincide, and then they start to diverge for higher
values. This is because the actual number of groups populated
starts off small and progressively increases for larger values
of βQ. Differently from the percolation scenario considered in
the previous setting, we do not observe abrupt transitions of
any kind.

C. Multiple optimization criteria

We now turn to the situation where we seek to optimize
both modularity and robustness against random edge removal.

In principle, this would amount to a free energy given by

F (ω, m) = −βSS(ω, m) − βQQ(m) − �(ω, m). (23)

However, this would mean that the same division of the
network used to compute modularity would also be used to
obtain the robustness to edge removal. However, in general
there is no reason to impose that these quantities are related,
i.e., the network structure that is responsible for an increased
robustness to edge removal may be unrelated to the patterns
that cause an increased modularity. Because of this, we want
to be more general and allow the modularity of the network to
refer to a division that is not necessarily related to the one used
to obtain the robustness to damage. We do so by assuming
that the partition used for the computation of robustness is a
subdivision of the one used to obtain modularity, such that
each of its BQ groups can be further divided into one, two,
or more groups, totalling BS � BQ groups. This assumption
is made without loss of generality, since any two independent
partitions into B1 and B2 groups can always be equivalently
decomposed into one with at most B1 × B2 groups, which is
itself a subdivision of a smaller one with min(B1, B2) groups.
Based on this, we have the free energy given by

F (ω, m, c) = −βSS(ω, m) − βQQ[m′(m, c)] − �(ω, m),
(24)

where c = (c1, . . . , cBS ) is a hierarchical grouping of the BS

groups, with cr ∈ [1, BQ] being the group membership of the
group r used for the computation of the giant component S.
The modularity is therefore computed with the condensed
matrix

m′
tu(m, c) =

∑
rs

mrsδr,ct δs,cu . (25)

We stress that for our calculations the identity of the group
memberships are irrelevant, as we concern ourselves only
with the resulting network structures. Therefore, we select
BQ = q and BS = qk, where each of the q groups used for the
computation of Q are subdivided into exactly k groups. Again,
this comes without a loss of generality, as we do not make any
provisions about how large each group is, or even if they are
occupied at all. Therefore this scheme is purely conventional
and does not impose any kind of inherent symmetry or net-
work structure on its own. By choosing q and k sufficiently
large, we can obtain any kind of modular structure used to
compute either S or Q, independently. For our calculations we
have used mostly q = k = 2, which have proved sufficient to
capture most of the structures seen, but we have investigated
higher values as well, as we discuss later.

We minimized Eq. (24) for an ensemble of networks
with 〈k〉 = 5, and edge dilution probability φ = 0.21.
Figure 7 shows the relative changes of the optimization cri-
teria as a function of the selective pressures βS and βQ, where
�S(βS, βQ) and �Q(βS, βQ) are defined as

�S(βS, βQ) = S(βS, βQ) − S(βS, 0), (26)

�Q(βS, βQ) = Q(βS, βQ) − Q(0, βQ), (27)

and represent the relative variations in S and Q induced by the
interplay between the selective pressures with respect to the
case in which we optimized for each constraint in isolation.
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FIG. 7. Relative change �S + �Q of the fitness values as a func-
tion of the selective pressures βS and βQ. The black dashed lines
correspond to transitions linked to abrupt changes in the network
parameters, and the solid magenta lines correspond to transitions in
which the number of groups required to describe the system changes.
Schematics of the optimized network structures for each region are
shown in the margins, with each group corresponding to one of the
BS groups of our model and the color of each group indicating its BQ

membership.

As the selective pressures is changed, we observe a variety
of structural phases, representing diverse combinations of the
modular, core-periphery and bipartite structures encountered
previously. The transitions between the various structures can
be either smooth or abrupt. In the latter case, we can distin-
guish three types of transitions. The first type of transition
is linked to abrupt changes of the network structure and can
be identified by sudden jumps in the group parameters. The
second kind of transition occurs when the number of groups
required to describe the system changes, but no significant
jumps in the group parameters are observed. Finally, the
third type of transition is a mixed transition, where a change
in the number of groups required to describe the system is
accompanied by an abrupt change of the group parameters.
Furthermore, we also observe the presence of synergistic and
antagonistic effects, whereby selecting for one fitness criteria
can help (or hinder) optimizing for the other. We will discuss
these effects in more detail depending on the region where
they occur in the phase diagram, as follows.

1. Regions in the phase diagram

a. The low-βS and low-βQ regimes. For low values of βS ,
we can recover the behavior observed when selecting for mod-
ularity in isolation by varying βQ, and the network structure
varies from a random graph [see Fig. 7(a)], to increasingly
separated and modular structures [Figs. 7(c) and 7(d)]. Con-
versely, we note that the behavior observed when selecting for
robustness against random failures in isolation is not recov-
ered for low βQ. By increasing βS at some fixed low βQ, the
network initially follows the expected behavior and transitions

from a random graph [Fig. 7(a)] to a core-periphery structure
[Fig. 7(e)]. However, for high βS the network structure is now
described by a four-group structure composed of two identi-
cal and interconnected core-periphery or bipartite structures
[Figs. 7(f) and 7(g)]. This symmetric effect can be understood
in terms of modularity. As βS increases, the selective pressure
against random edge removal pushes the network toward in-
creasingly stronger bipartite structures. Since those structures
have edges running predominantly between different groups,
they would yield negative modularity values. Therefore, by
splitting both “core” and “periphery” groups each into two
random subgroups used for the computation of modularity,
the network can escape the negative values with negligible
entropic cost. Note that, in principle, one could recover a
modularity of zero and keep a two-group structure by simply
keeping one of the two BQ groups empty. However, as we
can see from Fig. 6, modularity is a monotonically increasing
function of βQ, meaning it will only be zero exactly at βQ = 0.
Maintaining a four-group structure where both BQ groups are
populated allows the network to attain infinitesimally positive
modularity values for βQ > 0.

b. The high-βS and high-βQ regimes. If we increase βQ at
some fixed high value of βS , then we once again observe that
the optimization of modularity causes the symmetric struc-
tures observed above to become less interconnected until two
separate and identical structures coexist [i.e., Figs. 7(g), 7(h),
and 7(i)]. This symmetric pattern effect can be understood
as direct consequence of both optimization criteria competing
with each other: Since forming a single mixed core-periphery
or bipartite structure would yield low modularity, the overall
structure is mirrored to preserve high fitness values according
to both criteria.

More interesting effects occur if we consider the impact
that increasing βS has at some fixed high value of βQ. In
this scenario, we once again observe symmetric structures
[see Figs.7(k) and 7(i)]. However, we also see the presence
of regions where the network structure is described by an
asymmetric three-group pattern [see Figs. 7(j) and 7(l)]. In
these regions, we again observe the presence of either a core-
periphery or bipartite structure as a result of the selective
pressure toward robustness against random edge removal. The
requirement to have a high fitness for modularity is instead
reflected by the presence of an accompanying and distinct
modular structure. This accompanying modular structure is
always denser than a fully random graph and becomes in-
creasingly dense as βS is increased, suggesting that the effects
of the selective pressure against random edge removal are not
limited to the core-periphery or bipartite structures.

c. Intermediate regimes. For intermediate values of βS

and βQ, the network transitions, both smoothly and abruptly,
between the same structures described above. The only differ-
ence being the presence of an “island” where a three-group
pattern again describes the network structure [see Fig. 7(m)].
In this region, the structure is that of a core-periphery pattern
in which we now have two peripheries preferentially con-
necting to a dense set of core nodes. This structure remains
substantially unchanged if we vary βS . By increasing βQ,
however, one of the two peripheries becomes progressively
smaller and less connected to the core, and the overall network
structure closely resembles the one observed in Fig. 7(j).
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FIG. 8. (a) Change in modularity Q with respect to the case
βS = 0 as a function of the selective pressures βS and βQ. (b) Change
in the size of the largest component S with respect to the case
βQ = 0 as a function of βS and βQ. The dashed and solid black lines
indicate respectively the values of βS at which abrupt transitions to
core-periphery and bipartite structures are observed when optimizing
for robustness against random edge removal in isolation. Schematics
of the optimized structures are shown around the margins, where
each group corresponds to one of the BS groups in our model and
the color of each group indicates its BQ membership.

2. Synergistic and antagonistic effects

To better understand the synergistic and antagonistic ef-
fects seen in Fig. 7, it is convenient to consider the relative
variations over Q and S individually, as shown in Fig. 8. Based
on this, we consider each effect in isolation as follows.

a. Modularity. Inspecting the diagram for �Q in Fig. 8(a),
we can see that for low values of βQ and βS the network struc-
ture is essentially that of a fully random graph. By increasing
βS , we eventually encounter a synergistic region just above

the β∗ transition line that exists when βQ = 0 (see Fig. 1).
This indicates that merely transitioning to a core-periphery
structure is enough to guarantee some degree of improvement
in modularity with respect to a random graph. This synergistic
region extends until moderate values of βQ, corresponding
to the region in Fig. 6 in which modularity shows a rapid
increase. For high values of βQ the synergistic effects vanish,
as we now find ourselves in the region of Fig. 6 where the
modularity reaches its plateau value, and no structural transi-
tion can provide an additional benefit with respect to the case
in which we optimize for modularity in isolation.

What is perhaps more interesting is the small synergistic
region in �Q around the β̃ transition line. In this region of the
phase space, the network structure is described by a bipartite
pattern and a separate modular division. It would appear that
the emergence of a bipartite structure—driven by the selec-
tive pressure toward robustness against edge removal—forces
more edges to be distributed within their own groups than
would be the case had we selected for modularity alone, thus
providing an increased fitness.

b. Robustness against random failures. In the �S phase
space, we observe two principal regions in which synergistic
(antagonistic) effects are present, labeled A and B in Fig. 8.
In region A, the network structure is described by a core-
periphery pattern accompanied by an isolated cluster which
is always denser than a fully random graph. This structure
is initially able to provide greater robustness against random
failures than the corresponding two-group core-periphery
structures we observed in Fig. 3. However, it also has a higher
entropic cost, which is accounted by the selective pressure
for modularity, and we observe a synergistic interplay be-
tween the two selective pressures. This three-group structure
displays no significant changes as βS increases, and, eventu-
ally, the evolution of the core-periphery structures observed
in Fig. 3 can provide greater robustness. At this point, the
selective pressure for modularity reverses its role by pinning
the less optimal three-group structure in place, and we observe
an antagonistic interplay between the two selective pressures.
Increasing βS even further, we eventually reach the point
where it is more beneficial for the network to pay a further
cost in entropy and split into two symmetric structures, in
exchange for larger mutual fitness.

A similar picture occurs in region B, where the network
structure is characterized by a bipartite pattern and an accom-
panying cluster which is always denser than a fully random
graph. The onset of region B happens for values of βS � β̃,
and the added bipartitness initially provides an increased fit-
ness against random edge removal. However, the role of the
selective pressure for modularity once again reverses as soon
as βS > β̃ and we cross the bipartite transition line observed
when optimizing for robustness against random edge removal
in isolation.

3. Increasing the number of groups

As mentioned at the beginning of the section, it would in
principle be possible to obtain any kind of modular struc-
ture by choosing high enough values of q and k. However,
the computation of the free energy grows quadratically with
BS , making it computationally expensive to increase the
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number of groups used to model the network. Nevertheless,
we have investigated regions of the phase diagram allowing
us to probe in more detail how the allowed number of groups
affects the results. Our findings appear to indicate that increas-
ing the number of groups can exacerbate the synergistic and
antagonistic effects, but does not alter the regions in which
these are observed. However, increasing the number of groups
can potentially give rise to different entanglements of the core-
periphery, bipartite, and modular structures observed above.

As an example, we consider the two slices at fixed βS

shown in Fig. 9. For each of these slices, we fix q = 8 and
k = 2. Figure 10 shows a comparison of the modularity as a
function of βQ for both the q = k = 2 case studied above, and
this new case with q = 8 and k = 2.

For slice A, we can see that the two curves coincide for
low to moderate values of βQ, with the network structure
transitioning from a two-group core-periphery structure to a
three-group core-periphery, where we now have two periph-
eries connecting to a dense core group [see Fig. 7(m)]. For
higher values of βQ the curves diverge, as the higher value of q
in the q = 8, k = 2 case allows the network to populate more
groups, thus increasing its modularity (and thereby decreasing
the free energy). The number of groups which are populated
increases with βQ, and the network topology is described
by interconnected modular structures which become progres-
sively disconnected from each other as the selective pressure
is raised. We note that, in contrast to what we observed when
we optimized for modularity in isolation, these new modular
structures are not symmetric, with some groups being denser
than a random graph and others less so.

For slice B, we find ourselves in a region of the param-
eter space where the network topology is described by two
symmetric core-periphery structures which get progressively

FIG. 10. (a) Modularity as a function of the selective pressure βQ

for slice A. (b) Modularity as a function of the selective pressure βQ

for slice B. The bottom curves display the behavior observed in the
q = k = 2 case, while the top curves represent the q = 8, k = 2 case.
Changes in color indicate a change in the number of groups required
to describe the system. Schematics of the optimized structures are
shown in the insets, where each group corresponds to one of the BS

groups in our model and the color of each group indicates its BQ

membership.

disconnected as βQ is raised. Once again, the two curves
coincide for low to moderate values of βQ, but, as βQ in-
creases, the access to a higher number of BQ groups in the q =
8, k = 2 case allows for more groups to be populated, and we
observe different entanglements of core-periphery structures
accompanied by isolated clusters, and, for high-enough βQ,
we once again observe a mirroring effect in which the network
topology is now described by eight symmetric core-periphery
structures.

IV. CONCLUSION

We have introduced a framework to generate null models
of optimized networks, which allow us to incorporate the
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effects that selective pressures toward some predefined set of
criteria can have on the structural properties of the network.
A central feature of our approach is the ability to incorporate
an arbitrary number of criteria, allowing us to analyze more
realistic scenarios in which network systems are subject to
multiple interacting selective pressures.

We have applied this framework to analyze the emerging
structures in systems subject to the joint optimization for
modularity and robustness against random removal of edges,
which we analyzed both in isolation and in combination. In
the case of modularity alone, we showed that by increasing
the selective pressure, we observe network structures which
progressively split into an increasing number of symmetric
groups whose nodes predominantly connect among them-
selves. In the case of robustness against random failures, we
instead identify two phase transitions in which the network
structure transitions first to a core-periphery pattern and then
into an asymmetric bipartite one. The core-periphery struc-
ture is characterized by a smaller and denser set of “core”
nodes which connect preferentially among themselves and a
larger “periphery” whose nodes mostly connect to the core
nodes. This structure allows for higher robustness as the ran-
dom removal of any edge is unlikely to disconnect the core,
and peripheral nodes remain connected via the core itself.

By increasing the selective pressure further, the core group
eventually becomes so dense that its nodes no longer require
to preferentially connect among each other to ensure a high
level of robustness. They instead connect predominantly to the
periphery and we observe an asymmetric bipartite structure.

Finally, by combining both fitness criteria, we observed
different combinations of the above structures, where the
core-periphery and bipartite structures can either appear in
duplicate (i.e., we observe two symmetric core-periphery or
bipartite structures) or accompanied by an additional cluster
which ensures high modularity values. Notably, we observed
regions of the parameter space where the interplay between
the selective pressures can have either synergistic or antago-
nistic effects, and optimizing for a specific characteristic can
either facilitate or hinder optimizing for the other.

Our results show how the interaction between different
selective pressures can be combined in simple network mod-
els, offering a platform to investigate the effects that different
fitness criteria can have on the emerging network structures.
Furthermore, our model parametrization is the same used to
identify modular structure in empirical networks [30], and we
expect these two approaches can be eventually combined in
order to identify the dominant driving mechanisms of network
formation from network data.
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