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Abstract—Being able to automatically recognize notable sites in
the physical world using artificial intelligence embedded in mobile
devices can pave the way to new forms of urban exploration and
open novel channels of interactivity between residents, travellers
and cities. Although the development of outdoor recognition
systems has been a topic of interest for a while, most works
have been limited in geographic coverage due to lack of high
quality image data that can be used for training site recognition
engines. As a result, prior systems usually lack generality and
operate on a limited scope of pre-elected sites.

In this work we design a mobile system that can automatically
recognise sites of interest and project relevant information to a
user that navigates the city. We build a collection of notable
sites using Wikipedia and then exploit online services such as
Google Images and Flickr to collect large collections of crowd-
sourced imagery describing those sites. These images are then
used to train minimal deep learning architectures that can be
effectively deployed to dedicated applications on mobile devices.
By conducting an evaluation and performing a series of online
and real-world experiments, we recognise a number of key
challenges in deploying site recognition system and highlight the
importance of incorporating mobile contextual information to
facilitate the visual recognition task. The similarity in the feature
maps of objects that undergo identification, the presence of noise
in crowd-sourced imagery and arbitrary user induced inputs
are among the factors the impede correct classification for deep
learning models. We show how curating the training data through
the application of a class-specific image de-noising method and
the incorporation of information such as user location, orientation
and attention patterns can allow for significant improvement in
classification accuracy and the election of an end-to-end system
that can effectively be used to recognise sites in the wild.

Index Terms—Mobile Computing, Deep Learning, Location
based application, End-to-End System

I. INTRODUCTION

The capability to execute computationally demanding tasks

on mobile devices thanks to new software and hardware

technology has paved the way for the emergence of a new

generation of user facing applications that are powered by

artificial intelligence modules and augmented reality features.

Applications that have been enabled through this paradigm

include mobile and wearable systems that recognise objects to

trigger events and facilitate exploration of the user’s environ-

ment, infer social dynamics or track the psychological patterns

of individuals [1]–[3]. Object recognition using mobile devices

in particular has become rather popular due to the multitude

of applications it can support [4], [5]. This new generation

of apps can enhance awareness of user surroundings and

context, leading to a better experience in tasks including

search, navigation and transport, entertainment, translation and

more.

In this work, we are focusing on the problem of identifying

notable sites, including landmarks or other visually recog-

nisable points of interest, at large geographic scales. While

the problem of site recognition has been explored in small

geographic regions e.g. to support touristic experiences in old

towns or archeological sites [6]–[8], extending it to larger

areas has been a challenge. First and foremost, the availability

of data sets that consistently provide high quality imagery

for model training and associate that visual information with

the geographic location of outdoor sites has been scarce.

Furthermore, in dense areas, where multiple target sites can

be present, and in proximity to one another, the task of

distinguishing a unique object can become challenging. The

effect becomes more severe as sites can be similar (e.g. two

statues in the same square), or the fact that non relevant objects

can trigger false positives which may harm user experience. Fi-

nally, deploying an object identification task outdoors involves

difficulties that have to do with varying weather conditions

or rendering imagery during nighttime. These environmental

conditions effectively translate to a noisy environment that the

system in place has to cope with [9], [10].

To obtain a list of notable sites we employ Wikipedia [11]

as our primary data source. Wikipedia is a crowdsourced

knowledge base that grows continuously, explicitly focusing

on subjects ranging from general to a more specialized interest.

We can therefore exploit it to extract a list of relevant sites

and to provide contextual knowledge to enrich the exploration

of a landmark or a point of interest in a city. Secondly,

visual information describing notable sites is easier to access.

It is thus possible to obtain high quality training data that

we use as input to train deep learning models to effectively

recognise a site. Finally, a significant fraction of Wikipedia

articles referring to sites that lie in some geography are geo-

tagged (∼ 30% of all English Wikipedia articles are geo-

tagged [12]). As a result incorporating Wikipedia content

on mobile applications that enable exploration in geographic

space becomes easier, in addition to being able to utilize
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contextual geographic information about the user to enhance

the visual recognition task as we show next. In summary, we

make the following key contributions:

• Designing an end-to-end Mobile System for Outdoor
Site Recognition: From data collection to mobile devel-

opment and deployment, we design a system pipeline to

power a mobile application that enables the exploration

and recognition of historic and interesting sites in urban

environments. We use a Convolution Neural Network

(CNN) architecture [13] to train deep site recognition

models which are specialised at identifying sites at par-

ticular geographic regions. When a user navigates to a

particular area, the corresponding region-specific model

is off-loaded to the user’s device. To allow for swift

execution in a mobile setting we choose a minimal model

architecture [14] that maintains high prediction accuracy

and at the same time keeps the number of training

parameters small. This results to a lite model with small

memory and network bandwidth footprint, appropriate for

mobile deployments and when users are moving.

• Filtered Training on Crowd-sourced Images: We train

deep learning models for site recognition on images ob-

tained through two different sources, Google Images [15]

and Flickr [16]. In reflection to the observation that

crowd-sourced image data can vary in quality or be

irrelevant for the intended use in the present work, we

introduce an unsupervised image de-noising method that

improves prediction accuracy by a significant margin

when compared to a baseline trained on the raw set of

collected imagery. The method applies Jensen-Shannon

Divergence [17] on features extracted by a CNN model

pre-trained on ImageNet to detect outlier images and re-

move them from the training set. Following this approach

almost doubles prediction accuracy in the site recognition

task. We then evaluate our system across a variety of ver-

ticals with regard to the application scenario envisioned.

Initially we consider an online evaluation scenario where

training, testing and validation take places considering

items from a given input dataset. We examine variations

in terms of the difficulty of the site identification task

in terms of number of candidate items in the prediction

space, the typology of the sites considered (buildings,

museums etc.) as well as their respective popularity.

• Incorporating Mobile Context Awareness: Through a

test deployment of our mobile application we observe a

large discrepancy in prediction accuracy terms between

testing on the data collected from online sources and

input image items provided by mobile users captured

in realistic navigation experiences near sites of interest.

We perform an interpretability analysis on the recognition

tasks using the Grad-CAM system proposed in [18] and

observed that built structures surrounding the site of

interest to the user can confuse the classifier. In reflection

of these observations, to assist the visual classifier on the

site recognition task, we incorporate mobile contextual

Fig. 1: A set of sites featured on Wikipedia in a neighborhood

of New York City. Each site is represented by a 3-d rectangle

with its height corresponding to the site’s pageview count on

Wikipedia.

information. We show how combining user’s current

location and orientation information with a simple focus

interaction on the rendered site of interest, prediction ac-

curacy can dramatically improve allowing for the correct

recognition of two in every three sites tested.

Applications such as the one we built in the present work can

power a new generation of mobile services that can enable new

forms of urban exploration and facilitate accessibility to local

knowledge to tourists and city residents alike. Furthermore,

rendering Wikipedia content using mobile as medium can en-

hance the exploration of encyclopedic content enabling novel

forms of interaction with physical space. This approach also

improves over the limitations of text-based search and web

browsing that can be frustrating when moving, disconnecting

users from their surroundings. Next in Section II we provide

an overview of our system. In Section III we describe the

training methodology we adhere to using crowdsourced data

and a filtering method to de-noise input imagery. In Section IV

we run a test-bed of our system in the wild and introduce a

mobile-context awareness mechanism for the site recognition

task and in Section V we discuss the limitations of and future

vision for our system. Finally, we discuss related work in

Section VI and conclude our work in Section VII.

II. MOBILE SITE RECOGNITION

In this section we provide an overview of the architecture of

a site recognition system embedded in a mobile application we

develop together with a description of a crowdsourced image

data collection pipeline that is critical for training such system.

A. Overview

With our goal being the real time recognition of notable sites

in urban environments, we next describe the development of

a mobile system that is trained on heterogeneous sources of

crowd-sourced imagery to perform the task. The use case we

are interested to support is that of a person moving in a city
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Fig. 2: Screenshots corresponding to the user facing mobile

application. Upon recognition of a site, an active icon appears.

The user can click it to access information related to the

detected site.

willing to serendipitously discover notable sites of historic,

political, cultural or other interest. Wikipedia is the most well

known source of knowledge describing such sites and consti-

tutes a primary data source in the present paper. Wikipedia, in

addition to offering a concrete set of notable geo-tagged items

that we use to bootstrap our system, offers relevant content that

we can project to a user’s device immediately after recognition

of a site has taken place. In Figure 1 we show a map of geo-

tagged Wikipedia articles in the area overlooking Greenwich

Village in New York City. A diverse set of landmark and

place types is covered with numerous points concentrated

at relatively small urban areas making the recognition task

challenging. The height of each polygon is proportional to the

number of views the corresponding Wikipedia article had on

the web.1.

A primary requirement for the development of the system

described above is the availability of high quality image train-

ing data. That is, data that sufficiently describes in quantity

and quality terms a given site, so that it can effectively be

discriminated with respect to other similar sites nearby. For

the purposes of training we employ two source of image data,

Google Images [15] and Flickr [16]. For a large fraction of

sites described on Wikipedia there is lack of sufficient image

data from the Wikimedia Commons [19] collection to train

effectively deep learning models for the task of interest. We

provide a deeper look into the specification of the training

data in the next paragraph, whereas we discuss a de-noising

method that automatically ignores irrelevant imagery during

training in Section III.

We use a convolutional neural network architecture to con-

duct site recognition. One limitation of deep neural network

1https://tools.wmflabs.org/pageviews/

is that the set of output classes cannot be changed without

retraining the network. It will also be difficult to train a single

model that classify all sites in a large area. To scale our system

to large areas, we separate the problem into small regions,

and train a model within each of them. Those trained models

are hosted on a server and are distributed to users’ devices

as they enter new regions. Given the mobile setting of the

deployment considered here, an equally important requirement

is optimal resource utilization given typical constraints on

mobile in terms of memory, computational capacity, and

internet bandwidth. Consequently, a standard deep neural

network architecture trained on a large image collection would

not be appropriate in this scenario. We consider therefore,

a lightweight architecture, Squeezenet [14], that requires a

small number of training parameters while maintaining at the

same time performance that matches standard state-of-the-art

architectures for image classification. We review the exact

details of our approach in the next paragraphs.

In Figure 2 we present two key instances of the prototype

mobile application we develop 2. We assume that the app

has already loaded the model from our server. First, as the

user points their camera towards a target site the loaded deep

learning module in the application recognises it and an active

icon appears in the screen informing the user that something of

potential interest has been detected. The user can then click on

the icon and a short description of the site appears as retrieved

from the corresponding Wikipedia article page on the Web.

B. Datasets

As noted, our work is based on three sources of data:

Wikipedia, Flickr and Google Images. We describe them

formally here. In total, there are approximately 11, 000 geo-

tagged Wikipedia items in the greater New York area (five

boroughs) that we focus our experimentation in this work.

We collect those from the Wikipedia dump portal here [12]

focusing on the English Wikipedia site. Each item in the

collection is described by a title (e.g. Union Square), its geo-

graphic coordinates, the number of views it had on Wikipedia

until the last month of 2018 and its category (e.g. building,

statue, church, museum etc.). Our goal then becomes to

collect representative image data that describe each of those

items in visual terms. We have considered two sources. First,

Google Images, where we query the Google Image Search

API with the title of each article and collect the first 80
images returned [15]. Our second source has been the image

hosting service Flickr where we make use of the corresponding

dataset available in [20] (The Yahoo! Webscope Yahoo Flickr

Creative Commons 100M, YFCC-100M ). Flickr has been a

popular service for photographers touring the world with the

majority of the images geo-tagged. We then match using site

title information, the Wikipedia items with the Flickr photos

dataset to extract a collection of 80 photos for each site. In

the case where a site features less than 80 images, if it is for

2https://github.com/wiki-atlas/Aurama
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Fig. 3: High-level view of the end-to-end mobile site recognition system pipeline. For each site in the Wikipedia article

collection of geo-tagged articles in New York, we collect relevant image data for training. During data processing a filter is

applied to remove any irrelevant imagery. Finally a region specific model is trained and transmitted to the users device.

instance a less popular item, we simply use the number of

images available in each source.

C. System Specification

In Figure 3, we present an overview of our system’s

architecture. It comprises of five interconnected parts: region

selection, data collection and filtering, model training, model

transmission on mobile and the mobile application itself.

Given a large area in Manhattan, we split it into small regions

which are overlapping so a user experiences a soft transition as

they move from one area to another. These region boundaries

are used to query Wikipedia database for a set of sites in range.

We then query image database to collect a set of images for

each sites. The crowdsourced image data collection is passed

through a data filter to remove irrelevant data. The refined

training set is used to build a region specific deep learning

module that recognise sites which lie in that region. Finally,

those regional models are transmitted from the server to the

mobile application accessed by the user.

More formally, for each region r, we train a different

deep learning model Mr on imagery I for all sites Sr that

belong to that region r. We note the two sources of training

data for our input imagery as Ig for Google Images and If
for Flickr. The decision to build a separate model for each

geographic region r makes the site recognition task easier

as there are fewer items for the classifier to discriminate

across. The trade-off introduced by this decision is that a new

model has to be off-loaded to the user’s device each time

they enter a different region. We take this into account by

incorporating the Squeezenet model [14]. The Squeezenet ar-

chitecture achieves a lower number of parameters by reducing

the size of convolution filters and attains high accuracy through

downsampling late in the network to induce larger activation

maps for convolution layers. One of the advantages when using

a lightweight architecture, is the low bandwidth requirements

that allow for quick over-the-air updates which are desirable

in a mobile setting due to well known constraints in user

connectivity. Squeezenet achieves AlexNet-level accuracy with

50-fold fewer parameters and model compression techniques

that allow for models that require less than 1MB in memory

resources. During experimentation we have also considered

deep neural network distillation techniques described by the

authors in [21], though we have reduced that choice as it

yielded similar accuracy scores and involved a more elaborate

and complex training methodology in computational terms.

a) Training methodology: Given an area r, we con-

sider a collection Is of images for each site s ∈ r. The

resulting training set for the area is then Ir, where Ir =
{Is1, Is2 . . . , Isn} considering all n sites that geographically

fall in the region, is then used to train an area specific

Squeezenet model. Using Cross Entropy Loss as our optimi-
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sation criterion [22], for a given training input, we seek to

minimize the following loss function:

L = −
∑

x∈X
p(x) · log(q(x)) (1)

where x is a class in target space X , and p is the ground

truth probability distribution across the classes, set equal to

1.0 for the class corresponding to the site of interest and 0.0
everywhere else. q is the probability distribution generated by

the model through a forward pass of the input image (softmax).

We minimise L throughout the training set and applying

stochastic gradient descent and backpropagation. The model’s

parameters are then altered step-by-step with the goal being

a higher prediction performance in the test set. A rectified

linear unit (ReLU) activation function is applied after each

convolution layer and prior to pooling. Each regional model

has been pre-trained on the ImageNet dataset [23], prior to

training on the image collection Ir that is used to train a model

tailored for a specific region r.

b) Model migration on Mobile: The training process

has been implemented using the PyTorch machine learning

library [24] with each regional model being trained on a

cluster of GPUs for a duration that is in the order of tens

of minutes. We then incorporate the trained model on the iOS

and Android application platforms following two steps: first

we export the model generated by PyTorch to an ONNX [25]

format and subsequently we convert it from ONNX to a

Core ML and Tensorflow Lite models 34 compatible with the

iOS and Android platforms respectively. ONNX is an open

format to represent deep learning models and allows for easy

transfer across specific platforms that may adhere to different

programmatic configurations. Having a version of the model

on a mobile device, the system is able to perform the desired

task which is to classify an image for a given site observed

by the user.

III. ONLINE EVALUATION

In this section, we evaluate our system considering an

online scenario that focuses on training and testing over

the collections of crowdsourced data collected from Google

Images and Flickr. We present a simple technique that enables

filtering irrelevant data items from the training set so as to

boost performance in the site recognition task. The metric we

employ is classification accuracy at top-1 which is a natural
metric to consider given the use case under consideration. By

accuracy at top-1 we mean the fraction of times the classifier

has correctly elected the ground truth label, corresponding to

the site in question, at the top of the output prediction list. We

remind that the classification output is based on softmax and so

for every class we obtain a probability estimate. We consider

eight areas of radius 500 meters across central Manhattan.

Our results are obtained through averaging (mean) across the

regions. Within each region we obtain a score by performing

3https://developer.apple.com/documentation/coreml
4https://www.tensorflow.org/lite/models/image classification/android

Fig. 4: Comparison of classification accuracy of two different

data sources of training data on the site recognition task.

a Monte-Carlo cross validation [26] using an 80/20 ratio. We

have used a learning rate of η = 0.001.

A. Utilizing Crowdsourced Imagery

a) Evaluating Data Sources: Given an area of radius

500 meters we train two separate models Mr and Mr′, using

the set of images If sourced from Flickr and the set Ig sourced

from Google. As demonstrated in Figure 4, Flickr allows

for better recognition performance by a significant margin

of ≈ 15%, which corresponds to an overall improvement of

almost 50% compared to a model using Google Images as

source. Through manual inspection we have observed that

Google Image search yields results that very frequently do

not correspond to outdoor views of a site. Instead a mix of

image types is returned including those that provide indoor

views to a venue or cases of images that are associated

with generic search results, but do not necessarily provide a

direct depiction of the site in question. On the other hand

Flickr, being a service that has been naturally used by tourists

and photographers who navigate, explore and record the city

provides a more homogeneous and better curated base that

we use to build our models. Even so, images obtained by

Flickr also feature limitations. To alleviate the effect of noisy

or irrelevant inputs we present a method that generalises to

any source of crowdsourced data next.

b) Image Data Purification: A number of geo-tagged

items in the Wikipedia dataset can be of low popularity or

can be abstract. This family of items can correspond to events

or places that are not visible to a navigating mobile user.

As an example, let us consider the International Juridical
Association 5 which is a professional society of lawyers

established in New York City between 1931 and 1942. Online

images about this Wikidata entity correspond to notable people

associated with the organisation or events it hosted. An image

search on this item can fetch numerous irrelevant images

5https://en.wikipedia.org/wiki/International Juridical Association
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items with large dirgence values are removed so that a more
cohesive image-based representation of a class is attained.

Fig. 5: Training data de-noising in two steps.

that results in a chaotic image dataset unrepresentative of

any item present in the physical world. To make best use of

crowdsourced imagery for the site recognition task, we would

therefore need an automated method to filter out irrelevant

image training items that could confuse a classifier.

To do so, we devise an unsupervised filtering method with

the goal being to purify a dataset of images describing a site

improving this way recognition performance. First, given the

set of images Is available for a given site s we would like to

perform an overall assessment regarding the appropriateness

of including a site as a target for recognition in our app. If

a significant majority of images associated to a Wikipedia

article are irrelevant to one another, then probably the article

does not correspond to a site visually recognised by users

and can be removed from the set of sites considered for

recognition. An important limitation of this assumption is that

at times there are sites such us restaurants or event spaces

which feature a homogeneous set of images, yet those are

not associated with outdoor views of navigating users. We

describe the methodology we have followed schematically in

Figure 5. Initially, for every collected image item i describing

a site, we obtain a set of features Pi, which is equal to

the softmax output of Squeezenet pre-trained on ImageNet

data. Taking into account then all n outputs corresponding to

the training image items for a site we end up with a series

of 1000-dimensional softmax vectors where each dimension

corresponds to one of ImageNet’s 1000 categories.

Our aim then becomes to assess the degree of cohesiveness
of this distribution in the set of training images. If the image

set is too chaotic we remove the site from consideration.

If however the degree of cohesiveness is high enough, we

assume that there is representative training data for the item in

question and we include it. Since the softmax function outputs

Fig. 6: Prediction accuracy by applying Jensen-Shannon Di-

vergence based filtering versus the case where the filter is

ignored during training.

a probability distribution, we choose the multivariate form of

Jensen-Shannon Divergence [17] as our measure of dispersion

for a given set of images corresponding to a site (class). Let

P1 · · ·Pn represent the features of n images in that class, and

let π1 · · ·πn represent the coefficient for each feature. The

Jensen-Shannon Divergence for this image class can be defined

as :

JSDπ1,π2···πn(P1,P2, · · ·Pn) = H(

n∑

i=1

πiPi)−
n∑

i=1

πiH(Pi)

(2)

where H is the Shannon entropy. We treat each class as being

of equal importance (weighting) and therefore we set each π
to 1

n . As a result Equation 2 is simplified to:

JSD(P1,P2, · · ·Pn) = H(
1

n

n∑

i=1

Pi)− 1

n

n∑

i=1

H(Pi) (3)

We then filter out all image classes which have JSD score

higher than 2.

We then aim to de-noise the set of crowd-sourced images

within each of the remaining image classes. Our aim is to

keep relevant images for a class while discarding outliers.

In this problem setting, we define relevant type as the type

of majorities. We represent the relevant feature as Pm. The

relevant type feature is calculated by averaging the features of

all images in the class:

Pm =
1

n

n∑

i=1

Pi

The distance between each image feature Pi and the relevant

type feature Pm can be defined as the forward Kullback-

Leibler Divergence between the two distributions:

DKL(Pi||Pm) = −
∑

x∈X
Pi(x) log(

Pm(x)

Pi(x)
) (4)
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Fig. 7: Classification accuracy at top-1 when varying the

number of image items per site used for training.

Images with KLD score greater than 2 are removed from the

data. While the process of calculating JSD and KLD adds extra

computational cost during the training phase, its employment

has experimentally yielded superior results. In Figure 6 we

plot the prediction accuracy at top-1 for our model for two

scenarios: with and without filtering. As can be observed

incorporating the filter during training improves the baseline

performance by almost 90%. The error bars show variation

across the 8 areas we have considered in our evaluation. On

average the algorithm filtered out 32% of the classes and 58%
of the total set of images.

The number of images in the training set available for each

site is of high importance. We demonstrate this by controlling

for the number of images m available when training a site. If a

site has more than m images, we randomly sample and select

m without replacement. In Figure 7, we observe that a plateau

in performance in reached only when the number of training

images per site available for training arrives exceeds 70 (error

bars show variations across regions). Items with less images

in our dataset will be less well represented for classification.

Removal of irrelevant training items, as described above,

should happen carefully. Removing arbitrarily image data

comes with a significant penalty in performance as we have

empirically demonstrated here.

IV. MOBILE CONTEXT AWARENESS

The analysis performed so far has demonstrated that large

amounts of high quality image data data is important to the site

recognition task. As we discussed, quality can be determined

according to a number of dimensions, including the source

of image data (e.g. Flickr), the number of training items per

class or through the removal of noisy items using the data

purification method we described earlier. Even so, perfectly

recognising sites purely on visual terms is a very challenging

task. Buildings, statues, churches and other built structures can

share similar architecture, design and style features. Moreover,

Fig. 8: Classification accuracy at top-1 considering different

geographic area sizes.

the fact the system is deployed in a mobile setting means that

visual inputs may be prone to noise due to environmental and

weather conditions or issues related to camera manipulation

on the site of the user. Next, we describe the methodology we

have followed towards facilitating the visual recognition task

through the incorporation of mobile contextual factors. Our

hypothesis is that the cooperative interplay of vision learning

and mobile contextual factors can lead to superior system

performance in realistic user scenarios.

a) Determining area size for over-the-air updates on
mobile: One of the first consideration to make while deploying

the recognition system on mobile has to do with the size of

the region r for building a corresponding model Mr for. A

too small area size, e.g. imagining the extreme scenario where

we would build a different model for each site, would mean

very frequent and potentially unstable model updates due to

the high density of sites in certain regions. On the other hand,

very big region sizes would translate to a large number of sites

under consideration that would make site recognition harder.

To evaluate this trade-off, we consider different geographic

region sizes and perform an evaluation on prediction accuracy

considering concentric circles of increasing radius size. In

Figure 8, we plot classification accuracy against different

geographic area sizes used to build a model Mr for a given

region r. Accuracy steadily drops as we consider larger areas

with a rate of 15 − 20% every time we double the area size.

As noted, very small areas contain fewer class items and

naturally the recognition task becomes easier in this setting.

Considering the fact that accuracy levels remain relatively high

(70%) for a somewhat large exploration region of radius 500
meters and assuming that our users will explore the city on

foot, we propose this value to fine tune the system we deploy

here. However, this parameter could be fine tuned according

to variations in the application scenario or when deploying to

new cities of varying density.

b) Motivating the need for using mobile context in site
recognition: To demonstrate one of the main challenges in
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the site recognition task using imagery only, in Table I we

present the confusion matrix for top site categories during

evaluation. For every site category (e.g. Museum), we calculate

the probability of observing a certain category for the predicted

site. In this example, a Museum is classified to Museum

(same category) with probability 0.67, a Hotel with 0.11 and

a Skyscraper with 0.06. In parenthesis we note the probability

that, when the predicted category is the same, then the site

recognised is the actual one (correct prediction). Sites are

very likely to be confused by other sites of the same category

with a prominent example of this case being Churches and

Buildings. Building sites are typically widespread in an urban

environment and it has been one of the categories harder to

classify correctly. Churches of similar architectural style tend

to also be spatially clustered in cities and hence discriminating

across them can be a challenge.
Moreover, given an input image for training or testing, a site

of interest that is included in the image can be surrounded by

other sites that could trigger an incorrect classification output.

To demonstrate this undesirable scenario we build on the work

of Selvaraju et al. [18] utilizing the Grad-CAM framework that

offers visually driven explanation on the classification output

of a convolutional neural network. Given an image and a class

of interest, Grad-CAM produces a heatmap that highlights the

features in the input image that are most important for the

given class of interest. In Figure 10 we provide an example of

how we have used Grad-CAM to offer interpretation given a

classification output focusing on the Metronome Public Art

Work at Union Square in Manhattan. The Metronome site

(Fig. 10a) was initally classified as a building (Fig. 10b) as it

is physically embedded in a built environment surrounding the

site of interest. We have further observed that focusing closer

to the site (Fig. 10c), effectively removing a portion of objects

that could confuse the site recognition model, can assist the

classifier towards performing a more informed guess. In the

Metronome example, the site is classified correctly with visual

features that are inherent to its characteristics being picked-up

by the model as demonstrated in Grad-CAM output shown in

Figure 10d.
c) Mobile Context Scheme: To alleviate the challenges

of performing the site recongition task in the wild, we propose

the incorporation of additional sources of information that

capture the context of a mobile user. The scheme we are

putting forward is conceptually separated in three key aspects

each of which captures a different dimension of mobile user

behaviour. Those are:

• User geo-location: Using the geographic coordinates of

the user as provided by their phone’s GPS sensor, we

can filter out from the site recognition task all sites

that are at a large geographic distance from the user’s

location. While we have effectively incorporate location

information implicitly through off-loading a model to the

user’s device according to geography, we take an extra

step to further impose geographic constraints on the task

by considering sites that are within 200 meters from the

user location. The threshold comfortably accommodates

120°

Proximity Range

Maximum Range

User direction

Valid range

Out of range

Fig. 9: Exploiting geo-location and user orientation to improve

classification accuracy. We highlight in green the area of con-

sidered sites around the user. Out of range sites are excluded

from being candidate items during site recognition.

GPS errors of modern mobile devices and at the same

maintains a generous degree of freedom to allow the user

interact with sites that are not in very close vicinity but

can appear relevant (e.g. a large landmark visible from a

distance).

• User orientation: When a user points their phone’s cam-

era towards a site of potential interest they additionally

provide directional information that can be picked-up by

the phone’s compass. We can therefore remove sites that

are not directly visible by the user’s camera through the

introduction of a site validity zone based on orientation.

Considering a 360-degree angular space of orientation we

allow for the consideration of sites in the classification

task that lie within 60 degrees plus or minus from the

users bearing direction. This allows for an overall 120-

degree coverage which sufficiently accounts for compass

sensor errors and yet captures a large portion of the

observer’s field of view.

• User attention: Finally, we incorporate users attention

patterns to focus the classification task by incorporating

the feedback provided by the Grad-CAM visual explana-

tion system in our mobile app. At first instance, a visual

symbolic clue (Wikipedia icon as shown in Figure 2) is

provided to the user superimposed over the area of the

image where the classifier detects a potential object of

interest. The user can then tap to view related informa-

tion on the recognised site. Alternatively, the user can

manually select the image area of interest. A subsequent

attempt for classification will be performed then by the

app focusing on the user selected area with the icon
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Input Category Output Category 1 Output Category 2 Output Category 3
Museum Museum 0.67 (1.0) Hotel 0.11 Skyscraper 0.06
Sculpture Sculpture 0.62 (1.0) Museum 0.1 Nightclub 0.05
High School High School 0.61 (0.96) Other 0.28 Post Office 0.03
Music Venue Music Venue 0.47 (0.69) Theater 0.13 Movie Theater 0.13
Restaurant Restaurant 0.47 (0.92) Nightclub 0.1 Other 0.08
Commercial Art Gallery Commercial Art Gallery 0.45 (0.92) Art Museum 0.16 Venue 0.05
Building Building 0.44 (0.92) Other 0.09 Sports Venue 0.05
College College 0.38 (1.0) Other 0.19 Educational Institution 0.16
Movie Theater Movie Theater 0.39 (0.96) Theater 0.1 Music Venue 0.09
Skyscraper Skyscraper 0.36 (0.67) Other 0.12 Building 0.08
Church Building Church Building 0.32 (0.58) Building 0.06 Other 0.06
Architectural Structure Architectural Structure 0.47 (1.0) College 0.05 University Building 0.05
Theater Theater 0.29 (0.79) Movie Theater 0.09 Other 0.07
Hotel Hotel 0.23 (0.95) Building 0.12 Theater 0.12

TABLE I: Prediction Output Matrix of Site Categories: Given an input site category for classification we note the top-3 most

likely categories output by the model. In all cases the most likely output category is the category of the input site. We note in

parentheses the probability that a prediction is correct (when the output category is different the prediction is wrong).

(a) Original Shot (b) Grad-CAM Output

(c) Focused Shot (d) Grad-CAM

Fig. 10: Grad-Cam example on the Metronome Art Installation

at Union Square, New York. When a user focuses on the

subject of interest site classification becomes easier as nearby

buildings are less likely to confuse the deep neural network.

being re-positioned to point the user to the newly detected

object.

d) Mobile Context Evaluation: Our approach is

schematically described in Figure 9 with green space high-

lighting the geographic range around the user that contains

the set of sites that considered in the classification task. We

integrate this as a filtering mechanism in the mobile app

simply by discarding all softmax outputs for classes (sites)

that are excluded and electing the highest scoring site from

the remaining candidates. The necessity for the use of mobile

context to assist the visual recognition system emerged after a

test deployment. We collected 100 photos across 25 randomly

selected sites we visited in a central area of New York City

and we assessed the efficacy of the classification model in this

test set. Multiple photos for each site were taken approaching

it from different directions and perspectives. We highlight that

this test set is distinct to the Flickr dataset we used for training

the classifier and our aim here has been to test our system

over inputs captured in a real mobile context as opposed to

considering an online evaluation scenario we explored in the

previous Section. In Figure 11 we present the accuracy results

obtained on this test set. Notably, the accuracy performance

deteriorated significantly compared to the online scenario we

presented in the previous section, dropping to a value of 18%.

Incorporating user attention information with the user able to

focus on a subject of interest, allowed the model to rise up

to 48%. Using geo-location information and user information

allows for the model to attain a performance of 56%, whereas

using all mobile context inputs (orientation, location and user

attention) information allowed for a further improvement of

the accuracy in the test set to 64%. These results demonstrate

that despite the importance of incorporating online imagery

to train such systems, when deploying them in the wild new

inputs induced by mobile users can introduce noise as well

as inputs of image items that are sampled from an effectively

distinct distribution to the one described by online datasets.

Here we show that complementing the value extracted of those

with mobile contextual factors can recover significantly the

margin that may exist between curated online data and novel

inputs introduced by mobile users.

V. LIMITATIONS AND VISION

Our work in the previous sections has shown that despite

the ambitious task we undertook, identifying sites of interest

on mobile through the use of visual clues and capturing

information about mobile user context is feasible. Doing so

can enable the effective exploration of Wikipedia content in

an intuitive manner. This is particularly important for tourists

and urban explorers who are willing to learn about interesting

facts related to a city, sites and landmarks of historic and

contemporary significance, as well as hidden gems in urban

environments that are not typically accessible through other

sources of knowledge. Interacting with urban space through
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Fig. 11: Classification Accuracy Using Mobile Context.

new mediums can power a new generation of artificially

intelligent and augmented reality applications. The capacity to

perform these tasks has been enabled through progress both in

the availability of computational resources in mobile devices,

but also the large collections of imagery becoming available

through a variety of sources. Nonetheless, we have identified

key limitations to the use of online data for training deep

learning modules. As we have shown, one way to resolve this

challenge is to filter irrelevant images with regard to the site

of interest. Even so, there will always exist less popular sites

for which image data will be scarce. We believe that making

these niche sites accessible through our application can be

intriguing and help users become more eager for exploration

and acquiring knowledge. We seek to alleviate this issue in

future work, using data collected from Google Street View

and similar services, though automating this process at scale

is a major challenge.

There are already commercial applications such as Google

Lens that are able to recognise objects and sites outdoors. Our

aim in the present work is to inform the research community

on the general concepts and technical directions one would

follow to develop applications of this type. Moreover, we are

particulary focused to helping users accessing knowledge of

notable things, in line with the vision set by the Wikipedia

community, as opposed to supporting use cases involving tasks

such as generic item search or shopping. We will be storing all

site photos collected through our application in a repository

with all media donated to Wikipedia Commons [19]. This way

we enable a crowdsourcing loop, where users are consumers

of crowdsourced content, but at the same time they are media

content donours. Aspects of gamification will also be enabled

in this setting, with users being able to collect points based

on the number of sites they recognise and be rewarded for

contributing media content to the community.

VI. RELATED WORK

The increasing availability of computational resources of

smartphone devices has allowed for a new generation of

machine learning powered mobile services to emerge over

the past decade. As a result there has been a host of works

dedicated on understanding how machine and deep learning

models can be deployed in this setting. Much of the focus has

been on sensing user activity (e.g. walking, driving etc.) with

the goal to improve physical or mental health or enabling new

channels of social communication between users [1], [27]–

[29]. Deep learning modules on mobile typically focus on

tasks where these models are known to excel, such as audio

sensing or visual object detection [30] with a challenge being

the development of so called light models that have small

memory footprint and quick inference responses so they can

effectively be accommodated in a mobile context [21], [31],

[32]. Visual search on mobile [33] using deep learning has

been another subject of study related to the present work

to support applications such as that of identifying plants in

nature [34] or object search supported by applications such as

Google Lens [35].

Our work relates more closely to studies on what is known

as site or landmark identification. Most works in this domain

have focused on predicting the tags of specific image (e.g.

statue, bridge etc.). The task we tackle here however aims

at specifically identifying a unique site and provides new ap-

plication opportunities associated with tourist exploration and

local knowledge augmentation. That latter task has been also

been studied by authors in [36] where a web-scale landmark

recognition engine based on visual detection models is being

proposed. Their approach is limited to considering only an

offline evaluation scenario on a set of images corresponding

to global landmarks, ignoring mobility context altogether. The

authors in [37] describe a methodology that proposes the

incorporation of geographic information to improve image

classification, which we draw inspiration from in this work,

but focusing on notable sites of interest to urban explorers, as

opposed to generic imagery content used in [37]. The reverse

task, inferring a geographic location given an image has also

been studied previously [38].

VII. CONCLUSION

In this work we have developed an end-to-end mobile

system that exploits deep learning on crowdsourced images

to perform recognition of notable sites. We have highlighted

the significance of online sources of data in bootstrapping

and training such systems. We have further developed an

automated filtering process that allows to better exploit image

data collected by mobile users and becomes available through

online photography services like Flickr. Site recognition in

the wild can be challenging not only because distinguishing

between sites in the physical world is inherently difficult due

to item similarities and the large number of candidate items,

but also due to the fact that within a user’s camera visual

field irrelevant objects can trigger false positive events. Using

mobile contextual information such as user attention patterns,

geo-location and orientation can alleviate these challenges to

an extent where such applications can become usable as well

as useful.
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