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A B S T R A C T   

The ongoing COVID-19 pandemic has inflicted tremendous economic and societal losses. In the absence of 
pharmaceutical interventions, the population behavioral response, including situational awareness and adher-
ence to non-pharmaceutical intervention policies, has a significant impact on contagion dynamics. Game- 
theoretic models have been used to reproduce the concurrent evolution of behavioral responses and disease 
contagion, and social networks are critical platforms on which behavior imitation between social contacts, even 
dispersed in distant communities, takes place. Such joint contagion dynamics has not been sufficiently explored, 
which poses a challenge for policies aimed at containing the infection. In this study, we present a multi-layer 
network model to study contagion dynamics and behavioral adaptation. It comprises two physical layers that 
mimic the two solitary communities, and one social layer that encapsulates the social influence of agents from 
these two communities. Moreover, we adopt high-order interactions in the form of simplicial complexes on the 
social influence layer to delineate the behavior imitation of individual agents. This model offers a novel platform 
to articulate the interaction between physically isolated communities and the ensuing coevolution of behavioral 
change and spreading dynamics. The analytical insights harnessed therefrom provide compelling guidelines on 
coordinated policy design to enhance the preparedness for future pandemics.   

1. Introduction 

In the absence of pharmaceutical interventions, situational aware-
ness and collective adoption of protective behaviors are pivotal to 
combat spreadout of infectious diseases, as demonstrated by the ongoing 
COVID-19 pandemic and the flare-up or resurgent outbreaks around the 
world. The integration of awareness into mathematical models, mainly 
through variants of susceptible-infectious-recovered (SIR) models, has 
been widely investigated since the onset of COVID-19 [1]. Most of these 
models merely capture oversimplified behaviors (e.g., social distancing 
or not) and fail to capture the sophisticated mechanisms underlying 
behavioral responses, including the individual perception of infection 

risk and bounded rationality, government mandate, socioeconomic cost 
and fatigue on adherence to containment policies, as well as social in-
fluence [2–5]. The interplay between the collective behavioral response 
of the population and the contagion dynamics has a significant bearing 
on the epidemic evolution. 

Game-theoretic models explicitly account for behavioral adaptation 
and the connection with epidemic spreading [6], mostly with a sepa-
ration of time scales between the spreading dynamics and behavioral 
response [7–10]. For instance, behavioral changes only occur at the 
beginning of each time period or happen at a much lower frequency. 
Such a time-scale separation does not capture the realism of behavioral 
responses. Inspired by [11], we study the coevolution of the spreading 
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dynamics and behavioral adaptation under the same time scale and 
investigate the decision-making process under the influence of risk 
perception, behavioral change costs, compliance fatigue, social influ-
ence, as well as bounded rationality [12]. As behavior dynamics has 
been recognized as one driving force behind resurgent outbreaks of 
COVID-19, there is a pressing demand for a paradigm shift from purely 
rational and reactive behavior modeling to a more comprehensive 
response computational framework that can predict the epidemic evo-
lution and provide guidance on intervention policy design. 

Network models have been widely deployed to describe agent in-
teractions. For instance, a single-layer network was suggested in [13] to 
incorporate agent behavior to extend the conventional susceptible- 
exposed-infectious-recovered (SEIR) model. The decision of each agent 
to take a certain behavioral response is modeled via an evolutionary 
game model, considering the underlying cost. Ye et al. [11] instead 
suggested a two-layer network to study the interplay between agent 
behavior from a social layer and the spreading dynamics on a physical 
layer. Particularly, as we have observed during the COVID-19 pandemic, 
social media play a vital role in reshaping our perception towards the 
risk of infection and in transforming behavioral responses. Nonetheless, 
most existing works only study the interplay between epidemic dy-
namics and behavior responses for the population that resides in the 
same physical community. It has been reported that contact patterns of 
residents in one region could be substantially affected by the policies 
and behavioral responses in other distant regions [14]. Or in other 
words, we imitate behavioral responses of our social contacts even if we 
are located in distant communities. Such a “spillover” effect could crimp 
the effectiveness of intervention policies, and it has not been systemat-
ically investigated. On the other hand, numerous behavioral models [6], 
[15,16] have been proposed to quantify how human behaviors adapt 
and affect the transmission of contagious diseases assuming pairwise 
interactions between agents. It is noted, however, that this pairwise 
interaction assumption may fail to represent more realistic behavioral 
responses [17]. Instead, a higher-order interaction among the popula-
tion has been suggested for behavioral adaptation on social networks. 
Recent studies also underscore that the presence of higher-order in-
teractions substantially sways the dynamics of networked systems, from 
diffusion and synchronization to social and evolutionary processes, 
possibly leading to the emergence of sophisticated collective phenom-
ena [17–19]. 

To account for such phenomena, we propose a three-layer network 
platform to study the interplay between behavioral response and 
contagion process in two distant communities. These two communities 
interact via a common social network. A simplicial complex is adopted 
to model the high-order interactions on the social layer, and a game- 
theoretic model is then utilized to elucidate the behavioral change of 
agents. This theoretic model could help harvest policy-relevant insights 
into the course of contagion spreading dynamics. 

It is noteworthy to highlight that our model is not intended to 
replicate real curves because we are more interested in specific system 
reactions, such as behavioral responses and changes. Generally, most 
results caused by diverse behaviors are inadequate data to characterize 
behaviors. If we fully focus on the result and ignore the mechanisms 
underlying these behaviors, the result will no longer be precise when the 
behavioral responses are changed. Currently, most COVID-19 pre-
dictions are inaccuracy and their prediction curve are too smooth to be 
true because the practical curves are oscillations. Thus, we do not target 
reproducing real results or curves but focus on analytical insights. 

2. Background 

Modeling and simulation of epidemics abound in the literature. Such 
models provide critical insight into the spreading dynamics and are 
imperative in the optimal design of knowledge-informed intervention 
policies. Compartment models and their variants (e.g., SIR [20]) are the 
most popular approaches in epidemic modeling. They divide the 

population into different compartments and use ordinary differential 
equations to capture the dynamic evolution of population flow across 
the different compartments. The SEIR variant includes an exposed 
compartment between the susceptible and infectious to account for the 
incubation period of the disease, and it has been used to predict COVID- 
19 infection and hospital resource shortage at the state-level in the U.S. 
[21] and other countries. However, a classical compartmental model 
typically relies on a key assumption of population homogeneity in a 
certain region or community of interest, and each compartment repre-
sents an aggregate of indistinguishable individuals. This is not realistic 
to unveil the critical distinctions pertaining to epidemic dynamics. 
Admittedly, recent studies have set forth strong evidence of spatial 
heterogeneity and disparities in COVID-19 transmissions [22,23]. So-
cioeconomic, cultural, and environmental factors, which differ across 
geographic communities, could substantially affect human behavior, 
and consequently, the spread of COVID-19. Thus, accurate modeling 
requires a more refined approach to address the heterogeneity of pop-
ulations. Prem et al. [24] proposed an age-structured SEIR model and 
divided the whole population into 16 age groups to assess the effec-
tiveness of physical distancing measures in containing COVID-19 in 
Wuhan, China. Kucharski et al. [25] investigated a stochastic SEIR 
model with random contact rates to forecast the case count of COVID-19 
in Wuhan and other cities. In the metapopulation SEIR model, a certain 
geographic area is divided into multiple distinct communities, each with 
unique geographic and demographic features. A local SEIR model is then 
imposed for each region, and those local SEIR models are coupled 
together to quantify the daily transmission within and between the re-
gions. Tran-Thi et al. [26] proposed a stochastic SEIR metapopulation 
model that included both population migration and environmental 
transmission (seasonal average contact rate) for the spread of infectious 
diseases. Similarly, Venkatramanan et al. [27] integrated short- and 
long-range mobility patterns in a SEIR metapopulation model to study 
the contagion of seasonal influenza. Brockmann and Helbing [28] 
replaced the conventional geographic distance with effective distance 
derived from the mobility network and built a simplified and homoge-
neous metapopulation SIR model to predict arrival times of infection 
peaks. Acknowledging that epidemiological parameters are often hard 
to calibrate and typically associated with huge uncertainty, which may 
render the model useless, this simplified and homogenous modeling 
approach [28] relies on only a small fraction of transport connections 
with fewer parameters to fit. 

Yet, the resurgent outbreaks and flare-up of case counts around the 
world suggest that population behavior plays a critical role in shaping 
the spreading dynamics. For example, Rǎdulescu et al. [29] incorpo-
rated different population behaviors (social distancing, mobility re-
strictions, and lockdowns) into a conventional SEIR model to simulate 
the epidemic dynamics. The results indicated that whereas social 
distancing is effective in flattening the contagion curve, it cannot 
completely rule out resurgent outbreaks. Weitz et al. [30] combined a 
SEIR model with fatality-driven awareness and reported that the situa-
tional awareness leads to asymmetric epidemic curves with lagged os-
cillations. Lockdown fatigue was also considered to examine the impact 
from premature relaxation of mobility reductions on the resurgence of 
outbreaks [30]. In a similar vein, Johnston and Pell [31] proposed a 
behavior-perception SEIR model that incorporates fear of infection and 
frustration of social distancing to study the second-wave of COVID-19. 

We also note that the heterogeneity of individual behavioral re-
sponses to the government mandate has complicated the effort to 
contain the spread. Scabin et al. developed a multi-layer network to 
consider social activities in different scenarios, including home, work-
place, transportation, and school, and the impact on a seven-state 
compartment model [32]. Chinazzi et al. [33] combined the SEIR 
model and metapopulation network with real-world airline trans-
portation data to predict the infection rates in major cities in China. 
Similarly, Wu et al. [34] applied a SEIR model to a transportation 
network that connects spatially disjoint regions to predict the spread of 
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COVID-19 in China. Cui et al. [35] applied a SEIR model on different 
Barabási-Albert (BA) [36] networks to simulate transmission of COVID- 
19 with different physical contacts, subject to the testing procedure set 
by the government. Considering the inflows and outflows of interstate 
travel, a mobility network-based SEIR model was developed to project 
state-wise COVID-19 infection in the U.S. and to assess the impact of 
non-pharmaceutical intervention policies at the state level [21]. In [37], 
a metapopulation SEIR model was overlaid on a mobility network, 
which governs how populations from different social groups interact as 
they visit points of interest. Similarly, Meloni et al. [38] implemented a 
metapopulation model into a mobility network but considered various 
self-initiated behavioral responses for individual’s mobility pattern. The 
authors analyzed the behavioral responses in both synthetic and data- 
driven scenarios and indicated that behavioral responses with the goal 
of limiting and decreasing the pandemic may have the exact opposite 
impact. 

Social networks play an increasingly important role in shaping our 
daily behaviors [15], including our attitude and response to the preva-
lence of infections. Alvarez-Zuzek et al. [39] developed a two-layer 
network to evaluate the influence of social opinion in vaccination on 
epidemic spreading. Similar studies [40–43] also implied that agent 
interaction on the social layer has a tremendous influence on the inci-
dence of infection and the outbreak of epidemics on the physical layer. 
In [44], the authors claimed that diffusion of negative or positive 
opinion towards the infection can lead to risk-taking or risk-averse be-
haviors, respectively, which further elevate or suppress the prevalence 
rate. Other factors and their influence on the behavioral response have 
also been studied, including risk perception (awareness) [7,43], 
compliance cost [45], bounded rationality [12], and non- 
pharmaceutical intervention policy (contaiment measure) [46–48]. 

In these modeling studies, the population resides in the same phys-
ical and virtual communities. Their perception of infection risk and 
opinion formed from their social interactions reshape their behavioral 
response in the physical community. In reality, we also interact with 
social contacts in disjoint communities and may imitate their response to 
the infection. This cannot be elucidated via the above-mentioned 
network modeling approaches. In particular, pair-wise interactions be-
tween agents on the social network are widely used, which are often-
times not sufficient to account for the rich collective dynamics 
underneath a variety of social imitation phenomena, including opinion 
formation and behavioral adaptation. Indeed, pairwise links do not 
operate alone on the social layer. Rather, they are usually reinforced by 
group pressure. It has been suggested that complex mechanisms of 
higher-order influence and reinforcement are at play and responsible for 
a variety of emergent collective behaviors [19]. In this investigation, we 
describe such higher-order interactions on the social network with 
simplicial complexes and study the social influence on infection dy-
namics in two distant physical communities. 

3. Model 

We present a multilayer network platform to elucidate how the 
collective behavior of individual agents affects the contagion dynamics 
on disjoint physical communities. This platform comprises two physical 
layers that represent two isolated communities A and B, on top of which 
a networked SEIR model is implemented to capture the disease 
spreading dynamics. Here, for simplicity, we construct the communities 
A and B as Barabási-Albert (BA) networks, since many realistic networks 
follow the preferential attachment principle [36]. The physical networks 
of communities A and B have Na and Nb nodes or agents, respectively. In 
essence, starting with an initial network G0 of N0 connected nodes, new 
nodes are attached to m < N0 original ones to form new edges according 
to the preferential attachment principle, i.e., with a probability pro-
portional to the degree of existing nodes. 

Agents from both communities A and B collectively define a social 
community C that accommodates social interactions, thus the size Nc =

Na + Nb (see Fig. 1). These two physical layers have time-varying un-
directed links, which symbolize the physical contacts or the avenue for 
disease transmission [49]. Each agent adjusts their risk-taking or risk- 
averse behaviors as they parse information regarding the global preva-
lence of the contagion and the response of their neighbors on the social 
layer. Therefore, the two distant communities could still affect each 
other regarding the spreading dynamics indirectly via the social 
network, even without human mobility in between. This mimics how we 
perceive information from social media and adapt our behaviors 
accordingly. 

We define two utility functions πi
a and πi

r to characterize the payoff 
for risk-averse and risk-taking behaviors of agent i, which hinges on the 
effective intervention policy δ(t), imitation of social influence ωi(t), 
compliance cost εi(t) (e.g., economic cost, mental stress, and physical 
fatigue), and the community’s risk perception η(t) [11]. 

πi
a(t) = ωi(t)+ η(t) − εi(t) (1a)  

πi
r(t) = − δ(t) − ωi(t) (1b)  

With a large πi
a, agent i has a strong sense of situational awareness and 

tends to be risk-averse, disregarding the effective intervention policy δ. 
It is further assumed that conservative agents are sensitive to risk 
perception η(t) and compliance cost εi(t), as displayed in Eq. (1a). 
Conversely, a large πi

r indicates that agent i is risk-prone. The risk-taking 
agents generally ignore the risk perception η(t) and compliance cost 
εi(t). They instead subject their behaviors to government regulations. 
ωi(t) prescribes the social influence on agent i resulting from imitating 
the behaviors of social contacts. Positive ωi(t) indicates imitation of 
protective behaviors from neighbors, thus boosting πi

a(t); negative ωi(t)
implies imitation of risk-taking responses, elevating πi

r(t). Following 
this, we construct a Markov model to characterize the time-dependent 
behavioral adaption via behavior quotient (BQ) xi(t + 1) of agent i at 
time stamp t + 1 with bounded rationality assumption: 

xi(t+ 1) =
eσπi

a(t) − eσπi
r (t)

eσπi
a(t) + eσπi

r (t)
, (2)  

where σ > 0 is a rational scale in the decision-making process. A finite 
constant σ is assumed for all agents with bounded rationality. As a side 
note, the two extreme cases of σ→∞and σ = 0 indicate fully rational and 
fully irrational behaviors, respectively. The BQ xi(t) ∈ ( − 1, 1) is a 
continuous variable capturing the effective behavioral response of agent 
i: if xi(t) > 0, agent i avoids risk and takes protective behavior; for 
xi(t) = 0, agent i is risk-neutral; if xi(t) < 0, risky behavior is in favor, 
which could potentially boost the probability of infection. It is note-
worthy that the formulation of BQ xi(t) is a significant departure from 
the model proposed in [11], in that each agent mimics both risk-averse 
and risk-taking behaviors. The public weighs the trade-off to adjust their 
behavioral response, considering the behavior of their social contacts, 
risk perception, government intervention policy, and compliance cost. 

3.1. Imitation of social behavior 

On the social influence layer, we define an imitation function ωi(t) to 
characterize how agent i imitates the behaviors of their social contacts. 
The simplicial complex has been extensively used to reveal such higher- 
order interactions: the behavioral imitation occurs with nonlinear 
reinforcement characterized by the simplex dimension, rather than 
bilinearly depending on the number of connecting nodes and their be-
haviors. Formally, a simplex of dimension d or d-simplex is a collection 
of d + 1 vertices σd =

[
j0, j1,…, jd

]
, and any subset σd′ (d′

≤ d) of σd is its 
sub-simplex or d′ -face [17]. That said, σd subsumes all subset simplices of 
dimension d − 1, and so on recursively. The vertices are called 
0-simplices, the edges the 1-simplices and the full triangles the 2- 
simplices. The collection of simplices and all the sub-simplices or faces 
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defines a simplicial complex. As illustrated in Fig. 2(b), the agent i (the 
orange node) interacts with a set of social contacts j1, j2 and j3 via a 
simplicial 2-simplex, which contains a 1-simplex (e.g., pairwise link of 
[i, j1])and a 2-simplex (the full triangle [i, j2, j3]). Conversely, Fig. 2(a) 
illustrates a simplicial 1-complex with only the pairwise interactions. 
The imitation of social behavior, indexed by ωi, is induced on the 
simplicial complex. For computational easiness, we only consider the 
simplicial complex up to dimension 3 in this study. 

The enhancement effect for collective interaction of a d′ -simplex is 
given as θd′ = (1 + ρd′ )

λd′ , where ρd′ is the proportion of number counts 

of d′ -simplices in the simplicial 3-complex. λd′ =

(
d′
+1
3

)

underscores the 

influence of high-order interactions. λd′ = 0 for d′

< 2, λ2 =

(
2+1

3

)

= 1,

and λ3 =

(
3+1

3

)

= 4. In the illustrative example depicted in Fig. 2 (c), a 

simplicial 3-complex contains three 1-simplices, four 2-simplices, and 
three 3-simplices, thus ρ1 = ρ3 = 3

10, ρ2 = 4
10. Correspondingly, the 

enhancement coefficient for pairwise interaction is fixed as θ1 = 1 with 
λ1 = 0. Therefore, the imitation of social behavior function for agent i at 
time t can be represented as: 

ωi(t) = ξ
θ1

∑ni1

v=1
x1

v + θ2
∑ni2

v=1
x2

v + θ3
∑ni3

v=1
x3

v

ni
, (3)  

where ξ is the imitation factor that scales the influence of imitation 
behavior in utility functions πi

a and πi
r, ni1 is the number of 1-faces, ni2 is 

the number of 2-faces, and ni3 is the number of 3-faces associated with 
agent i. Variables x1

v , x2
v , and x3

v represent the average BQ of the vthface 
with orders 1, 2, and 3 respectively. The 1-face is included not only in 
the 1-simplex but also in the 2-simplex and 3-simplex. Each 1-face 
contains one neighboring agent for agent i with the average BQ x1

v (t). 
Here x1

v (t) = xjv (t), v = 1,…, ni1 = 20 as shown in Fig. 2(c). Similarly, 
the 2-face is included not only in the 2-simplex but also in the 3-simplex, 
and 2-face contains two neighboring agents with average BQ x2

v (t). 
There are thirteen 2-faces for agent i in Fig. 2(c), which are x2

1(t) =
xj1 (t)+xj2 (t)

2 , x2
2(t) =

xj1 (t)+xj3 (t)
2 , x2

3(t) =
xj2 (t)+xj3 (t)

2 , x2
4(t) =

xj4 (t)+xj5 (t)
2 , x2

5(t) =

xj8 (t)+xj9 (t)
2 , x2

6(t) =
xj11 (t)+xj12 (t)

2 , x2
7(t) =

xj11 (t)+xj13 (t)
2 , x2

8(t) =
xj12 (t)+xj13 (t)

2 , 

x2
9(t) =

xj14 (t)+xj15 (t)
2 , x2

10(t) =
xj16 (t)+xj17 (t)

2 , x2
11(t) =

xj16 (t)+xj18 (t)
2 , x2

12(t) =

xj17 (t)+xj18 (t)
2 , and x2

13(t) =
xj19 (t)+xj20 (t)

2 . Lastly, the 3-face is only included in 
the 3-simplex, and there are three 3-faces in the illustrative example in 

Fig. 2(c). The average BQ x3
1(t) =

xj1 (t)+xj2 (t)+xj3 (t)
3 , x3

2(t) =

Fig. 1. Illustration of the 3-layer network platform as time evolves: the upper layer and lower layer represent the two physical contact networks or communities A 
and B; the middle layer represents the social influence network. 

Fig. 2. Illustration of different interactions in the network for agent i: (a) only pairwise interactions; (b) simplical 2-complex, including the pairwise and full-triangle 
interactions; (c) a simplicial 3-complex with three 3-simplices, four 2-simplices, and three 1-simplices. 

J. Wan et al.                                                                                                                                                                                                                                     



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 164 (2022) 112735

5

xj11 (t)+xj12 (t)+xj13 (t)
3 , and x3

3(t) =
xj16 (t)+xj17 (t)+xj18 (t)

3 . 

3.2. Risk perception 

The risk perception reflects how the public perceives the disease 
prevalence z, the fraction of the population that is infected (exposed and 
infectious) [50]. A power function for risk perception, z(t) ∈ [0,1], has 
been suggested in [11]: 

η(t) = kz(t)u, (4)  

where k > 0 is the scaling factor and the risk index u > 0 captures the 
population attitude towards the prevalence or the risk. Since z ∈ (0,1), 
u > 1 indicates that the population discounts the infection risk, and u <

1 implies that the public tends to overrate the underlying risk. 

3.3. Government intervention policies 

To contain the spreading of infection, the government enacts non- 
pharmaceutical interventions, such as social distancing, face mask 
requirement, and lockdowns. p(t) > 0 quantifies the strength of such 
policies at time t, and the policy is adjusted periodically (e.g., every 10 
time steps) for each community according to the average prevalence 

z(t*) of the previous time interval T ∈ [t* − 10, t* − 1], where t* = 10 ×

⌊ t
10⌋ and ⌊ • ⌋ is a floor function. Remarkably, public compliance with 

social restrictions diminishes as fatigue sets in. To account for the 

“lockdown fatigue”, a fatigue function ψ(t) = e
−

(

t
μ

)

is introduced to 
portray the diminishing public compliance to the intervention policy as 
time elapses, regulated by the complying factor μ. Thus, the effective 
intervention policy δ is given as: 

δ(t) = ψ(t)p(t), (5a)  

p(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0.8, z(t*)〉0.1

0.5, 0.05 ≤ z(t*) ≤ 0.1

0.3,

0.0,

0.03 ≤ z(t*)〈0.1

z(t*)〈0.03

, (5b) 

Here, the values of p(t) are set arbitrarily, and we do not seek to find 
the optimal intervention policy. Different evolution trajectory of the 
infection of the two different communities causes different intervention 
policies p(t), as shown in Eq. (5b). We name this as an adjustable policy, 
in comparison to the rigid policy to be discussed in Section 4. 

3.4. Compliance cost 

Studies on historical contagion indicates that adherence to govern-
ment mandate is crucial to slowing the spread of the pandemic [14]. The 
compliance cost εi(t) symbolizes the cost of abiding by government 
policies, and it hinders the agent from taking protective behaviors (e.g., 
shelter-at-home and wearing face masks). The compliance cost εi(t)
comprises two components: the immediate cost c ≥ 0, e.g., basic sani-
tization cost and psychological frustration, and cumulative protective 
cost. 

εi(t) = c+
∑t

τ=1
at− τ(φ[xi(τ) − 0.2 ]+ ) (6)  

a ∈ [0,1] is the cumulative factor representing how the past protective 
behaviors affect the current compliance cost. As agents respond to the 
infection in a different way, the cumulative cost hinges on each BQ x(t). 
a = 0 implies a memoryless protective cost structure, such that the 
protective action course in the history does not affect the current 

compliance cost. Cost scaling φ indicates the cost associated with the 
protective behaviors. [xi(τ) − 0.2 ]

+
= max(0, xi(τ) − 0.2 ) represents 

that the BQ <0.2 will not incur a cost at time τ. 

3.5. Transition probability 

On the two physical contact layers (communities A and B), each 
agent i is in one of 4 possible states hi(t) = {S,E, I,R} at any time t. The 
infectious (I) spreads the disease to their susceptible (S) neighbors, who 
then become exposed (E) with a probability P(hi(t + 1) = E |hi(t) = S ): 

P(hi(t+ 1) = E |hi(t) = S ) =
1 − xi(t)

2
×
(

1 − (1 − β)Ni(t)
)
, (7)  

where β is the infection rate when the susceptible agent i contacts in-
fectious neighbors. Ni(t) is the number of infectious neighbors for agent i 
at time t, and it is time-varying because of the change of agents’ states. 
The expression 1− xi(t)

2 ∈ (0,1) symbolizes the effective disease trans-
mission, citing variation of BQ xi(t). When xi(t) = 1, agent i refrains 
from taking any risk, and xi(t) = − 1 implies that agent i completely 
ignores the infection risk. The exposed (E) transitions to the infectious 
(I) with a probability P(hi(t) = I |hi(tE) = E ): 

P(hi(t) = I |hi(tE) = E ) = 1 − e− α(t− tE), (8)  

where tE is the time at which agent i becomes exposed (E). This transi-
tion occurs at an exponential rate α, or equivalently with an average 
latent period of 1/α. In a similar vein, the infectious (I) recovers with a 
probability P(hi(t) = R |hi(tI) = I ): 

P(hi(t) = R |hi(tI) = I ) = 1 − e− γ(t− tI ), (9)  

where tI is the time at which agent i becomes infectious (I). The recovery 
process occurs at an exponential rate γ, or equivalently with an average 
recovery period of 1/γ. 

4. Numerical results 

We utilize the Facebook social network dataset from Network Re-
pository (NR) [51] for the social influence layer, which includes 10,004 
individual Facebook users or nodes. We construct a simplicial 3-complex 
for each agent at each time t by randomly selecting a different number of 
neighbors (from 1 to 3) to formulate different order simplices. We 
generate an Erdös-Rényi (ER) random network as the initial network G0 
with size N0 = 1000 and the probability of node connection C0 = 0.1 to 
construct two BA networks to represent the communities A (the first 
physical contact layer in our multilayer network) and B (the second 
physical contact layer) of equal size Na = Nb = 5002 but with disparate 
density of links. The densely connected network symbolizes the urban 
area, denoted as community A: each of the new coming nodes will 
connect to ma = 250 nodes to extend the initial network. The sparsely 
connected network is analogous to the rural area, denoted as community 
B: each new coming node will be connected to only mb = 50 existing 
nodes. The connectivity of these two BA networks represents the 
maximal physical contacts for each agent throughout the epidemic 
process. As time evolves, a random set of edges from this connectivity 
will be chosen for each agent to form the time-varying network. This 
does not preclude other temporal formation mechanisms [11]. We stress 
that whereas some epidemic models can reproduce key features of the 
spreading dynamics, the abundance of mutually incompatible models 
suggest that there is still substantial uncertainty in data collection and 
model parameterization, as well as a lack of fundamental understanding 
of the observed spatiotemporal dynamics [28]. Thus, we do not aim to 
replicate the infection curve in any particular regions. Rather, we 
parameterize the model to reveal the general impact of the social 
interplay on the infection dynamics. 
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We implement the SEIR compartment model previously described on 
the two physical layers (the communities A and B), which possess the 
same key parameters for the COVID-19 pandemic, including the trans-
mission probability per contact β, the incubation rate α, and the recovery 
rate γ. According to recent studies of COVID-19 [52,53], we set β =

0.06, α = 1/7 and γ = 1/21. That said, we set the incubation period to 7 
days and the recovery time to 21 days. To start with, we randomly assign 
a 1 % of the population for communities A and B to the infectious 
compartment, and initialize the BQ x(0) = 0 and the effective inter-
vention policy δ(0) = 0 for all agents. Disregarding the social influence 
and behavioral response, the contagion dynamics for the densely- 
connected urban community A and the sparsely-connected rural com-
munity B regulated by the conventional SEIR are showcased in Fig. 3: 
community A reaches a higher peak infection rate with an earlier arrival 
time. Nonetheless, there is a far cry between the reality and those curves 
in Fig. 3: ebbs and flows of COVID-19 case count have been reported 
globally, and multiple resurgent outbreaks are also observed in the U.S. 

4.1. Spreading dynamics under different risk perceptions 

We set the model parameters on the social layer so as to have im-
mediate cost c = 0.1, accumulative factor a = 0.4, cost scaling φ = 0.7, 
imitation factor ξ = 0.2, rational rate σ = 10, and complying factor μ =

50. We initialize the BQ x(0) = 0 for all agents on the social layer, i.e., 
they are all risk neutral at the onset of infection. We also assume a 
scaling factor k = 2 and risk index u = 0.5 for a high level of situational 
awareness of the infection. In this scenario, the public tends to take risk- 
averse behaviors in line with the prevalence rate, and the compartment 
flow dynamics are shown in Fig. 4(a) and (b) for communities A and B, 
respectively. Compared to the conventional SEIR model, the infectious 
compartment exhibits oscillatory patterns, and a much lower peak in-
fectious fraction is observed. Conversely, k = 0.5 and u = 4 are used for 
a low level of risk awareness. Hence, the public tends to take risky be-
haviors, resulting in marked increase of the infectious population, as 
shown in Fig. 4(c) and (d). Numerically, such risky behaviors lead to BQ 
x→ − 1 or 1− xi(t)

2 →1 for most agents at the earlier stage of the contagion. 
According to Eq. (7), our model is approximately equivalent to the 
conventional SEIR model in this condition, particularly the first 10 time 
steps before triggering the intervention policy. Next, the non- 
pharmaceutical intervention is enacted to suppress the spread of 
contagion. For community A with high population density, the adjust-
able intervention is not sufficiently intense to contain the disease spread 
when the public is averse to safeguard measures, which is distinguish-
able from the infection curves in Figs. 3(a) and 4(c). For community B, 
the susceptible levels off rapidly after the policy is enacted, which rep-
resents a significant departure from the curve in Fig. 3(b). 

At the onset of the pandemic, the prevalence z(t) edges up rapidly. 
When the public possesses high risk aversion (with k = 2 and u = 0.5), 
the risk perception η increases at a faster pace than the compliance cost 

εi, promoting risk-averse behaviors (see Eq. (1a)). The imitation of social 
behaviors further elevates the population BQ, eventually bending the 
infection curve. The counterbalance between the constituent compo-
nents of the utility functions is manifested as the spikes on the preva-
lence curves in Fig. 5(a) and (b). When the public generally ignores the 
infection risk with k = 0.5 and u = 4, the compliance cost εi dominates 
the utility function. The behavior imitation further enhances such risk- 
prone behaviors. Overall, at this extreme risk ignorance, all agents 
behave without considering the infection, thus the prevalence is fairly 
similar to the conventional SEIR model without behavioral response (see 
Fig. 5(c) and (d)). We also note that with high-order interactions be-
tween agents, the imitation of social behaviors captures the reinforce-
ment effect. As displayed in Fig. 5(a) and (b), when the population is on 
high alert, the prevalence rate curves exhibit a lower peak for both 
communities A and B under the simplicial complex framework 
compared to the pairwise interaction. At the low risk perception level, 
the reinforcement of risky responses leads to elevated peaks for com-
munities A and B, though the difference is not substantial as illustrated 
in Fig. 5(c) and (d). 

4.2. The influence of control policy 

We conduct another set of simulations to investigate how the control 
policy in one community affects the other indirectly via the social layer, 
with 2 levels of intensity, namely, weak δ(t) = 0.1 and strict δ(t) = 1.0 
for all time t, instead of the adjustable control policies given in Eqs. (5a) 
and (5b). Here, we only consider the risk averse scenario. First, we apply 
a strict control policy to community A and maintain the adjustable 
policy in line with the prevalence rate for community B. As shown in 
Fig. 6(a), the bold action against the infection significantly suppresses 
the prevalence rate for community A, compared to the adjustable policy 
in Fig. 5(b). Such a strict policy substantially subdues the utility for risky 
behaviors, thus promoting conservative responses. Simultaneously, 
agents in community B imitates the behavior of their social contacts, 
resulting in fluctuation of the prevalence. As time evolves, with the strict 
government mandate in place, more and more agents adopt the risk- 
averse responses, and the prevalence in community B also settles at a 
low level. Next, we impose a strict control policy on community B and 
maintain the adjustable policy for community A. As shown in Fig. 6(b), 
the strict policy suppresses the prevalence for community B and agents 
in community A imitate the protective behaviors in community B to also 
diminish their prevalence as compared to the scenario of adjustable 
policies for both communities in Fig. 5(b). 

Subsequently, a weak control policy is enacted for one community 
and an adjustable policy is maintained for another one. As illustrated in 
Fig. 6(c) and (d), overall, as the population is risk averse, the weak 
control policy has only a modest impact on agent behaviors and the 
prevalence of both communities. Compared to Fig. 5(b), the prevalence 
in community A with weak control policy (see Fig. 6(c)) is slightly 

Fig. 3. Population fraction of each compartment under the conventional network SEIR model for (a) communities A and (b) community B, respectively.  
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decreased in the first 10 time steps, because the adjustable policy is 
inactive. Likewise, a weak control policy is also imposed on community 
B leading to a slightly smaller prevalence in community B. It is further 
noted that the strength of the weak control policy (δ(t) = 0.1) is lower 

than the active adjustable policy (δ(t) ≥ 0.3) in community A but higher 
than the inactive adjustable policy (δ(t) = 0.0) in community B, as given 
by the average disease prevalence in both Fig. 6(c) and (d). Therefore, 
the overall prevalence in community A with a weak control policy is 

Fig. 4. Population fraction of each compartment under the proposed game-theoretic network SEIR model for (a) community A and (b) community B with risk-averse 
behavioral response, and (c) community A and (d) community B with risk-taking behavioral response. 

Fig. 5. The prevalence rate z(t) from the game-theoretic network SEIR for the two communities with (a) pairwise and (b) high-order interactions on the social 
influence layer under risk-averse behavioral response, and with (c) pairwise and (d) high-order interactions on the social influence layer under risk-taking response. 
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higher than the adjustable policy but the overall prevalence rate in 
community B with a weak control policy is lower than the adjustable 
policy. 

Based on the results of Fig. 6, we conclude that the control policy for 
one community can have a significant influence on another community 
due to the imitation of social behavior ω. Thus, it appears that to reduce 
the prevalence of the pandemic fast, the best way is to impose a strict 
control policy on the denser population. Conversely, imposing a strict 
control policy on a lowly dense population community cannot halt the 
pandemic fast. 

5. Conclusions and discussion 

In this study, we build a 3-layer network to inspect the interplay 
between two isolated physical communities via a common social- 
influence layer, and articulate the coevolution of behavioral changes 
of the agents and spreading dynamics of epidemics. A game-theoretic 
model is developed to capture the coupled behavior-disease dynamics, 
subject to measures that mimic the impact of government intervention 
policy, risk perception, compliance cost, and imitation of social con-
tact’s behaviors. To avoid a simplistic pairwise interaction formulation, 
we employ a framework that allows for high-order social interactions in 
the form of simplicial complexes. Results suggest that the simplicial 
complex setting for the interaction among the agents enhances the risk- 
averse or risk-taking behaviors, depending on the contact’s response to 
the social influence (see Fig. 5). Moreover, the conventional SEIR model 
generally miscalculates the infection case count, since the public may 
possess different perception on the infection risk and adherence to the 
government mandate. 

Furthermore, as social networks are becoming key avenues for in-
formation and opinion formation, particularly during periods of low 
physical interactions, behavioral adaptation due to social influence has 
become one critical component to account for in modeling epidemics. 
This also suggests that policymakers should carefully deal with 

misinformation and disinformation in a timely manner. Notably, the 
flareup or resurgent outbreaks of COVID-19 around the world imply that 
the patchwork intervention policy does not work as anticipated, 
partially owing to lack of compliance and behavior imitation from social 
contacts who may reside in a remote community. Thus, coordinated 
intervention is anticipated to improve the effectiveness of control and 
mitigation policies. In this sense, our multi-layer network model pro-
vides a more sophisticated framework to study this phenomenon, and 
the insight gleaned therefrom can be adopted to guide policy design for 
future pandemics, once the model is properly parameterized - which was 
not an objective of this study. For simplicity, we did not consider human 
mobility between different physical communities in the current work. As 
human mobility is regarded as the driving force behind the spatiotem-
poral dynamics of contagions, we plan to include it in our future in-
vestigations. Another mechanistic limitation of this work is that we only 
adjust the non-pharmaceutical intervention policy in a passive way. In 
our ongoing work, we will investigate the optimal policy design to 
prevent contagion resurgence. Such an exercise is needed given that 
even if extreme government mandates (e.g., complete lockdown) can 
effectively reduce human contacts and eradicate the infection, they 
inevitably inflict huge economic and societal costs. Thus, very restricted 
and static interventions are meant to be implemented only on extreme 
cases and not for a long duration. An optimal policy design that subdues 
the future infection load and simultaneously maintains a certain level of 
social functionalities or human mobility is thus desired. 
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