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Abstract
Here we present the Global Epidemic and Mobility (GLEaM) model that integrates
sociodemographic and population mobility data in a spatially structured stochastic disease
approach to simulate the spread of epidemics at the worldwide scale. We discuss the flexible
structure of the model that is open to the inclusion of different disease structures and local
intervention policies. This makes GLEaM suitable for the computational modeling and
anticipation of the spatio-temporal patterns of global epidemic spreading, the understanding of
historical epidemics, the assessment of the role of human mobility in shaping global epidemics,
and the analysis of mitigation and containment scenarios.
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1. Introduction
The increasing computational and data integration capabilities witnessed in recent years
have enabled the development of computational epidemic models of great complexity and
realism [36]. Generally accepted methodologies are represented by very detailed agent-
based models [17,33,18,19,24,8,34] and large-scale spatial metapopulation models
[38,21,25,29,12,16,9,1,2]. These two major classes of computational models have different
resolutions and limitations. Agent-based models are stochastic, spatially explicit, discrete-
time, simulation models where the agents represent single individuals. The infection can
spread among individuals by contacts within household members, within school and
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workplace colleagues and by random contacts in the general population. One of the key
features of the model is the characterisation of the network of contacts among individuals
based on a realistic model of the sociodemographic structure of the population (see for
instance [27] for a comparison between several models based on this approach). The second
scheme relies on metapopulation structured models that considers the system divided into
geographical regions defining a subpopulation network where connections among
subpopulations represent the individual fluxes due to the transportation and mobility
infrastructures [1,2,3,10,11]. Infection dynamics occurs inside each subpopulation and is
described by compartmental schemes that depend on the specific etiology of the disease and
the containment interventions considered [38,21]. Agent-based models provide a very rich
data scenario but the computational cost and most importantly the need for very detailed
input data has limited their use to a few country level scenarios so far [27], up to continent
level [34]. On the opposite side, the structured metapopulation models are fairly scalable and
can be conveniently used to provide world-wide scenarios and patterns with thousands of
stochastic realisations [29,12,16,9,1,2,22]. While on one hand, the level of information that
can be extracted in structured metapopulation models is less detailed than those of agent-
based models, on the other hand, their computational scalability allows the simulation of
disease spreading on the worldwide scale and the use of statistical approaches that leverage
on Monte Carlo techniques based on the analysis of a large number of simulation runs
exploring the parameter space.

In this paper, we provide a detailed presentation of the Global Epidemic and Mobility
(GLEaM) model [2] that uses a structured metapopulation scheme integrating the stochastic
modeling of the disease dynamics, high resolution census data worldwide and human
mobility patterns at the global scale. GLEaM makes use of high resolution population data
[6,7] that allow for the definition of sub-populations according to a Voronoi decomposition
of the world surface centered on the locations of major transportation hubs. This procedure
leads to the construction of a metapopulation model consisting of more than 3, 300
subpopulations across the world connected through a network of more than 16, 800 mobility
fluxes describing the daily patterns of travel and mobility among subpopulations. In
particular GLEaM integrates data obtained from the International Air Transport Association
(IATA [30]) and Official Airline Guide (OAG [35]) databases and multimodal mobility data
collected and analysed from more than 30 countries in 5 different continents. This
integration results in a worldwide multiscale mobility network spanning several orders of
magnitude in intensity and spatio-temporal scales. The disease dynamics is simulated by a
fully stochastic compartmental approach defining the temporal equations for each
subpopulation [1]. The equations of different subpopulations are then coupled through
effective interactions and mechanistic schemes accounting for the mobility of individuals
encoded in the multiscale mobility network.

The GLEaM computational model trades off the high realism of agent-based models for the
computational scalability of the algorithm implementation and the relatively small amount
of input data needed to initialize the model. This allows detailed analysis of epidemic
patterns at the worldwide scale. This feature is extremely relevant in evaluating the time
pattern of emerging infectious diseases, and cannot be accounted for by agent-based models
restricted to country or continent level. For instance, given a set of initial conditions for a
local outbreak of a new strain of influenza, the timeline of the arrival of the epidemic in each
country and the ensuing activity peak are mainly determined by the human mobility network
that couples different regions of the world. By looking at individual countries or a given
continent in isolation, any estimate of the epidemic time-line is based on assumptions about
imported cases from the rest of the world. This is obtained without an explicit coupling or
knowledge of the propagation of the disease in the system outside the boundaries of the
country or the continent that is the focus of the model. GLEaM instead explicitly integrates
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human mobility patterns that allow us to consistently simulate the mobility of infectious
individuals on the global scale thus providing ab-initio estimates of the epidemic timeline in
each country or urban area without assumptions on case importation.

Differently from agent-based models, the scalability of GLEaM has also the advantage of
making possible the use of statistical methods such as Monte Carlo likelihood analysis to fit
epidemic parameters which are usually not known in the case of new emerging diseases,
with the aim of understanding the observed pattern and simulate its possible future spread
[1]. This is enabled by the possibility of generating large numbers of in-silico epidemics to
allow the self-consistent estimate of all the parameters needed for the simulation of the
future propagation of the disease. A large number of computational runs is indeed needed to
systematically explore the space of parameters and, for each point in such space, to build a
robust statistical ensemble and reduce the fluctuations induced by stochastic effects. The
intensive CPU requirements of agent-based models limit the feasibility of large explorations
of the space of parameters aimed at estimation procedures, or at performing sensitivity
analysis on the parameters included in the models to assess effects in the simulated results
induced by their changes [27]. This constraint becomes particularly relevant in the case
computational models are used as risk-assessment tools for scenario evaluations of an
epidemic emergency in real time.

Here we specify the definition and integration of the different data layers composing the
model, and also provide a detailed explanation of the Voronoi tessellation used for the
subpopulation definition. The construction of the mobility network and the derivation of the
stochastic mobility equations among different subpopulations are described in detail as well.
We illustrate the time-scale separation technique that allows for the integration of the
mobility processes occurring on small time scales as effective coupling terms. This method
reduces the computational cost by simulating in an explicit way only mobility processes
occurring on the long time scales. The metapopulation structure and the mobility processes
are then integrated in the basic equations describing the time behavior of the disease process
within each population. We detail the structure of the equations in the specific case of an
influenza-like-illness compartmentalization, although the equations can be generalized to
generic compartmental structures according to the disease of interest. The second part of the
paper is devoted to the algorithmic implementation of the model. We describe the algorithm
structure, inputs and outputs that allow GLEaM to perform the simulation of stochastic
realizations of the worldwide unfolding of the epidemic. From these in silico epidemics a
variety of information can be gathered, such as prevalence, morbidity, number of secondary
cases, number of imported cases, hospitalized patients, amounts of drugs used, and other
quantities for each subpopulation with a minimal time resolution of 1 day. Finally we
provide an example of the results that can be obtained with GLEaM by simulating the 2001–
2002 seasonal influenza spreading and comparing the computational results with real data
from different surveillance infrastructures.

2. Related work
Many data-driven epidemic models have been proposed, however only a few, mostly based
on metapopulation schemes, tackle the spatio-temporal behaviour of diseases at the global
scale. Agent-based models are to be able to consider individually targeted interventions for
the mitigation of an epidemic, as well as the possibility to introduce changes of behavior at
the individual level reproducing the adaptation of individuals to the disease spread. This is
performed by tracking each agent of the artificial society considered in the model, and
applying rules for the behavior of individuals in their virtual space. Therefore, most agent-
based models can be very accurate in the description of the spread of a disease in time and
spatial scales if it is possible to integrate high quality data at the individual agent level. The
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difficulties in gathering high quality data worldwide and to the limit imposed by high
performance computing, however have restricted the application of agent-based models to
local populations or a few countries, –such as e.g., the US [24,19,27], the UK [19], Italy [8],
Thailand [33,18] – up to the continent of Europe [34]. Among the metapopulation schemes
at the global level available in the literature [29,12,16,9,1,2,22], the main differences lie in
the accuracy and completeness of the demographic and mobility layers. Indeed, being based
on simple homogeneous assumptions inside each subpopulation, the accuracy and realism of
these models are found in their ability to capture the distribution of population and the travel
flows of individuals from one subpopulation to another. With the airline transportation
system being the main and fastest mean of connection between different parts of the world,
previous works have included an always increasing portion of the worldwide airport
network in the metapopulation approaches considered. Indeed, even in continental Europe
that possesses one of the most structured and modern railway network, long-range railway
traffic across countries is just one tenth of the corresponding airline traffic [14]. From
samples with 52 airports in Ref. [38,22], 105 airports in Ref. [12], 155 in Ref. [16], 500 in
Ref. [29], up to the complete International Air Transport Association (IATA) [30] and
Official Airline Guide (OAG [35]) databases incorporated in GLEaM [9,2]. Samples of the
worldwide airport network usually correspond to the largest airports, the most connected
cities, or the most central ones, and therefore they may include a large portion of the total
commercial traffic. While including the largest flows of real-world mobility, these samples
are limited in their ability to capture the entire network information for a detailed description
of the geotemporal evolution of the disease on a city by city basis. The overall paths of
spreading may be fairly well reproduced [4], but models based on samples would fail if the
question under study focuses on the description of the epidemic behavior at a higher level of
detail, such as e.g., country or city level, due to the lack of data on connections and travel
fluxes. In addition, the accuracy in reproducing the spreading pattern of diseases is largely
challenged by the absence of large fluctuations in the topology of the airline network and in
the traffic volumes, and of correlations and non-trivial loops that are responsible for the
definition of the geotemporal propagation in the real world [9]. The increase of resolution
imposes different requirements in the definition of the population distribution and of
additional means of transportation that may become relevant at this level of detail. Previous
works considered cities with no geographical reference whose population was obtained from
national and international city population databases [29,12,16,9,22], and did not consider
coupling effects other than air transportation. The GLEaM computational model presented
here takes into account also the short range mobility to capture the daily population
displacements from a given geographical census area to its neighboring one. In addition, the
model already integrates long-range railway connections indexed by the OAG database and
we are making a progressive introduction of detailed railway networks in specific countries.
By integrating a multi-scale mobility layer, GLEaM is therefore the world-wide model that
consider a finer description of the evolution of the epidemic behavior, with the air travel
dictating the pathways of the disease through the large geographical areas, whereas the daily
short-range displacements control the timing of spreading within localized regions [2].

3. GLEaM computational model definition
The global epidemic and mobility structured metapopulation (GLEaM) model is based on a
metapopulation approach in which the world is divided into geographical regions defining a
subpopulation network where connections among subpopulations represent the individual
fluxes due to the transportation and mobility infrastructure. GLEaM integrates three
different data layers (see Fig. 1). The population layer is based on the high-resolution
population database of the “Gridded Population of the World” project of Columbia
University [6,7] that estimates the population with a granularity given by a lattice of cells
covering the whole planet at a resolution of 15 × 15 minutes of arc. The transportation
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mobility layer integrates air travel mobility obtained from the International Air Transport
Association (IATA) [30] and OAG [35] databases that contain the list of worldwide airport
pairs connected by direct flights and the number of available seats on any given connection,
and commuting patterns as obtained from data collected and analyzed from more than 30
countries in 5 continents. The combination of the population and mobility layers allows for
the subdivision of the world into georeferenced census areas defined with a Voronoi
tessellation procedure around transportation hubs. GLEaM simulates the mobility of
individuals from one subpopulation to another by a stochastic procedure in which the
number of passengers of each compartment traveling from a subpopulation j to a
subpopulation ℓ is an integer random variable defined by a stochastic process defined on the
basis of real mobility data. Short range commuting between subpopulations is modeled with
a time scale separation approach that defines the effective force of infections in connected
subpopulations. Superimposed on the worldwide population and mobility layers is the
epidemic model that defines the disease and population dynamics. The infection dynamics
takes place within each subpopulation and assumes the classic compartmentalization in
which each individual is classified by one of the discrete states such as susceptible, latent,
infectious symptomatic, infectious non-symptomatic or permanently recovered/removed. In
the following sections we provide a detailed presentation of each data layer and of the basic
equations that defines the computational model.

3.1. Population layer
The dataset of the “Gridded Population of the World” and the “Global Urban-Rural
Mapping” projects [6,7] run by the Socioeconomic Data and Application Center (SEDAC)
of Columbia University divides the surface of the world into a grid of cells that can have
different resolution levels. Each of these cells has assigned an estimated population value.
Out of the possible resolutions, we have opted for cells of 15 × 15 minutes of arc to
constitute the basis of our model. This corresponds to an area of each cell approximately
equivalent to a rectangle of 25 × 25 km2 along the Equator. The dataset comprises 823, 680
cells, of which 250, 206 are populated. In order to define the subpopulations that constitute
the metapopulation structure of our model we have performed a Voronoi-like tessellation of
the Earth surface centered around the airports of the IATA database. In particular, we
identify 3, 362 subpopulations centered around indexed IATA airports in 220 different
countries. Since the coordinates of each cell center and those of the airports are known, the
distance between the cells and the airports can be calculated. We assign each cell to the
subpopulation associated to the closest airport that satisfies the following two conditions: (i)
Each cell is assigned to the closest airport within the same country. And (ii) the distance
between the airport and the cell does not exceed 200 km. This cutoff naturally emerges from
the distribution of distances between cells and closest airports, and it is introduced to avoid
that in barely populated areas such as Siberia we can generate geographical census areas
thousands of kilometer wide but with almost no population. It also corresponds to a
reasonable upper cutoff for the ground traveling distance expected to be covered to reach an
airport before traveling by plane.

In addition, the tessellation procedure needs to take into account that there exist urban areas
served by more than one airport. Examples include London with up to six airports, Paris
with two, New York City with three and others. This condition is relevant in the tessellation,
as the aim of the procedure is to provide geographical census areas that will correspond to
the subpopulation of the metapopulation model, where homogeneous mixing is going to be
assumed. Given that the mixing between individuals in a given urban area is expected to be
high, independently from their choice of the airport for mobility reasons, we first need to
proceed to the aggregation of the groups of airports that serve the same urban area, prior to
tessellation. We have searched for groups of airports located close to each other and
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manually processed the identified groups to select those belonging to the same urban area.
The airports of the same group are then aggregated in a single “super-hub”. An example
with the final result of the Voronoi tessellation procedure with cells and airports can be seen
in Figure 2.

3.2. Mobility Layers
The geographical census areas obtained with the tessellation procedure define the basic
subpopulations of the GLEaM metapopulation structure. The spatio-temporal patterns of the
disease spreading are however associated to the mobility flows that couple different
subpopulations. These flows constitute the mobility data layer that is represented as a
network of connections among subpopulations that identifies the number of individuals that
goes from one subpopulation to the others. The mobility network is made by different kind
of mobility processes from short-range commuting to intercontinental flights with time-scale
and traffic volumes that span several orders of magnitude. In the following we discuss the
data integration process and the construction of this multiscale mobility network.

3.2.1. Worldwide Airport Network—The Worldwide Airport Network (WAN) is
composed of 3, 362 commercial airports indexed by the IATA located in 220 different
countries. The database contains the number of available seats per year for each direct
connection between a pair of these airports. The coverage of the dataset is estimated to be
99% of the global commercial traffic. The WAN can be seen as a weighted graph
comprising 16, 846 edges whose weight, ωjℓ, represents the passenger flow between airports
j and ℓ. The network shows a high degree of heterogeneity both in the number of
destinations per airport and in the number of passengers per connection [9,3,10,11].

3.2.2. Commuting Networks—Our commuting databases have been collected from the
Offices of Statistics of 30 countries in 5 continents. The full dataset comprehends more than
80, 000 administrative regions and over five million commuting flow connections between
them (see [2]). The definition of administrative unit and the granularity level at which the
commuting data are provided vary enormously from country to country. For example, most
European countries adhere to a practice that ranks administrative divisions in terms of
geocoding for statistical purposes, the so called Nomenclature of Territorial Units for
Statistics (NUTS) going from level 1 to 3 plus the Local Administrative Units (LAU)
corresponding to the municipalities and that can be further subdivided in Wards (LAU 2). In
most of the cases, we obtained the commuting data at the LAU level 1 or 2. The US or
Canada, on the other hand, have different standards and report commuting at the level of
counties. Not only there are clear differences across countries in the definition of the
administrative divisions, but even within the same country the actual extension, shape, and
population of the administrative divisions can be strongly heterogeneous, being a result of
historical and administrative reasons.

In order to overcome the differences in spatial resolution of the commuting data across
different countries, we define a worldwide homogeneous standard for GLEaM. We used the
geographical census areas obtained from the Voronoi tessellation as the elementary units to
define the centers of gravity for the process of commuting. This allows to deal with self-
similar units across the world with respect to mobility as emerged from the tessellation and
not country specific administrative boundaries. We have therefore mapped the different
levels of commuting data into the geographical census areas formed by the Voronoi-like
tessellation procedure described above. The mapped commuting flows can be seen as a
second transport network connecting subpopulations that are geographically close. This
second network can be overlaid to the WAN in a multi-scale fashion to simulate realistic
scenarios for disease spreading. The network exhibits important variability in the number of
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commuters on each connection as well as in the total number of commuters per geographical
census area. Being the census areas statistically homogeneous we can also extract a general
statistical law that allows for the synthetic generation of commuting networks in countries
where real data are not available. A full account of the commuting data obtained across
different continents and their statistical analysis can be found in Ref. [2].

3.3. Disease model
Each geographical census area corresponds to a subpopulation in the metapopulation model.
The infection dynamics within each subpopulation is governed by a disease specific
compartmental model in which we assume homogeneous mixing in the population.
Although the model can use any compartmental structure, for the sake of clarity we will
carry on our discussion by using the explicit example of a typical influenza-like illness (ILI)
where we consider a Susceptible-Latent-Infectious-Recovered (SLIR) compartmental
scheme. In Figure 3, a diagram of the compartmental structure with transitions between
compartments is shown. The contagion process, i.e., generation of new infections, is the
only transition mechanism which is altered by short-range mobility, whereas all the other
transitions between compartments are spontaneous and remain un-affected by the
commuting. The rate at which a susceptible individual in subpopulation j acquires the
infection, the so called force of infection λj, is determined by interactions with infectious
persons either in the home subpopulation j or in its neighboring subpopulations on the
commuting network. In general, the force of infection is assumed to follow the mass action
principle for which the infection rate is λ = βI/N where β is the infection transmission rate
and I/N is the density of infected individuals in the population. In the case of asymptomatic
individuals the force of infection is usually reduced by a factor rβ. In the case of multiple
interacting subpopulations and different classes of infectives the force of infection will be
the sum of different contributions as reported in subsection 4.3.

Given the force of infection λj in subpopulation j, each person in the susceptible
compartment (Sj) contracts the infection with probability λjΔt and enters the latent
compartment (Lj), where Δt is the time interval considered. Latent individuals exit the
compartment with probability εΔt, and transit to asymptomatic infectious compartment ( )
with probability pa or, with the complementary probability 1 − pa, become symptomatic
infectious. Infectious persons with symptoms are further divided between those who can

travel ( ), probability pt, and those who are travel-restricted ( ) with probability 1−pt. All
the infectious persons permanently recover with probability μΔt, entering the recovered
compartment (Rj) in the next time step. All transitions and corresponding rates are
summarized in Table 2 and in Figure 3.

4. Epidemic and mobility dynamics
Once the mobility data layers and the disease dynamics has been defined, the number of
individuals in each compartment [m] and subpopulation j follows a discrete and stochastic
dynamical equation that reads as

(1)

where the term  represents the change due to the compartment transitions induced by
the disease dynamics and the transport operator Ωj([m]) represents the variations due to the
traveling and mobility of individuals. The latter operator takes into account the long-range
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airline mobility and sets the minimal time scale of integration at 1 day. The mobility due to
the commuting flows is included in the model by an effective force of infection obtained
using a time scale separation approximation as detailed in the following sections. The term

 can be written as a combination of a set of operators j([m], [n]). Each j([m], [n])
determines the number of transitions from compartment [m] to [n] occurring in Δt and is

simulated as a random variable extracted from a multinomial distribution. The change 
is then given by the sum

(2)

As a concrete example let us consider the evolution of the latent compartment. There are
three possible transitions from the compartment: transitions to the asymptomatic infectious,
the traveling and the non-traveling symptomatic infectious compartments. The elements of
the operator acting on Lj are extracted from the multinomial distribution

(3)

determined by the transition probabilities

(4)

and by the number of individuals in the compartment Lj(t) (its size). All these transitions
cause a reduction in the size of the compartment. The increase in the compartment
population is due to the transitions from susceptibles into latents. This is also a random
number extracted from a binomial distribution

(5)

given by the chance of contagion

(6)

and a number of attempts equal to the number of susceptibles Sj(t). After extracting these
numbers from the appropriate multinomial distributions, we can calculate the change ΔLj(t)
as
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(7)

4.1. The integration of the transport operator
The transport operator is defined by the airline transportation data which provides the
number of available seats ωjℓ between each pair of airports (j, ℓ). The operator is in general
affected by fluctuations coming from the fact that the occupancy rate of the airplanes is not
100%. To take into account such fluctuations, we assume that on each connection (j, ℓ) the
flux of passengers at time t is given by a stochastic variable

(8)

where α denotes the average occupancy rate of the order of 70% to 90% provided by IATA
and η is a random number drawn uniformly in the interval [−1, 1] at each time step. The
number of individuals in the compartment [m] traveling from the subpopulation j to the

subpopulation ℓ is an integer random variable, in that each of the  potential travelers has
a probability pjℓ = ω̃jℓΔt/Nj to go from j to ℓ. In each subpopulation j the numbers of
individuals ξjℓ traveling on each connection j → ℓ at time t define a set of stochastic
variables {ξjℓ}, which follows the multinomial distribution

(9)

where (1−Σℓpjℓ) is the probability of not traveling, and ( ) stands for the
number of non traveling individuals of the compartment [m]. The multinomial distribution
provides the correct probability for traveling individuals leaving j to distribute across the
possible connections according to {pjℓ}. We use standard numerical subroutines to generate
random numbers of travelers following these distributions. The transport operator in each
subpopulation j is therefore written as

(10)

where the mean and variance of the stochastic variables are  and

. Direct flights as well as connecting flights up to two-legs
flights can be considered. It is worth remarking that on average the airline network flows are
balanced so that the subpopulation Nj are constant in time, e.g. Σ[m] Ωj([m]) = 0.

4.2. Time-scale separation and the integration of the commuting flows
The GLEaM model combines the infection dynamics with long- and short-range human
mobility. Each of these dynamical processes operates at a different time scale. The inverse
of the rates of the disease dynamics define the time scale of the stochastic process that we
can see as the average individual’s permanence in a given compartment. For ILIs there are
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two important intrinsic time scales, given by the latency period ε−1 and the duration of
infectiousness μ−1, both larger than 1 day. The long-range mobility given by the airline
network has a time scale of the order of 1 day, while the commuting takes place in a time
scale of approximately τ−1 ~ 1/3 day. The explicit implementation of the commuting in the
model thus requires a time interval shorter than the minimal time of airline transportation
data. To overcome this problem, we use a time-scale separation technique, in which the
short-time dynamics is integrated into an effective force of infection in each subpopulation.

We start by considering the temporal evolution of subpopulations linked only by commuting
flows and evaluate the relaxation time to an equilibrium configuration. Consider the
subpopulation j coupled by commuting to other n subpopulations. The commuting rate
between the subpopulation j and each of its neighbors i will be given by σji. The return rate
of commuting individuals is set to be τ. Following the work of Sattenspiel and Dietz [39],
we can divide the individuals original from the subpopulation j, Nj, between Njj(t) who are
from j and are located in j at time t and those, Nji(t), that are from j and are located in a
neighboring subpopulation i at time t. Note that by consistency

(11)

The rate equations for the subpopulation size evolution are then

(12)

By using condition (11), we can derive the closed expression

(13)

where σj denotes the total commuting rate of population j, σj = Σi σji. Njj(t) can be expressed
as

(14)

where the constant Cjj is determined from the initial conditions, Njj(0). The solution for
Njj(t) is then

(15)

We can similarly solve the differential equation for the time evolution of Nji(t)

Balcan et al. Page 10

J Comput Sci. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(16)

The relaxation to equilibrium of Njj and Nji is thus controlled by the characteristic time [τ (1
+ σj/τ)]−1 and τ−1 in the exponentials, respectively. The former term is dominated by 1/τ if
the relation τ ≫ σj holds. In our case, σj = Σi ωji/Nj, that equals the daily total rate of
commuting for the population j. Such rate is always smaller than one since only a fraction of
the local population is commuting, and it is typically much smaller than τ ≃ day−1 to 10
day−1. Therefore the relaxation characteristic time can be safely approximated by 1/τ. This
time is considerably smaller than the typical time for the air connections of one day and
hence we can approximate the subpopulations Njj(t) and Nji(t) with their equilibrium values,

(17)

This approximation, originally introduced by Keeling and Rohani [32], allows us to consider
each subpopulation j as having an effective number of individuals Nji in contact with the
individuals of the neighboring subpopulation i. In practice, this is similar to separate the
commuting time scale from the other time scales in the problem (disease dynamics, traveling
dynamics, etc.). While the approximation holds exactly only in the limit τ → ∞, it is good
enough as long as τ is much larger than the typical transition rates of the disease dynamics.
In the case of ILIs, the typical time scale separation between τ and the compartments
transition rates is close to one order of magnitude or even larger. The Eq. (17) can be then
generalized in the time scale separation regime to all traveling compartments [m] obtaining
the general expression

(18)

while  and  for all the other compartments which are restricted from
traveling. These expressions will be used to obtain the effective force of infection taking into
account the interactions generated by the commuting flows.

4.3. Effective force of infection
The force of infection λj that a susceptible individual of a subpopulation j sees can be
decomposed into two terms: λjj and λji. The component λjj refers to the part of the force of
infection which is due to interactions among individuals in j. While λji indicates the force of
infection acting on susceptibles of j during their commuting travels to a neighboring sub-
population i. The effective force of infection can be estimated by summing these two terms
weighted by the probabilities of finding a susceptible from j in the different locations, Sjj/Sj
and Sji/Sj, respectively. Using the time-scale separation approximation that establishes the
equilibrium populations of Eq. (18), we can write
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(19)

We will focus now on the calculation of each term of the previous expression. The force of
infection (see Table 2) occurring in a subpopulation j is due to the local infectious persons
staying at j or to infectious individuals from a neighboring subpopulation i visiting j and so
we can write

(20)

where βj is introduced to account for the seasonality in the infection transmission rate (if the
seasonality is not considered, it is a constant), and  stands for the total effective

population in the subpopulation j. By definition,  and  for j ≠ i. If we use the
equilibrium values of the other infectious compartments (see Eq. (18)), we obtain

(21)

The derivation of λji follows from a similar argument yielding:

(22)

where υ(i) represents the set of neighbors of i, and therefore the terms under the sum are due
to the visits of infectious individuals from the subpopulations ℓ, neighbors of i, to i. By
plugging the equilibrium values of the compartment into the above expression, we obtain

(23)

Finally, in order to have an explicit form of the force of infection we need to evaluate the
effective population size  in each subpopulation j, i.e., the actual number of people at the

location j. The effective population is , that in the time-scale separation
approximation reads

(24)
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Note that in these equations all the terms corresponding to compartments have an implicit
time dependence.

By inserting λjj and λji into Eq. (19), it can be seen that the expression for the force of
infection includes terms of zeroth, first and second order on the commuting ratios (i.e., σij/τ).
These three term types have a straightforward interpretation: The zeroth order terms
represent the usual force of infection of the compartmental model with a single
subpopulation. The first order terms account for the effective contribution generated by
neighboring subpopulations, and is due to the contacts between susceptible individuals of
subpopulation j and infectious individuals of neighboring subpopulations i. This can occur in
two ways – either susceptible individuals of j visiting i or infectious individuals of i visiting
j. The second order terms correspond to an effective force of infection generated by the
contacts of susceptible individuals of subpopulation j meeting infectious individuals of
subpopulation ℓ (neighbors of i) when both are visiting subpopulation i (see Figure 4). This
last term is very small in comparison with the zeroth and first order terms, typically around
two order of magnitudes smaller, and in general can be neglected.

4.4. Seasonality modeling
To model seasonal variations we follow the approach of Cooper et al [12] and scale the
basic reproduction ratio R0 by a seasonal function, si (t),

(25)

where i stands for the North or South hemispheres. This function is identically equal to 1.0
in the tropical regions. tmax,i is the time corresponding to the maximum seasonal effect, Jan
15 in the North and six months later in the South. Seasonality has a dual effect, it increases
the value of R0 up to Rmax = αmaxR0 with αmax = 1.1 [26] and reduces it down to Rmin =
αminR0.

4.5. Age structure
In order to achieve refined analysis including the impact of an epidemics on different age
groups, it is possible to include a generalization of the basic formalism that takes into
account the presence of different contact rates among individuals belonging to different age
bracket or more generally specific population groups. We start by distinguishing among
different age groups with varying contact rates by using the results by Wallinga et al in [43].
In 2006, Wallinga et al [43] measured the contact rates using a group of 1, 813 Dutch survey
participants. With such data it is possible to write a contact matrix M, describing how many
interactions an individual in one class has with individuals in a different age group. The
main characteristic of the contact matrix is its asymmetry. This is easily explained if, for
example, one considers children and adults. Children almost always live with adults, but
adults do not always live with children. In order to obtain the effective rate of infection, we
must multiply the probability of infection by appropriately rescaled rates describing the
contacts between different age groups. A full description of the generalization of the
formalisms is reported in the Appendix. While the theoretical and computational formalisms
are ready to be generalized to the inclusion of age classes in the system, the main limitation
to proceed along this direction is in the lack of data. Reliable information can be obtained on
the age structure of most of the countries in the world, however detailed data on the contact
matrix are limited to specific countries or settings, therefore a data-driven generalization to
the whole world is still not available.
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5. Algorithms, the simulator and its implementation
The GLEaM simulation toolbox is implemented in a modular way. Each module performs a
single function, and they can be combined in different ways to include or remove specific
features. In Algorithm 1 we outline the general program flow of a basic GLEaM run.

5.1. Long distance travel
Each time step represents a full day. At the start of the time step, we use the flight network
to move travelers to their destination using Algorithm 2. Travel is assumed to be
instantaneous with no transitions being possible on route. Performing this step at the start of
the “day”, guarantees that incoming travelers will contact with the local inhabitants during
that day. As a consequence, the arrival time for the infection is the day at which the first
infected traveler arrives and this seed individual is considered to have a full day chance of
infecting others. The probability of traveling changes from day to day through fluctuations
in the occupancy rate of flights, as shown in Algorithm 2, where α represents the average
occupancy rate of the plane, and η is a stochastic random variable uniformly distributed
between [−1, 1]. The Flight module can be customized in order to consider the effects of
generalized or location specific airline traffic reductions.

5.2. Compartment transitions
The GLEaM framework is conceived in a generic way that facilitates the simulation of an
arbitrary compartmental model that is given as part of the input. The infection module is
completely separated from the other modules (like Flight and Aggregation). The module can
be customized in order to simulate the effect of policy measures that modify the
transmission rates during a specific period of time.

The epidemic model description is processed to generate a directed multigraph, where each
node represents a compartment and each edge a transition, following the representation of
Figure 3. Each edge is given a type, a weight and several other attributes. The type identifies
whether the edge corresponds to a contagion or a spontaneous transition and the weight is
the rate of transition. In the case of contagion transitions, the infectious agent is also
identified, as there may be multiple infectious compartments as shown by Figure 3. This
structure provides a convenient way of internally representing arbitrarily complex models as
well as facilitating an efficient implementation. The edges contain all the information
necessary to calculate the transition probabilities that can then be used directly as arguments
of the multinomial function that calculates the number of individuals making the transition.

5.3. Aggregation and post-processing
The output produced by each run includes the population of each compartment for each
census area at each time step and the number of transitions along each of the edges in the
transition graph. The final step performed after each simulated day is a partial aggregation of
the results, in order to both simplifying the post processing required to obtain useful results
and reducing the already considerable amount of output generated for each run. At this point
in the simulation, the populations of each census area and each compartment have already
been updated and several quantities of interest can be calculated. In particular, we calculate
the number of secondary cases generated during this specific time step and the current
incidence at each of the following aggregation levels:

• Census area

• Country

• Region
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• Continent

• Hemisphere

• Globe

In the case of some countries, we also consider within-country divisions, such as US states
and Australian provinces.

After the run is finished, the output data files are post processed by a series of Python scripts
to generate the analysis, figures and animations that are finally used. The advantage of
decoupling simulation and analysis is in the flexibility it gives in tailoring the whole process.
While some post processing steps (like the generation of epidemic profiles, arrival times and
ArgGIS illustrations) are almost always considered, others can be added, removed or
customized for specific situations. The full simulation process, containing all the steps
described above, is illustrated schematically in Figure 5.

6. GLEaM at work: Simulation of 2001–2002 Seasonal Influenza A
In order to present a case study for the use of the GLEaM simulator we consider the
spreading of seasonal influenza worldwide. Here we want to show how the model
calibration may proceed by using real data from the surveillance and monitoring systems
and what parameters are crucial in the description of the disease spread. Every year,
seasonal influenza circulates globally and infect from 5% to 15% of the population, resulting
in 3–5 million severe cases and ~ 500, 000 deaths worldwide [42,45]. For the sake of
simplicity, we focus on one influenza season with one dominant strain, in order to neglect
complications arising from the interplay of different strains. This makes the 2001–2002
season a good candidate, which satisfies these criteria, among all the seasons from 1998 to
2006. In the Northern hemisphere, the season 2001–2002 has less than 5% mean proportion
of annual A/H3N2 isolates, while in 2001–2002 this proportion is above 60% [20].

6.1. Model calibration and simulation
The main issue in the simulation of the influenza is the parametrization of the model in
terms of the transmission rate and the initial condition for the circulation of a given strain at
the global level. The origin of annual influenza circulation is still an unknown issue [37],
however, from past experiences, new variants of influenza often originate in East-Southeast
Asia [37], or Southeast China [13,40,41]. For season 2001–2002, according to the
epidemiological records [44], Hong Kong is the only country/region in SE Asia having
sporadic A/H3 influenza activity during June and July 2001. We therefore choose Hong
Kong as the source of the influenza strain and explore possible starting dates between June
and July. We further assume that a fraction equal to 10−5 of the city’s population is latent,
consistently with the literature and with the specific choice for the same season in Ref. [26].
In the case of influenza, we can implement the compartmental structure reported in Fig. 3.
For the parameters of the model, we consider a latent period of ε−1 = 1.1 days, and
infectious period of μ−1 = 2.95 days. The average generation interval for our choice is
around 4 days, a value close to published estimates for the A/H3N2 [5]. Also in agreement
with the literature, we assume that only a fraction of γ = 60% of the world population is
susceptible to the circulating strain [26]. For the seasonality rescaling, we use the same
seasonal rescaling as in Ref. [1]. We fix αmax and αmin at 1.1 and 0.1, respectively, to reflect
the seasonal variabilities of influenza transmission.

The transmissibility of the disease is measured by the basic reproduction number R0 which
is defined as the average number of infected cases generated by the introduction of a single
infectious individual into a fully susceptible population. For the compartmentalization used
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here, R0 can can be obtained in each subpopulation by evaluating the largest eigenvalue of
the Jacobian or next generation matrix of the infection dynamics in a disease-free state
[15,28], yielding

(26)

Given the parameters pa and rβ, the value of R0 depends on the transmission rate β that fixes
the reference reproductive number in each subpopulations. For seasonal influenza, however,
since the fraction of initially susceptible population is not one, the reproductive number
must be rescaled by the proportion of susceptible individuals and we define an effective
reproductive number Reff = γR0.

In order to find a best estimate of the transmissibility and initial start date t0, we perform
simulations of the model for varying values of these two parameters and compare the results
with the empirical data on the influenza activity peak in the French regions. The French
Sentinelles Network is a surveillance system reported by voluntary and unpaid general
practitioners (GP), which keeps a weekly record of ILI consultations since 1984 [23]. From
the data, we can obtain for each French region the time of the activity peak temp_peak. We
then perform a latin square sampling in the phase space of the parameters Reff and t0,
constructing the surface representing the χ2 values obtained by comparing the empirical

peak times with the average simulated activity peak times  obtained by analyzing 2,
000 stochastic GLEaM realizations for each sampled point. This Monte Carlo latin sampling
procedure is computationally intensive as for each sampled point 2, 000 realization of the
epidemic propagation worldwide must be generated. We have opted for a trade-off in the
accuracy and computational cost samplings the phase space with a resolution ΔReff = 0.03
and Δt0 = 7 days. The best fit for the initial condition and the transmissibility is associated
with the minimum of the χ2 surface. Figure 6 reports the χ2 surface as a function of Reff and
seeding date t0. The best fit range for Reff is between 1.47 and 1.53 with the initial date
between late June and early July, depending on the Reff. From the analysis of the surface, we
find a best estimate corresponding to Reff = 1.50 and t0 = July 11. A more accurate analysis
with confidence interval is needed in order to provide a full discussion of these
epidemiological results. This is however beyond the scope of this paper, where we want
only to provide a practical example of the GLEaM implementation.

The best estimate of the parameters is obtained by using data only from a single country, in
this case France. In order to provide an example of the accuracy of the GLEaM model in
reproducing the spatio-temporal patterns of the disease spreading, we can compare the
numerical results obtained with the parameters fitted in France with empirical data in several
countries where reliable surveillance data is available. We have chosen a set of countries for
which the reported dominant strain is A/H3N2 with a sufficient number of reported cases.
Data is obtained from either the national public health agencies or the regional
organizations. The full list of selected countries is shown in Table 3.

In Figure 7, we report the activity peaks for the selected countries and compare our
predictions with the 2001–2002 weekly surveillance data. The simulation and empirical data
show a good agreement in most of the countries and regions. All data are normalized to 1,
which guarantees that activities are shown on the same scale. For the simulated data, the
activity peaks are reported with median values from 2, 000 stochastic simulations, along
with the 95% reference range. For the empirical data, in addition to the number of laboratory
confirmed cases, we also refer to additional indicators, such as ILI or Acute Respiratory
Infection (ARI) consultation rate (per 100, 000 population or per 1, 000 patient visits) which
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is usually conducted by physicians. For selected countries having only one type of dominant
strain, the percentage of ILI is also a good indicator of influenza activity for the seasonal
activity. Table 3 shows the dominant virus type and the data source used for individual
countries. While the analysis reported here must be considered only as a simple illustration
of the GLEaM implementation, the results appear to recover with good agreement the the
main spatio-temporal pattern of the 2001–2002 season. We want to stress that the timing of
the epidemic spreading across different regions of the world is mostly determined by the
human mobility patterns that are integrated in the GLEaM model with great accuracy. The
best fit of the parameters obtained by the timeline of the epidemic in one or more countries
allows the model to self-consistently capture the mobility of infected individuals and case
importation that set the epidemic timeline worldwide.

7. Conclusions
Here we have provided a detailed description of the GLEaM simulator that is a discrete
stochastic epidemic computational model based on a metapopulation approach in which the
world is defined in geographical census areas connected in a network of interactions by
human travel fluxes corresponding to transportation infrastructures and mobility patterns.
Given the multitude of scales and mobility layers existing in the GLEaM model, the process
of interest can be studied on a wide range of scales ranging from small administrative units
(counties, municipalities) to worldwide. Although the GLEaM model has been used in the
past in the analysis of realistic scenarios and in comparison with real data, also in relation
with H1N1 pandemic, here we have presented for the first time all the data integration
details, models and algorithms implementation that are under the hood of the GLEaM
simulator. It is also worth noticing that while the model is being developed and tested in the
context of emerging diseases such as new pandemic strains, it considers different
transportation and interaction layers and distinguishes the mobility modeling from the
dynamical process mediated by the human dynamics. This allows the integration of different
processes of social contagion that are not necessarily of biological origin but occurs taking
advantage of the individuals mobility such as information spreading, social behavior, etc.
GLEaM has proved to be very flexible and we are working to make the GLEaM platform
available to the scientific community at large. In particular we are developing an easy to use
interface to the software that allows for the simulation and visualization of the spread of
epidemics at a global scale.
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Appendix A. Generalization including age structure
We now introduce the formalisms that allow for the inclusion of different contact rates
among individuals in different age groups.

While we still make the fundamental assumption that the epidemic is governed by a single
transmission rate β, we must now rescale it to take into account the different contact rates
among different age groups. The contact matrix M, shown in Table A.4 describes how many
contacts an individual in one class has with individuals in a different age group. Columns
correspond to survey participants, and rows to the people they interacted with. As an
example, we use the data gathered in 2006 by Wallinga et al [43] who measured the contact
rates using a group of 1, 813 Dutch survey participants. For self consistency, we required
that the total number of interactions between two age groups must be the same. In other
words, so we must have

Symmetrized matrix values are then given by Cab = mab · N/Na, where Na is the number of
individuals in age group a and N is the total number of individuals. Values of Na for both the
survey participants and the entire Dutch population are given in Table A.5 and the full
symmetric matrix C is shown in Table A.6.

While Wallinga considers only 6 age groups, our demographic data for each county, as
provided by the US Census Bureau [31] is more fine grained. We make the simplest choice
and assume that people are uniformly distributed within each 5 year compartment, thus
combining the age groups so that they fit the Wallinga picture.

A change in the way the different populations interact with each other necessarily implies a
change in the way the epidemic spreads, requiring modifications to the R0 calculation. We
apply the techniques described in [15,28] to the general age structure case of interest.

Let us define x⃗ = (x1, …, xn) to be a vector containing the number of individuals in each
infected compartment. We have 4 such compartments, L = x1, It = x2, Int = x3 and Ia = x4.
The matrix F, defining the rate of creation of new infected cases is then:

with a simple meaning: Latent cases (first row) are created (from susceptible) with rate β
(rββ) through interaction with It,nt (Ia). Since these are the only ways in which the disease
can spread through a Susceptible population, all other entries in the matrix are null. After
infection, the disease progresses through several stages as described by the matrix V = (vab)
where element vab is the number of individuals leaving compartment a to compartment b,
minus the number of individuals following the opposite path. For seasonal flu, we have:
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Using these two matrices we can calculate the next generation matrix,

that describes the complete epidemic process and whose interpretation is relatively simple: F
is the rate at which new infections are created and V−1 is the average duration of each
infected compartment. The basic reproductive ratio, R0 is finally given by the maximum
eigenvalue of this matrix that in a model without age structure reads as

Adding age structure results in a proliferation of infected compartments. In the case of the
Wallinga’s age grouping, we have 6 times as many infected compartments. Fortunately, the
fact that we do not consider aging implies that individuals never move between
compartments corresponding to different age groups, thus greatly simplifying the analysis.
We define the new vector x⃗† to be a concatenation of 6 vectors x⃗ each corresponding to a
different age cohort. Mixing between the different groups results in a susceptible individual
becoming latent by interacting with an infectious person from any other group. In matrix
notation, and using the previous definitions, the new infection matrix F† is given by:

where × represents the Kronecker product. After the initial infection, the disease progresses
as before with each age group being isolated from all others. The progression matrix V† is
then:

where  is the 6 × 6 identity matrix. The next generation matrix can now be written as:

Therefore, the new basic reproductive number can be written as a function of the previous
one:

(A-1)
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This formulation is completely generic and completely generalizable for any number of age
groups with only a very small numerical effort. A specific value of R0 can be set by
inverting this expression and calculate the appropriate value of β(R0).

Before we can use this formulation in our global simulation, we must take into account the
different demographics of each country or census areas and their change in time. Using the
definitions above, we can write:

(A-2)

to describe the increase in the number of people in compartment Ii in a basic SI model.
Defining the fraction of individuals in compartment Ia as ρIa ≡ Ia/N, we rewrite this
expression as:

where Cab is the symmetric matrix defined above. Since this expression depends only on the
relative fraction of individuals in each compartment and not on the details of how many
people are actually in each compartment, we can safely conclude that Cab is the matrix that
must be kept constant for every population. We can now identify:

or, in other words:

(A-3)

as the matrix that we must use in Eq. A-1 and that will differ from country to country.
Substituting in Eq. A-2 we obtain:

where N is the total population for the subpopulation considered and Cab is the same for
every population. The resulting force of infection is then:

(A-4)

During the derivation of this expression, and for the sake of clarity, we considered only a
single population. The expression for the full force of infection including the mobility
dynamics Eq. A-4 can be obtained after the application of the prescription of Sec. 4. This
can be easily done by replacing every term of the form βiIi by
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(A-5)
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Figure 1.
GLEaM, GLobal Epidemic and Mobility model. The world surface is represented in a grid-
like partition where each cell – corresponding to a population value – is assigned to the
closest airport. Geographical census areas emerge that constitute the subpopulations of the
metapopulation model. The demographic layer is coupled with two mobility layers, the short
range commuting layer and the long range air travel layer.
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Figure 2.
Population database and Voronoi tessellation around main transportation hubs. The world
surface is represented in a grid-like partition where each cell – corresponding to a population
values – is assigned to the closest airport. Geographical census areas emerge that constitute
the subpopulations of the metapopulation model.
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Figure 3.
Compartmental structure of the epidemic model within each subpopulation. A susceptible
individual in contact with a symptomatic or asymptomatic infectious person contracts the
infection at rate β or rββ, respectively, and enters the latent compartment where he is
infected but not yet infectious. At the end of the latency period ε−1, each latent individual
becomes infectious, entering the symptomatic compartments with probability 1 − pa or
becoming asymptomatic with probability pa. The symptomatic cases are further divided
between those who are allowed to travel (with probability pt) and those who would stop
traveling when ill (with probability 1− pt). Infectious individuals recover permanently with
rate μ. All transition processes are modeled through multinomial processes.
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Figure 4.
Schematic representation of the subdivision of the population in each geographical census
area. The population in each geographical census area is divided into partial populations Nxy,
where x represents the subpopulation of residence and y represents the subpopulation of the
actual location at time t. Three subpopulations are shown −i, j, ℓ – to represent the various
contributions to the force of infection (see Eq. (19))
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Figure 5.
Full illustration of the procedure used for the GLEaM simulation engine. The left column
represents input databases and the right column the data structures that are generated.
Program flow occurs along the center. The three steps in the center box are repeated for each
simulated day.
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Figure 6.
Monte Carlo latin sampling. χ2 values as functions of effective reproduction ratio (Reff ) and
seeding date (t0) of simulated epidemics obtained by 2, 000 stochastic runs for each pair of
parameter values. Activity peak times of ILI consultations in the various French regions
have been selected as probe and were compared with simulation results to obtain χ2. As seen
in the figure, there are 4 local minimums. Parameter values chosen for the analysis in Fig. 7
are shown by the crosshairs.
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Figure 7.
Comparison of simulation results with the ILI consultations and number of confirmed cases
of influenza A(H3N2). Simulations have been run by setting Reff = 1.5 and seeding date of
July 11th, as marked in Fig. 6. In order to obtain epidemic activity timelines, empirical and
each of simulated profiles have been normalized to 1. Then the time windows have been
evaluated relative to the peak activities in each case. For instance, lightest yellow bars of
empirical data (lightest gray of simulated data) correspond to the time window in which
activity is between 60% and 70% of the peak activity. Simulation results correspond to 95%
reference range of simulated epidemics. The overlap between the predicted and observed
cases is striking. It should be noted that parameter values have been obtained only by fitting
the surveillance data in France, which has enabled GLEaM to reproduce the global pattern
of the influenza season successfully.
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Table 1

Commuting networks in each continent. Number of countries (N), number of administrative units (V) and
interlinks between them (E) are summarized.

Continent N V E

Europe 17 65,880 4,490,650

North America 2 6,986 182,255

Latin America 5 4,301 102,117

Asia 4 4,355 380,385

Oceania 2 746 30,679

Total 30 82,268 5,186,186
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Table 2

Transitions between compartments and their rates.

Transition Type Rate

Sj → Lj Contagion λj

Spontaneous εpa

ε (1 − pa)pt

ε (1 − pa)(1 − pt)

μ

μ

μ
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Table 3

Data sources for ILI% in the 2001/2002 Influenza season.

Country Type Data Source

US A/H3N2 CDC

Canada A/H3N2 PHACanada

UK A/H3N2 ECDC, UK HPA

Portugal A/H3N2 ECDC

Spain A/H3N2 ECDC

Belgium A ECDC

Australia A/H3N2 DHA
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Algorithm 1

Generic GLEaM program flow.

Parse model file

Load data input files:

 population database

 commuting

 flight networks

foreach timestep t:

do

 Flight connections (See Alg. 2)

 Infect (See Alg. 3)

 Aggregate results for each detail level.

done

Generate final output
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Algorithm 2

Long distance mobility.

foreach city i:

do

 foreach neighbor j ∈ v (i):

 do

  Calculate traffic:

   ω̃ij = ωij [α + η(1 − α)]

  Traveling probability:

    

 done

 distribute travelers among neighbors updated population matrix

end
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Algorithm 3

Compartment transitions.

foreach city i:

do

 calculate effective populations due to commuting

 foreach initial compartment x:

 do

  Update transition probability to compartment y using Eq. 22 and Eq. 24.

  For seasonal transitions, scale transition rate by s (t) (Eq. 25)

 done

 Move population between compartments using a multinomial

done
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Table A.5

Wallinga’s population structure.

Age group Participants Population (×103)

0 0 184

1 – 5 125 876

6 – 12 154 1, 265

13 – 19 152 1, 642

20 – 39 681 4, 857

40 – 59 360 3, 312

60+ 341 2, 477

Total 1, 813 14, 614
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