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Abstract

Background The ongoing COVID-19 pandemic has greatly disrupted our everyday life, forcing

the adoption of non-pharmaceutical interventions in many countries and putting public health

services and healthcare systems worldwide under stress. These circumstances are leading to

unintended effects such as the increase in the burden of other diseases.

Methods Here, using a data-driven epidemiological model for tuberculosis (TB) spreading,

we describe the expected rise in TB incidence and mortality if COVID-associated changes in

TB notification are sustained and attributable entirely to disrupted diagnosis and treatment

adherence.

Results Our calculations show that the reduction in diagnosis of new TB cases due to the

COVID-19 pandemic could result in 228k (CI 187–276) excess deaths in India, 111k (CI 93–134)

in Indonesia, 27k (CI 21–33) in Pakistan, and 12k (CI 9–18) in Kenya.

Conclusions We show that it is possible to reverse these excess deaths by increasing the

pre-covid diagnosis capabilities from 15 to 50% for 2 to 4 years. This would prevent almost

all TB-related excess mortality that could be caused by the COVID-19 pandemic if no

additional preventative measures are introduced. Our work therefore provides guidelines for

mitigating the impact of COVID-19 on tuberculosis epidemic in the years to come.
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Plain language summary
The COVID-19 pandemic has dis-

rupted everyday life and put public

health services and healthcare sys-

tems worldwide under stress. This

has compromised the ability to con-

trol other diseases such as Malaria,

Cancer and Tuberculosis. In this work

we predict the rise in Tuberculosis

occurrence and mortality when

healthcare systems are impacted and

diagnosis capabilities blocked in 4

countries where TB is prevalent. Our

calculations show that an increase in

new TB cases due to the COVID-19

pandemic could result in almost

400,000 additional deaths from TB

in India, Indonesia, Pakistan and

Kenya. We also show that increased

diagnosis capabilities after the pan-

demic could reduce the additional

deaths from TB resulting from the

COVID-19 pandemic impact.
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Tuberculosis (TB) is an infectious disease caused by the
bacterium Mycobacterium tuberculosis (M.tb.) that usually
affects the lungs. It is a preventable but complex disease

with a high global burden that requires early detection and long
treatments. Despite the global effort to eradicate TB and recent
decreases in its burden due to the implementation of strategies
aimed at optimizing diagnosis and treatment1,2, it remains one of
the greatest threats to public health worldwide, being the deadliest
single-agent persistent infectious disease nowadays. According to
the 2021 Global TB Report by the World Health Organization
(WHO)3, ten million people developed TB and nearly 1.5 million
people died because of TB infection in 2020, and for the first
time in a decade, there is an increase in TB-caused deaths. In
the last decades, the WHO has deployed a series of global
strategies that have since been the backbone of the global fight
against TB. In 1995, the Directed Observed Treatment Strategy
was introduced, which significantly strengthened the capacity of
national programs to diagnose and treat TB cases. Later, the
Stop TB Strategy, announced in 2006, was the first of such plans
at setting a TB elimination horizon, defined as a reduction of
incidence levels under one case per million and year by 2050. A
redefinition of the eradication goal took place in 2014 when the
previous objective was moved forward to 2035 within the End
TB Strategy.

If the elimination target set by the End TB strategy was
already an ambitious goal4, the emergence of the COVID-19
pandemic caused by the new coronavirus SARS-CoV-2 sheds
significant concerns on whether these goals are still reachable.
During the acute stages of the COVID-19 pandemic, economic
and human resources were redirected to control and mitigate
the emergency caused by the pandemic, which led to a great
reduction in the diagnosis of new cases of other diseases, as
already documented for cancer, or malaria5,6. Interventions
such as long lockdowns and mobility restrictions have exacer-
bated shortages in resources otherwise destined for the care of
patients suffering these, and other pathologies. Moreover,
COVID-19 has greatly affected healthcare workers7–9, thus
creating additional pressure to healthcare systems.

TB diagnosis and patient care are no exceptions, as reported
in previous literature3,10,11. As a primary and immediate effect
of COVID-19 spreading onto TB transmission dynamics, a
reduction in the case notification ratio has been observed dur-
ing and immediately after lockdowns and periods of high
COVID-19 incidence and saturation of healthcare facilities3.
We hypothesize that this disruption alone will lead to a surge in
TB burden in the next years, even before the more complex, and
less predictable effects of the COVID-19 pandemic on TB
management and transmission dynamics can be properly
characterized. For example, drastic drops in laboratory capacity
needed to support TB diagnosis are expected along with
interruptions in the supply of drugs, which could result in
shortages of medications and could delay the start of treatments
until the supply chain is reestablished12–14. Moreover, as sug-
gested by Cilloni et al.15, even temporary stoppages might cause
long-term increases in TB incidence and mortality, and a peak
in TB burden is to be observed as a consequence of the
healthcare system disruption.

In this work, we assess the impact of COVID-19 on the
expected TB burden until the year 2035, which marks the target
horizon of the End TB Strategy. Specifically, we incorporate the
observed drop in TB diagnosis and treatment compliance rates
caused by COVID-19 into a mathematical model that produces
long-term forecasts of TB burden16. This allows us to: (1)
quantify the effect of the COVID-19 stoppage in relation to a
baseline scenario in which no pandemic happened, and (2)
compute the effect that a rapid response to the uprising TB

burden in the following years, in the form of a compensatory
intervention aiming at boosting TB diagnosis rates as soon as
the COVID-19 pandemic ends, has over long-term TB goals.
Our results show that an effort focused on increasing TB
diagnosis capabilities once the pandemic is over could revert the
effect of the pandemic in the long term.

Methods
Model calibration and diagnosis rate. In this study, we have
capitalized on the detailed M.tb. transmission model developed
by Arregui et al.16,17 (see Supplementary Methods and Sup-
plementary Fig. 1). Conceptually, this model is an age-stratified
compartmental model that describes TB dynamics within a
whole, closed population, stratified into 15 age groups during
periods of the order of several decades. The model is detailed
enough to include demographic evolution and aging, along
with heterogeneous contact patterns among age groups that
have been adapted from empirical survey studies (see Supple-
mentary Fig. 2).

Here, the model is calibrated to reproduce TB incidence
and mortality rates in each country under study for the
period 2000–2019, using the burden estimates provided by
the WHO. The calibration process gives the diagnosis rate
d(t) and the scaled infectiousness β(t), which are modeled as
half-sigmoid-like curves, and, among other parameters, are
country-specific. This allows the model to reproduce different
epidemiological scenarios. Specifically, the diagnosis rate is
defined as:

dðtÞ ¼
d0 þ ðdsup � d0Þtðt þ 1

d1
Þ�1 if d1 > 0

d0 if d1 ¼ 0

d0 � d0tðt � 1
d1
Þ�1 if d1 < 0
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Therefore, the diagnosis rate is parameterized by two quantities
(d0, d1), where d0 is the value at the beginning of the calibrating
window (i.e., year 2000 in this study), and d1 defines its evolution,
either increasing or decreasing with time depending on d1’s sign.
In the case of a decreasing evolution, the diagnosis rate is
bounded to be greater than zero, while in the case of increasing
evolution the upper bound is dsup ¼ 12:17(year−1)16. This latter
upper bound corresponds to a minimum diagnosis period of
1 month, assuming that, with a conservative lower boundary, the
main symptom of TB is a continuous cough lasting for 3 weeks,
followed by a time to diagnose estimated to last at least 10 days18.
For further details regarding the specific values of epidemiological
parameters, calibration processes, and uncertainty estimates, the
reader is referred to the original source16 and the Supplementary
Methods.

Once the model is calibrated, we use it to produce forecasts
until 2035 under two different scenarios: the baseline scenario,
namely, a scenario in which there is no COVID-19 pandemic
and thus, no disruption in healthcare systems is introduced, and
another one in which a disruption is introduced at the start of
2020 up to the end of 2021, which is the pandemic scenario.
During the duration of the pandemic, the diagnosis rate drops
according to the reduction observed in the notifications of TB
cases that are reported by WHO online, in the last global TB
report, and also by the Nikshay program in India. Therefore,
the drops in diagnosis rate are country-specific. These drops in
TB notifications are fitted to a bump-like asymmetric function,
as described through dred(t) in Eq. (2). This function reproduces
the real data and is then applied to the model-calibrated
diagnosis rate to produce the diagnosis function under the
pandemic scenario. The fitting procedure is a Levenberg-
Marquardt Nonlinear Least-Squares using minpack.lm R’s
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package19, where Eq. (2) is applied to the data normalized by
the 2019 mean for each country:

dredðtÞ ¼

x1 t ≤ t0

1� h � exp �k1 t�t1ð Þ2
t1�t0ð Þ2� t�t1ð Þ2 t0 < t ≤ t1

1� h � exp �k2 t�t1ð Þ2
t2�t1ð Þ2� t�t1ð Þ2 t1 < t ≤ t2

1 t > t2

8
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>>>>>>:
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The bump-like function described in Eq. (2) serves as a
multiplier to the model-calibrated diagnosis rate, thus, being the
diagnosis rate under the pandemic scenario D(t)= d(t) � dred(t)
with dred(t) ≠ 1 only during the COVID-19 pandemic, and
dred(t)= 1 otherwise. In Table 1 we report the fitted values of
each parameter involved in the bump-like description of the TB
notification drops.

Finally, during the period of recovery, interventions are aimed
at compensating for the drop in diagnosis rates during the
pandemic years. We modeled this by multiplying the diagnosis by
a scale parameter, as already discussed. Once the recovery period
is over, we assume that the diagnosis rate goes back to its original
value as given by d(t) up to the end of the simulation.

Modeling decisions about the disruption. A conceptually deep
limitation of this study that needs to be stressed is that we only
describe the effects of COVID-19-induced reductions in TB
diagnosis rates and treatment adherence as the main drivers of
the interaction between both processes. Admittedly, the effects of
the COVID-19 crisis on TB dynamics are more complex than
what is described here, and will most likely include alterations in
transmission dynamics, effects mediated by economic impact,
and long-term damages to health care quality standards beyond
diagnosis rates; all these being aspects that lie out the scope of our
study, mainly because the relevant data needed to describe the
effects of them on TB dynamics are yet to be produced.

Although some of the non-pharmaceutical interventions
adopted worldwide have proven their efficacy in reducing
COVID-19 spreading20, their effectiveness highly depends upon
general public adherence and proper knowledge about the
pandemic risks. Whereas some studies21–24 show that the knowl-
edge, attitude, and practice toward COVID-19 basic preventive
strategies and conducts are in general positive, there is a great
variation between communities and, for example, in India, between
socioeconomic levels. Specifically, rural populations, as well as
individuals with lower education, and unskilled occupations, are
associated with lower scores of knowledge, attitude, and
practice toward the basic preventive strategies against COVID-
19, which would in turn be expected to contribute to halting TB

transmission too23. This lack of adherence in the lower socio-
economic levels25 suggests that it might be misleading to assume
that the implementation of countermeasures induces a reduction in
the TB force of infection. On the other hand, the changes in
mobility due to lockdowns and other restrictions indicate that most
of the interactions happen in residential areas (e.g., households)
while these interventions are in place (see Supplementary Notes 1
and Supplementary Fig. 3). Admittedly, this could be at the root of
some recent observations that report that the number of children
diagnosed with TB has increased and that non-pharmaceutical
public health interventions likely reduced influenza transmission,
but have a lesser effect on M.tb. transmission during 202026–28.

To contextualize our findings in broader scenarios where
changes in TB transmission—either toward enhanced or reduced
spreading—are considered, we show the results of the basic
burden outcomes, incidence, and mortality, in each country, for
scenarios in which the transmission is either reduced or
enhanced. We also considered an alternative scenario in which
the treatment availability is higher than the one adopted in the
main text, thus, exploring the effect of an overestimate of the
disruption over the treatment (see Supplementary Notes 2 and
Supplementary Figs. 4 and 5).

First-line treatment reduction. According to previous reports3,15,
first-line TB treatment completion has dropped effectively as a
consequence of the COVID-19 pandemic, with interruptions in the
supply of drugs that delay the start of the treatment in those cases in
which the remaining medical capabilities have been enough to
diagnose the disease. This inconvenience could not only worsen the
expected treatment outcome for the patient but also drive secondary
infections even in diagnosed patients if they are not able to quar-
antine until the treatment could be carried out. We modeled this
situation in terms of the epidemiological model by including a
fraction of under-treatment pulmonary TB individuals (Tp) in the
expression of the force of infection (λ(t)). On the baseline scenario
and without disruptions, those Tp individuals are not able to con-
tribute to λ(t) as we assume that they are under control by the
healthcare system, thus, being controlled and either under quar-
antine or, later on, medicated with TB drugs that greatly reduce their
infectiousness. This means that, under normal circumstances,
diagnosed individuals are expected not to be a risk for the rest of the
population. However, when disruptions in the supply chain appear,
a drop is observed in the first-line and second-line treatments
completion15, and then diagnosed individuals who are not able to
either start the treatment or quarantine could become a risk. For this
reason, we obtain an estimate of the fraction of Tp individuals that
contribute to λ(t), T inf , from Cilloni et al.15 as:

T inf ¼ ð1� ηÞTp ð3Þ
where η= 0.788. This value attempts to capture this kind of impact
in countries like India and Kenya. It is based on expert opinion in
the Stop TB Partnership and USAID about the side effects of the
COVID-19 pandemic on TB treatment completion. We assume it to
be a good proxy for the real value for the other countries included in
this study.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Forecasts of TB incidence and mortality under COVID-19
pressure. To forecast the effect that disruptions in the diagnostic
capabilities and the treatment completion have on TB incidence
and mortality trends, we selected four different high-burden

Table 1 Fitted parameters for diagnosis reduction in selected
countries.

Bump parameters

Country Θ= {h, t1, t2, k1, k2}

Indonesia Θ= {0.494, 0.391, 17.31, 6.226, 117.4}
Pakistan Θ= {0.398, 0.257, 18.04, 3095.3, 826.8}
Kenya Θ= {0.248, 0.859, 5.218, 0.905, 46.51}
India Θ1= {0.393, 0.272, 1.25, 134.7, 0.645}

Θ2= {0.594, 0.139, 1.069, 3.111, 114.12}

The fitting procedure is a Levenberg-Marquardt Nonlinear Least-Squares using minpack.lm R’s
package19, where Eq. (2) is applied to the WHO data normalized by the 2019 mean. For
Indonesia, Pakistan and Kenya, one bump is enough for reproducing the data, whereas in India
two separate bumps need to be concatenated, and are denoted here as Θ1 and Θ2 respectively.
h, k1 and k2 are dimensionless quantities, whereas t1 and t2 have units of year−1.
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countries, three in Asia (India, Indonesia, Pakistan) and one in
Africa (Kenya). Then, we calibrated the mathematical model16

using the current WHO estimates for TB incidence and mortality
rates in those countries and produced forecasts in two separate
scenarios. The baseline scenario assumes no disruption, whereas
the perturbed scenario incorporates the effects of the pandemic
on TB diagnosis and treatment adherence. In the different
countries analyzed, the duration of the disruptions has been of
variable intensity and length, and while some countries experi-
enced an almost complete return to pre-pandemic levels by June
2021 (India, Pakistan), other countries were still registering lower
case notification rates by the end of 2021 compared to values
before the COVID-19 irruption.

While treatment adherence is assumed to be reduced a 22%
from the pre-pandemic values, according to Cilloni et al.15,
disruption is introduced based upon available data. These were
made publicly available by the WHO for Indonesia, Kenya, and
Pakistan29, and by the Nikshay governmental program for India30

during the months—or trimesters, for Pakistan—that followed
the irruption of COVID-19. To incorporate those data into our
model, we use a piece-wise bump function dred(t) to model a
transient continuous drop in the diagnosis rate trend d(t) that was
foreseen within our model upon its calibration on pre-pandemic
data (see “Methods”, Eq. (1)). Proceeding this way, the actual
diagnosis rate in the COVID-19 scenario, D(t), can be obtained as
the product of the model-calibrated diagnosis rate and the fitted
bump function capturing the disruption due to the COVID-19
pandemic, as shown in Eq. (4) and Fig. 1:

DðtÞ ¼ dðtÞ � dredðtÞ: ð4Þ

Figure 2 shows the estimated TB incidence per million
inhabitants per year in the four countries considered, both in
the baseline scenario and considering the negative impact of the
COVID-19 pandemic. As observed, a transient surge of TB
incidence starts in 2020, which is later foreseen to return to values

close to the baseline trend. In the figure, the dotted line represents
the baseline scenario, namely, what would have been the
projected evolution of TB incidence without the disruptions of
the pandemic. The size of the peak reflects the severity of the
saturation of the healthcare system in each country which led to
drops of different intensity in diagnosis. The results show that the
estimated COVID-19 impact on TB incidence trends is larger in
the three Asian countries analyzed than in Kenya. This is a direct
consequence of the less severe decays in TB case notifications that
have been observed in Africa in comparison to other regions3,
which have been used to inform our mathematical model. These
regional differences, in turn, may be due to a combination of
factors. First, as stated by Haider et al.31, some of those countries
adopted early on measures for facing the pandemic, secondly,
COVID-19 has had a smaller effect in Africa, which can be due,
in part, to a strong under-diagnosis and partially because its
younger population.

Important enough, even if COVID-19 disruptions are assumed
to happen only during the pandemic years, the long-term effects
span for longer times, sometimes up to 5 years since the start of
the COVID-19 pandemic. As observed in Fig. 2, in the long term,
TB incidence levels stabilize and recover to their baseline values
approximately by the year 2030, resulting in a 10 years window of
higher burden that makes the incidence go off the way of TB
eradication stated in the End TB Strategy. Moreover, in the
absence of any further intervention, the peak of TB incidence
caused by the disruptions associated with the COVID-19
pandemic will produce not only new TB cases but also an
increase in TB-related deaths all across the world. Specifically, by
the end of the simulation period in the year 2035, our model
predicts an increase in mortality as shown in Fig. 3, where we
have represented both the increment percentage and the total
number of accumulated additional deaths between 2020 and
2035. Particularly, we forecast an increase in the number of
deaths of 1.28%(1.02–1.62, 95% CI) in India, 2.94%(2.50–3.54,
95% CI) in Indonesia, 0.72%(0.65–0.83, 95% CI) in Kenya and

Fitted Bump Data Covid disruption Normal trend
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Fig. 1 Changes in the diagnosis rate before, during, and after the pandemic period. We present both the original data and the fitted bumps we use for
modeling the disruption, along with the diagnosis rates in two scenarios: the baseline, with no disruption (dotted lines), and the pandemic scenario, where
the drop in diagnosis happens and is followed by a return of the diagnosis rates to the baseline scenario. Diagnosis multipliers are obtained directly using
the WHO data as the TB notifications in that period divided by the mean of TB notifications in the year 2019. The four countries considered are (a) India,
(b) Indonesia, (c) Kenya, (d) Pakistan.
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Fig. 2 Projected annual TB incidence in four high-burden countries over the period 2020–2035. The data-driven model is calibrated with WHO incidence
data up to 20193. The shaded area represents the 95% CI and the black line is the median of the model outcome for 500 independent runs of the disrupted
scenario. The dotted black line is the model forecast for the scenario in which there was no Covid-19 pandemic. Red dots with error bars are the TB burden
provided by theWHO3 used for calibration. Projected incidence values are calculated at the end of the corresponding year on the x-axis. The impact of COVID-19
is modeled as a reduction in diagnosis rates and treatment completion for 2 years (2020 and 2021), see Fig. 1 and main text. The four countries considered are
(a) Indonesia, (b) Kenya, (c) India, (d) Pakistan, which account for 42.1% of the total number of TB infections worldwide.
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Fig. 3 Model predictions of additional TB-related deaths due to COVID-19-related disruptions in healthcare systems. Error bars are the 95% CI of 500
independent runs of the model. A Percentage of increase of mortality in comparison to the baseline scenario in 2035 for each of the four countries studied.
B Cumulative number of excess deaths caused by the pandemic impact during the whole time window simulated (2020–2035) for each country under
study as indicated in the x-axis.
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1.62%(1.21–2.01, 95% CI) in Pakistan. In absolute terms, the total
number of excess deaths could be over 350000 individuals in
these four countries alone (Fig. 3B).

Finally, as the current situation with COVID-19 and its
variants seems to be far from an end, we explore some alternative
scenarios in which a secondary disruption, similar to the one that
already happened, is introduced in the model. The results of this
exploratory analysis are reported in the supplementary materials
(see Supplementary Notes 3 and Supplementary Fig. 6).

Proposed intervention for mitigating the pandemic effect. As
shown before, the pandemic circumstances will lead to notable
increases in TB incidence and mortality. This represents a critical
setback concerning the objective of eradicating TB disease within
the next few decades, making it hardly achievable without a rapid
and effective recovery strategy. More importantly, the disruptions
will cause many preventable deaths. It is thus of utmost impor-
tance to elucidate whether new policies could be implemented to
revert the negative impact of COVID-19 on TB disease. In what
follows, we explore the potential of interventions focused on
compensating the decay in diagnosis rates observed during the
biennium 2020–2021, through a compensatory boost in the next
years, as sketched in Fig. 4. While improvements in passive case
finding routinely practice are unlikely to unlock sufficient
increases in diagnosis rates, these, combined with the imple-
mentation of properly designed strategies of active case finding
would constitute the paradigmatic type of interventions capable
of producing diagnosis improvements comparable to those here
explored.

The potential intervention over the diagnosis of TB cases is
modeled using a piece-wise function that combines Eq. (4) with
an additional piece introduced after the pandemic disruption is
over, and for a parameterized duration, Tend

rec � Tst
rec, to be

determined. More specifically, we assume that over this new
period of time the pre-pandemic diagnosis rate is effectively
increased by a factor dinc ≥ 1, (see also Fig. 4). That is:

DðtÞ ¼
dðtÞ � dredðtÞ if t < Tst

rec

dðtÞ � dredðtÞ � dinc if Tst
rec ≤ t < Tend

rec

dðtÞ � dredðtÞ if t > Tend
rec

8
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ð5Þ

The efficacy of such a compensatory period will in principle be
proportional to the intensity and the duration of the intervention.
In Fig. 5, we show the impact of considering different

combinations of diagnosis boost and duration of the boost on
the cumulative excess mortality in 2035.

Clearly, the more intense and longer the additional effort is, the
larger the number of averted deaths by the end of the simulation
period. As it can be seen, an increase in diagnosis rate during a
certain amount of time could eventually revert the negative impact
of COVID-19 in TB mortality measured in 2035. More specifically,
for all four countries, there is a region in the parameter space for
which the increase in mortality in 2035 is close to zero (highlighted
contour line of the different panels) if the diagnosis rate of new TB
cases increases from 10 to 50% of its original value for a period that
spans between 1 and 4 years. Importantly, this implies that the extra
death toll that is expected from the effect of COVID-19 on TB
diagnosis and treatment during the last 2 years could be fully
mitigated if ambitious interventions focused on increasing case
detection in the next few years are deployed.

Table 2 reports the number of averted deaths in each country
in 2035 when the additional effort is applied for 2–4 years and
considering increases in the diagnosis rates of 15, 30, and 45%,
starting right after the end of 2022. The reported values are
obtained by comparing model forecasts for the estimated number
of TB-related deaths in the pandemic scenario with the outcome
obtained when the recovery strategy is adopted after the end of
the COVID-19 disruptions. The model suggests that it is
generally better to increase the diagnosis rate for shorter times
than to increase the temporal span and have smaller increments
of the diagnosis rate. This is because, in the former situation,
more deaths are averted in the long term. Nonetheless, the ideal
scenario is still the one in which both dimensions are boosted at
the same time, as the longer the time the effort is maintained for a
given multiplier, the lower the TB-related death toll caused by the
pandemic. As noted before, we stress that for an effort ratio of
1.30 and a temporal span of 4 years, the number of averted deaths
almost corresponds to the 100% of additional deaths expected due
to the COVID-19 disruptions (see Fig. 3), i.e., the pandemic
impact on TB burden could be fully mitigated.

Discussion
The COVID-19 pandemic is not over yet, and much remains to be
clarified about its impact on the—physical and mental—health of
the general population. As of May 2022, the coronavirus SARS-
CoV-2 has infected more than 530 million individuals, causing the
death of more than 6.3 million people worldwide. Although the
SARS-CoV-2 and its associated disease COVID-19 were first
identified more than 2 years ago, the scientific community has
already been able to describe many of the clinical characteristics
and pathogenesis of COVID-19, especially during the acute
phase32,33. However, there are important features that remain less
known, such as the long-term consequences of the disease34–36 and
the relation between comorbidities and their risks upon infection
by SARS-CoV-237,38. Another important question that is not fully
assessed concerns the indirect effects of the pandemic, and the
NPIs adopted for its control and mitigation, over other diseases.

In particular, the large number of healthy individuals that were
infected in a very short period, producing the so-called epidemic
waves, led to the saturation of many healthcare systems, which in
turn induced the implementation of very restrictive measures
such as lockdowns and curfews in those countries. These com-
pulsory interventions have been argued to be at the root of
important reductions in diagnosis rates of other deadly
diseases5,6. Yet, the long-term consequences are still to be
determined. Here, we have focused on TB, since it is one disease
for which disruptions in health care could be most dramatic13,15

given that even without a pandemic scenario, more than 1.5
million lives are lost every year because of the disease.

Time

D
(t

)

Covid disruption
Baseline
Intervention

Fig. 4 Schematic representation of the increase in diagnosis rate in the
post-pandemic scenario. Unlike the situation described in Fig. 1, we
consider a compensatory period during which the diagnosis rate is boosted
up to d(t)*dinc, with dinc > 0, which applies for the whole duration of the
intervention.
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Using a data-driven epidemiological model16, we have quantified
the negative impact of COVID-19 on TB diagnosis and its long-
term consequences. We have also shown that a rapid and intense
post-pandemic intervention could eventually mitigate the expected
increase in incidence and mortality of TB. Countries enrolled in
this work have been selected because of their high-TB burden,
contributing an important amount of cases to the annual TB
incidence recorded by the WHO global report. Certainly, all four
countries together accounted for a 42.1% of the global TB cases in
the year 2019. Individually, India comprises 26.5%, Indonesia
accounts for 8.47%, Kenya represents 1.40% and Pakistan is
responsible for 5.71% of all cases globally. Additionally, for these
countries, the reduction in TB case notification due to the COVID-
19 pandemic has been well-documented3,29, and spans frommilder
(Kenya) to more severe magnitudes (Indonesia), which make them
suitable case studies to estimate the pandemic negative impact and
the design of corrective interventions.

Our results show that a drop in diagnosis rates and first-line
treatment compliance statistics leads to a pronounced increase in

TB incidence in comparison to the baseline scenario. In turn, the
growth in TB burden leads to an upsurge in mortality, producing
almost 400,000 excess deaths by 2035 in the four countries of the
study combined. However, our study also shows that most of these
deaths can still be prevented. In particular, our projections show
that an increase of available diagnosis capabilities for some time has
very positive effects on long-term TB burden since the pandemic
effect can be greatly curtailed. More especifically, if the intervention
is powerful and maintained for enough time, the entirety of the
expected excess deaths can be avoided. It is worth stressing that the
intervention proposed here is aimed at increasing the rate of
diagnosed individuals, thus bringing them to treatment as soon as
possible. This ultimately points toward cutting TB transmission to a
point wherein pre-pandemic burden levels are recovered. As we
have demonstrated here, one such intervention could be enough for
full mitigation of the negative impact of the COVID-19 pandemic
on TB incidence and mortality.

However, it is important to acknowledge that the specific
interventions needed to achieve enhancements in the diagnosis
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rates such as the ones explored in this study—between 10 and
50% increase above basal values—should most likely go beyond
policies focused on reducing the diagnostic delay of patients
seeking care after experiencing TB symptoms under passive case
finding scenarios. Instead, active case finding strategies (ACF)
constitute a robust family of interventions that can lead to
reductions of both patient39,40, and health care system
components41,42 of total TB diagnosis delays that are often
compatible with case detection rate improvements similar to
those explored here. Along these lines, several epidemiological
studies published in the last decade report positive ACF experi-
ences in diverse high-TB burden settings in both rural and urban
areas in Africa and Asia alike. For example, in 2020, Vo et al.
reported an increase of 15.9% of TB notifications (all-forms) in
six districts of Ho-Chi Minh, Vietnam, with respect to another six
control districts in the same city43. Other studies conducted
previously in broad administrative districts in northern Uganda
in 201844, and in Cambodia in 201645 report results from even
more successful ACF strategies, able to increase all-forms TB
diagnosis rates up to 30.4% and 46%, respectively, in comparison
to control districts. Similar examples also include ACF strategies
targeting rural, and even nomad populations, in African countries
such as Ethiopia (ref. 46, 98.4% increase in all-forms of TB
notification rates in 2013) or Nigeria (ref. 47, 24.5% of increase for
all TB notifications among nomadic populations in Adamawa
state, 2015). Finally, other studies have made use of mathematical
modeling to stress that boosting diagnosis rates through ACF is
not only feasible but also cost-effective in the mid to long
term48,49. These results, taken together, suggest that the imple-
mentation of ambitious nationwide strategies of ACF in countries
such as the ones studied here could contribute significantly to
reducing the TB burden to the extent of mitigating the detri-
mental effects that COVID-19 has had on the TB epidemics
worldwide.

In closing, we also mention that our approach is not exempt
from limitations that affect TB transmission models. For instance,
the outcome of our model depends on a series of epidemiological
parameters and initial burden estimates that are subject to strong
sources of uncertainty, thus propagating this uncertainty to the
results. This means that future improvements in measuring the
input data are expected to impact the quantitative outcomes of
our mathematical model, in the same way as it would affect any
other model that leans on them. Moreover, in our work, we have
only described the disruption caused by the COVID-19 pandemic

on the TB care system via a reduction of diagnostic capabilities
and treatment availability. Even if these are arguably the primary,
and the first effects of the COVID-19 pandemic on TB trans-
mission dynamics that have been characterized, there may be
many other effects that are yet hard to parameterize, such as the
effect on the transmission that non-pharmaceutical interventions
had in the countries that carried them out.

On the one hand, it should be possible, in the near future, to
produce more detailed estimates on the disruptions of the pan-
demic on the complete TB cascade of care, based on the corre-
sponding empiric data disclosed at a greater level of detail than
the inputs used in this study. In fact, at the moment of writing
this study, there is great heterogeneity in the available empirical
data about the effects in the TB cascade of care, which points
toward the urge of improving data availability for properly
understanding the vast effects of COVID-19 on TB care50.
Moreover, it is clear that other models, which provide a fine-grain
structure capable of reproducing the full TB cascade of care, will
be needed for taking advantage of this kind of data, which is
certainly unfeasible with the model used in this study. Further-
more, it is well known that the emerging pandemic has disrupted
profoundly the age structure of social contacts in human popu-
lations worldwide through a combination of mobility restrictions,
lockdowns, social distancing, and adaptive conducts driven by
self-perceived risk, often associated with the stark variations in
susceptibility to severe disease and death that have been exten-
sively reported for COVID-19. All these effects combined have
arguably re-wired age-dependent contact structures in a way that
is not fully understood, and may not be completely transient. On
the other hand, geopolitical and economic shifts driven by the
pandemic will for sure exert differential effects on TB transmis-
sion dynamics between countries. While the TB modeling com-
munity should commit to characterizing these phenomena in
depth and incorporate them into model forecasts, these are all
questions that remain beyond the scope of this study. Be it as it
may, the model projections reported here point toward a wor-
rying scenario about the effects of the current pandemic on TB
burden evolution in the near future, regardless of the detailed
implementation of the disruptions. As more data on the possibly
disparate effects of the COVID-19 pandemic on TB is
reported3,29, updated modeling scenarios can be considered.
Similarly, while the duration of the pandemic has been selected to
be the length of the fitted bumps (which is directly related to
available data) for all countries under study, the longer this data is

Table 2 Cumulative number of averted deaths (in thousands) in 2035 with a post-COVID-19 intervention initiated in 2022 in
each of the countries studied.

Number of averted deaths (in thousands) by 2035

Country Diagnosis effort T= 2 years T= 3 years T= 4 years

Indonesia 1.15 36 (31–43) 52 (44–61) 66 (57–78)
1.30 67 (57–79) 93 (80–110) 118 (102–139)
1.45 93 (79–109) 128 (110–150) 160 (139–187)

Kenya 1.15 9 (7–13) 13 (10–19) 17 (12–24)
1.30 18 (13–25) 25 (18–35) 32 (23–45)
1.45 25 (18–35) 35 (26–50) 45 (32–63)

India 1.15 121 (98–156) 173 (141–224) 223 (182–288)
1.30 223 (178–294) 315 (254–418) 402 (326–532)
1.45 309 (246–419) 432 (347–586) 547 (444–735)

Pakistan 1.15 14 (12–16) 20 (17–23) 27 (23–30)
1.30 25 (22–29) 36 (31–41) 47 (41–53)
1.45 35 (30–39) 49 (43–56) 64 (56–71)

The values in the table are computed by calculating the difference between the model forecast for mortality with the pandemic scenario and with non-pharmaceutical interventions of different intensities
of diagnosis effort and duration of the recovery period. Values are the median of the outcome and figures in parentheses are the 95% CI of the model projections.
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reported, the better quantitative outcomes can be forecasted.
Similarly, precise measures of how the pandemic affects the
model parameters, such as updated mortality risks or transmis-
sion rates, would also increase the quality of the forecasts.

In summary, our work shows that implementing a strategy
aimed at boosting TB diagnosis rates after the pandemic holds the
promise of mitigating, if not fully reverting, the negative impact
of the COVID-19 pandemic on TB excess incidence and mor-
tality, even if that period of boosted diagnosis is transient. While
the importance of early diagnosis to arrest TB transmission is well
known in TB epidemiology51,52, we describe here how pushing
that aspect of global TB management strategies in the early post-
covid time has the potential of reverting a large fraction of the
negative impact caused by the pandemic on the global TB epi-
demics. Interventions such as chronic cough screenings among
people seeking healthcare, or even active screening of TB cases
among non-symptomatic individuals, along with protocols tar-
geting specifically pre-clinical and/or smear-negative TB cases do
all hold the potential of boosting early diagnosis rates in a way
that may well be compatible with the scenarios modeled in this
study51–54. To prevent the COVID-19 pandemic from destroying
all the progress achieved during the last years in global TB con-
trol, it is time to prioritize such interventions.

Data availability
The data concerning drops in TB notifications and treatment availability are publicly
available at the original sources15,29,30. The data underlying Figs. 1–5 is present in
Supplementary Data 1–5. The data underlying Supplementary Figs. 3–6 is present in
Supplementary Data 6–8.

Code availability
The code that supports the findings of this study is available from the Zenodo
repository17 and at the following address https://doi.org/10.5281/zenodo.6638450.
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