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Abstract

Background

Determining the pandemic potential of an emerging infectious disease and tiepeitds on the

various epidemic and population aspects is critical for the preparationaddeguate response aim
at its control. The complex interplay between population movements in spac®asttbomogeneou

mixing patterns have so far hindered the fundamental understanding ajdridéions for spatial
invasion through a general theoretical framework. To address this, is&upresent an analytical
modelling approach taking into account such interplay under generditmors of mobility and
interactions, in the simplifying assumption of two population classes.




Methods

We describe a spatially structured population with non-homogeneous mixihtyee! behaviour
through a multi-host stochastic epidemic metapopulation model. Different gampupartitions,

mixing patterns and mobility structures are considered, along with a spegificatpn for the study
of the role of age partition in the early spread of the 2009 H1N1 pandemieirdéu

Results

We provide a complete mathematical formulation of the model and derive a seiytieal
expression of the threshold condition for global invasion of an emergfegtious disease in the
metapopulation system. A rich solution space is found that depends on takpsottion of the
population, the pattern of contacts across groups and their relative aciivity, the travel attitude
of each class, and the topological and traffic features of the mobility nketiR&ducing the activity
of the less social group and reducing the cross-group mixing are peddache the most efficient
strategies for controlling the pandemic potential in the case the less actiye gpostitutes the
majority of travellers. If instead traveling is dominated by the more social aassnodel predicts
the existence of an optimal across-groups mixing that maximises the panddamtigiof the
disease, whereas the impact of variations in the activity of each grousisripsrtant.

Conclusions

The proposed modelling approach introduces a theoretical framewdttkefetudy of infectious
diseases spread in a population with two layers of heterogeneity relevaheflocal transmission
and the spatial propagation of the disease. It can be used for pandempérgdness studies to
identify adequate interventions and quantitatively estimate the correspaedjniged effort, as well
as in an emerging epidemic situation to assess the pandemic potential of theepdtiong
population and early outbreak data.

Keywords

Metapopulation models, Epidemic spreading, Complex networks, Mobility, Mipiaigerns, Travel
behaviour

Background

The spatial spread of directly transmitted infectious diseases depends omnidiplay between local
interactions among hosts, along which transmission can occur, and dissemiogportunities pre-
sented by the movements of hosts among different communities. The availabilitgredsingly large
and detailed datasets describing contacts, mixing patterns, distribution & apdanobility of hosts
have enabled a quantitative understanding of these two factors [1ndiled to the development of
data-driven mechanistic models to capture the epidemic dynamics of infecit@aseds [7,12-14].

Although numerical simulations have crucially contributed to our current aliditgxplain observed
spatial epidemic patterns, predict future epidemic outcomes and evaluaégissaor their control,

analytical methods offer an alternative valuable avenue for the assaseman epidemic scenario
that is able to clearly identify the key mechanisms at play and shed light on sbthe complex-

ity inherent in data-driven approaches. In the context of models fatiagdly transmitted infectious
diseases, the metapopulation approach offers a theoretical framewabréxslicitly maps the spatial
distribution of host population and mobility [15-18], while offering a tractabystem under certain



approximations [19,20]. Originally introduced in the field of ecology andwgian [15], it considers
a population subdivided into discrete local communities, where the infectiosntiasion dynamics
is described through standard compartmental schemes, coupled by tionaeepresenting the move-
ments of hosts. Despite the mathematical complexity of explicitly considering thialspmension and
non-trivial topologies connecting local communities, epidemic metapopulatjpmoaghes have shown
their ability to analytically explain the failure of feasible mobility restriction meas(t8s21], alert
on the possible negative impact that adaptive travel behaviour of indiladnay have on epidemic
control [22], and interpret pathogen competition in space [23].

Based on network theory and reaction-diffusion approaches, thadieshave quantified the potential
for a global epidemic to occur in terms of a mathematical indicadt@19,20], measuring the average
number of subpopulations that an infected subpopulation may transmit tlselise through mobility
of infectious individuals during the outbreak duration. Values larger thardicate that transmission
can spatially propagate in the metapopulation system and reach global dimenseaeas epidemics
with R, < 1 are contained at the source. Different mobility modes, traffic dynamicgatidchoices
have been explored so far within the metapopulation framework [19,20,2ZR4owever all these
properties have been considered at aggregated fluxes level, implicitinagsthat all individuals resi-
dent in the same location are indistinguishable and equivalent. Thereflivielirals are also considered
homogeneous in their mixing pattern.

Empirical studies of social and contact networks relevant for diseassrnission have however iden-
tified several heterogeneities in specific features at the individualoupdevel — including, e.g., the
number of contacts, their frequency and duration, contacts’ clustexgsgyrtativity, and their structure
into communities — that affect the dynamics and control of infectious dis¢é$:9,28-39]. A par-
ticularly efficient theoretical framework that takes into account variationmopulation features is the
transmission matrix approach that divides the population into groups amstdeos inter-group hetero-
geneities [40-42]. Individuals within the same group are assumed to bedgem®ous with respect to
their ability to contract and transmit the disease, and this approach camdevben variations at the
individual level are considered to be negligible within the same group. itsrddge is to allow for a
full parameterization of the model with the information available from empiricalistuand for a math-
ematical formulation for the analytical computation of important epidemic parasnterobservables,
such as the basic reproductive number (measuring the average numnskeondary cases per primary
case) [41], the final size of the epidemic [42] and its extinction probabil®y. [4

Although interactions between individuals of different types and atrdiffescales through mobility
have been included in numerical approaches, and each of them mesdpegately addressed in mathe-
matical approaches, their joint integration into a general theoretical frarkdvas yet to be developed.
A clear example of the importance of both aspects acting together on the dgnafrda epidemic
spreading through a population was recently put forward by the 2008LhbaAndemic outbreak, where
age was observed to be a relevant factor differentiating between logahanity outbreaks (mainly
driven by children) and case importation into unaffected regions (maingrdby adults) [44-46]. Bro-
ken down to the basic mechanisms at play, the observed pattern could@@eaphrough the interplay
between two classes of individuals — children and adults — having diffemeting behaviours [6,47]
and travel habits [46]. Other classifications of the population may be d=a@r for the spatial spread
of an infectious disease and the risk of an epidemic invasion, as promptee bynpirically observed
dependence of travel frequency and contact patterns on diffieaoires of the population [10,48].

In the present study, we present a general theoretical framewatkefassessment of the pandemic risk
for an infectious disease spreading through a spatially structured piopudaaracterized by contact and
mobility heterogeneities. We integrate the metapopulation framework with the trasmimsatrix ap-
proach using a parsimonious model based on the subdivision of the fopuifdo two groups for each



local community. We consider different types of mixing patterns acrosseasas provide a fundamen-
tal analytical understanding of the dependence of the global invasiamp#erR, on epidemiological
parameters and population features. By restricting to two classes, it ibleassprovide a complete
mathematical formulation of the model and recover an equatio®fdhat can be solved numerically,
with approximate analytical solutions being possible under limit conditions ondteeters. These
theoretical results are further tested against mechanistic Monte Carlo simslafithe infection dy-
namics in the metapopulation system individually tracking hosts in time and sphedramework is
completely general and can be applied to different social settings, wmbsteartition may depend on
demographic or socio-economic factors, or to roles/conditions of indilédim specific settings (e.g.
health-care workers and patients in hospitals [10], students classifigeioler or class and teachers in
schools).

Model description

The modelling approach is based on a metapopulation scheme where indidcudistributed in sub-
populations, or patches, connected by a network of mobility flows (Figurdt tan be described as
the integration of two distinct layers:smcial layer accounting for heterogeneities in the contact struc-
ture among individuals andspatial layer modelling the distribution of individuals in space and their
mobility. Epidemic dynamics occurs inside each patch and is ruled by a transmisatax approach
accounting for the different contact properties of the social classesidered. Mobility properties per
class are accounted for in the modelling of individuals movements from dish pmaanother. In the
following we present the two layers in detail, along with the models for infectiligesase transmission
and for mobility.

Figure 1 Scheme of the model. (AThe spatial layer, based on the metapopulation approach, describes
the space structure and the mobility of individuaB) The social layer describes the contact structure
within each subpopulation.

Social layer and infectious disease transmission model

We consider a population socially stratified in two types of individuals (gghupand2, differing in
contact and travel behaviour. We indicate witlthe proportion of individuals of typé (0 < a < 1),
so that group sizes are given By ; = a N; andN; > = (1 — o) N;, wherelN; is the total number of
individuals in a given subpopulatidn Interactions among groups can be described Pya2 contact
matrix encoding the average behaviour of the two groups (in the followindrae thel suffix of the
subpopulation under study to simplify our notation) [40] :

Cy Cia plafﬂ (1*1;[2)%
€= < Co1 Co > - < A-p)a  p2ge ’ 1)

11—« l—«

whereC;; stands for the contact rate of individuals of tyjpeith those of typej that can be expressed
in terms ofg;, representing the average number of contacts per unit time establishadrimivadual of
typei, andp;, representing the fraction of those contacts occurring with individualeeoame type.
g; measures the overall social activity of the graupvhereas; quantifies how this social activity is
distributed among the two groups. Asymmetry in the social activity can be squtein terms of a
parameter):
_ &

-
Interactions are reciprocal in that the number of contacts between indlgidf groupl and individuals
of group?2 is the same as the number of contacts between gzongividuals and group individuals,

Ui



requiring the matrix to be symmetric, i.€;; = C};. This corresponds to the following condition to be
satisfied:

(I-a)(I-p)n=a(l-p) =e )

where the parameter here defined quantifies the degree of mixing in the way links are established
across classes. It is defined in the rafge ¢ < min{«,n (1 — «)}, where values of close to zero
indicate assortativity of the system (i.e. a tendency of individuals in a gilass to preferably interact
with individuals of the same class), whereas the upper bound of the dasgeibes a scenario where
individuals tend to avoid making contacts within their group. Far from the edsewve have a random

or proportionatemixing where individuals distribute randomly their contacts in the population.

The matrix of Eqg. (1) can be rewritten as a functiompt ande as:

cqu( e ) 3)
(1

a(l—a)

Without loss of generality, we consider that individuals in the grb@pe on average more social than
those in group, so that the parameteris defined within thg0, 1] interval. This simplified theoretical
framework can be calibrated to describe a real social system, once eahgata on demography and
contact behaviour among given classes are available. An example in iwtictduals are stratified by
age is discussed in the Secti@pplication to the 2009 HLIN1 pandemic influen2dist of all variables
used to define the population classes is reported in Table 1.

Table 1 Population groups variables

Variable Definition Range
group 1 fraction of the
« population 10;1[

average number of contacts
established by individuals

q1, 92 ingroup 1 and 2
ratio of the average number

n==% of contacts 10:1]

q

total fraction of contacts i

€ across groups 10;ming n(1 — a))]
group 1 fraction of traveling

r population 10;1]

Disease transmission is modelled with a Susceptible-Infectious-Reco&Rxtpmpartmental scheme
[40]. Susceptible individuals may contract the infection from infectioug/iddals and enter the infec-
tious compartment; all infectious individuals then recover permanently aedthe recovered compart-
ment. We indicate with® andy the transmission rate and the recovery rate, respectively. The infection
dynamics is described by the next generation m&eix{ R;; } [41] representing the average number of
secondary infections of typegenerated by primary case of typén a completely susceptible popula-
tion. If we assume that disease transmission may only occur along the catgactied by the matrix

C= {Cj;}, then we can express the next generation matrix as a function of; jrentries:

. é . . é 0110[ 01204
R_ IuI‘ C_ 7 ( 021(1—Cv) 022(1—06) )

:5(]1(1—2 1Ea )
H é 77_1—604

(4)




where the matriX, is a diagonal matrix whose entries correspond to the relative sizes ofabpsy
The basic reproductive numbél; is calculated as the largest eigenvalue of the ma&rpd1] and it

provides a threshold condition for a local outbreak in the communiti; if> 1 the epidemic will occur
and will affect a finite fraction of the local population, otherwise the digseet die out.

If we consider an epidemic witRy > 1, the final fractiorz; of infected individuals in each group (also
called epidemic size) can be calculated for the two types of individaais1(, 2) as the solution of the
following coupled transcendental equations [49]:

1— 2= 22, (5)

Spatial layer and mobility model

The spatial component of the model is based on the metapopulation apphodieiduals are divided
into V' subpopulations, called also patches, or nodes of the mobility network. S\enasthat all sub-
populations of the system are characterised by the same social and dphiodeatures in terms of
the two groups introduced, so that the parametgrg ande are homogeneous across the system. This
assumption allows us to treat the problem analytically, however it can be eglsikgd in the numerical
simulations. Population size and connectivity of the patches are insteadderieus quantities. Each
subpopulationl has N; inhabitants and:; connections through mobility to other subpopulations (also
called degree of the node). The mobility network is characterised by amamonnectivity pattern
described by an arbitrary degree distributifk). In the following we will explore the role of realistic
heterogeneous network structures, adopting power-law degree wistnbP (k) o« k£~ that was found

to well reproduce the behaviour of human mobility patterns at differentapevels [1-3,5,7]. Traffic
along the links is also heterogeneously distributed. In particular the a/atagber of peopley,,, trav-
elling along a link from a subpopulatidnto a subpopulatiomn is defined according to the following
scaling property observed in real-world mobility data [2]:

Wim = wO(klk;n)e ) (6)

wherek; andk,,, represent the degrees of the two ending nodesfasdystem-dependent ¢ 0.5 in

the worldwide air transportation network [2]). Travellers are chosadamly in the origin subpopula-
tion, the traveling rate being simply definedd&s, = w;.,,/N;, however we need to take into account
that the two social groups have different attitudes towards mobility. We thrediurce a parameter
indicating the fraction of individuals of type 1 among thg, travellers, and express the traveling rates
of the two groups as:

ki km o
Aoy = o Rkm)” T
Y )
B wo(kikm)?  1—r
dlm,Q = (1 T) Nl72 = I—a dlm .

The full list of variables used to define the metapopulation model is provid&alte 2.



Table 2 Metapopulation model variables

Value used
in numerical
Variable Definition simulations
k degree of a subpopulation, i.e. number of connections [1; V]
to other subpopulations
P(k)=k";y subpopulation degree distribution; power-law exponent ~ =2.3,3
ViV total number of subpopulations; number of subpopula- V = 10*
tions with degreé:
_ average population of a node, population of a node;
N,N, = %; with degreek N =10*
; power-law exponent; ¢ =23/4
wo mobility scale wo = 0.05
number of travelers from a subpopulation with dedgtee
Wi = wo(kikm )?; to a subpopulation with degrég,;
0 power-law exponent 0=05

Analytical treatment and results

Identifying and understanding the conditions for the spatial invasion dffaatious disease, once it
emerges in a given population or community of individuals, requires theidemagion of all scales at
play in the system. At the local scale, the reproductive nunityeprovides a threshold condition for
the occurrence of an outbreak locally. At the global scale, howedditianal mechanisms need to be
considered that may impede the spatial propagation of the disease froeetheftshe epidemic to other
regions of the system. Even in the case the condiiign> 1 is satisfied, the epidemic may indeed fail
to spread spatially if the mobility rate is not large enough to ensure the trairdkecofed individuals to
other subpopulations before the end of the local outbreak, or if the @arnbseeding cases is not large
enough to ensure the start of an outbreak in the reached subpoputaiitiedalancing local extinction
events. It is then possible to identify at the metapopulation scale an additimali¢tor of the disease
dynamics,R,, that defines the condition for spatial (or global) invasi&,> 1 [19,20,50,51], analo-
gously to the reproductive numbegy, at the individual level. An analytical expression #Bx has been
found in metapopulation models characterized by homogeneous or heteosgmobility structures
and different types of mobility processes: markovian mobility [19,20], &dapraveling behaviour in
response to the pandemic alert [22], time varying mobility patterns [26],nmarkovian mobility with
uniform return rates (i.e. commuting-type of mobility) [24,25], or with hetenegeis length of stay at
destination [27,52]. In all cases, the analytical expressioR,0f obtained with a mean-field approxi-
mation assuming that all subpopulations with the same degree are statisticaligleougegree-block
approximation [19,20,29]. This translates in assuming that all features characteristngétapop-
ulation systems (e.g. population size, traveling flux between two subpopudatiwout traffic of a
subpopulation) can be expressed as functions of the degree of thielemu subpopulations. While
disregarding more specific properties of each subpopulation that maslated for instance to local,
geographical or cultural aspects, such assumption is grounded @edtzdy of empirical evidence ob-
tained from different transportation infrastructures and mobility systeras/atiety of scales, pointing
to a degree-dependence of average quantities characterising tha g/&@]. In addition, this simpli-
fying assumption enables an analytical treatment of the problem while agogdor the large degree
fluctuations empirically observed in the data [19,20].

Here we consider the same analytical approach adopted in previous wilkthe aim of exploring
the effects of contact and travel heterogeneities in the host populatittmeanvasion potential of an



epidemic. We first define the general theoretical framework and grésesmalytical treatment, and
then focus on different cases representing different interactiors tygveen social groups.

General framework

Following the approach of [19,20], we describe the disease invasioe authpopulation level using a
branching tree approximation [51]. The invasion process starts froimtal set of infected subpopu-
lations of degreé, denoted b;D,g’. Before the end of the local outbreak, each of them may infect some
of its neighbours, leading to a second generation of infected subpomsiafiy. We can generalise
the notation by indicating wittD; the number of infected subpopulations of degkest generatiom.

The spatial invasion of the epidemic is then described by the equation relabsgauent generations

of infected subpopulationg);! andDQfl:

n—1
Dm
Dy => Dt (K = )PkIF) [] <1 - k) :
k'’ m=0 Vk (8)
Qe (Mo 1s Merk,2) -

Here each of theD,Z*1 subpopulations ha&’ — 1) possible connections along which the infection
can proceed-{1 takes into account the link through which each of those subpopulatioesedche
infection). In order to infect a subpopulation of degfedhree conditions need to occur: (i) the con-
nections departing from nodes with degééepoint to subpopulations of degrée as indicated by the
conditional probabilityP(k|k’); (ii) the reached subpopulations are not yet infected, as indicated by
the probabilityl — D,Z‘I/Vk; (iii) the outbreak will be seeded in the new population with probability
Qprge (Ak/kyl, Ak/kg). The latter term is the one that relates the dynamics of the local infection at the
individual level to the coarse-grained view that describes the diseaasion at the metapopulation
level. It accounts for the contribution of the two classes of individualss thaluding the effects of
non-homogeneous travel behaviours and mixing patterns. The numinéectfous individuals of each
class moving from a subpopulation with degiéeo a subpopulation with degrdeduring the entire
duration of the outbreak is given by:

21 Ny 1 21 Ny
Akkr 1 = diis 1 m = 1 dpp
9
29 Ny 2 29 N/
ekt 2 = diky 2 P (1 —7)dip 0

wherez; andz, are the epidemic sizes in a single population, as computed by Eq. (5),dnd the
average time during which an individual is infectious, hence the individaalseed the disease in a
new population in case of travel. We indicate with(r) the extinction probability associated gy |
(Arir,2) infected individuals seeding a fully susceptible population. Assuming teatading processes
of the two classes are independent, the outbreak probaﬁuity(/\k/k,l, )\k/k’g) is given by

Merpa A
Qe (Mo 1s Merg,2) = 1 — " Bty 2, (10)

The extinction probabilities are determined by the contact patterns of eazbftiqividuals within the
subpopulation. Under the assumption that the infectious period is the samleHosts,r; andw, can
be obtained by solving the following quadratic equation [43,53,54]:

1
- 1 +R1i(1 — 7r1) —|—R2i(1 — 7T2)’

(11)

Uy



where the index refers to the two types of individual$ & 1,2) and R;; are the terms of the next
generation matrix of Eq. (4). If the infection is not able to produce an eatbin a single population
(Ry < 1), the only solution ist; = m = 1, that is, the epidemic dies out. Otherwise, Eq. (11)
have solutions in the domain of valués 1) for 7; and s, yielding a non zero probability of global
outbreaks. Notice that in the case the system is socially homogenous aedstlugrly one type of
individuals the two probabilities reduce 1¢ Ry.

Eqg. (8) can be simplified under the following assumptions: (i) the mobility netwsdncorrelated,
namely P(k'|k) = k' P(k")/{k) [55]; (i) few subpopulations only are infected, i. @} !/V; < 1,

a good approximation of the state of the system during the initial phase of theeak; and (iii) the
system is very close to the local epidemic threshold, Rg.— 1 <« 1. We first notice that the third
assumption implies » ~ 1 that allows the linear expansion of Eq. (10) into the following expression:

Qe Ak, Aek2) = (1 —71) A1+ (1 — m2) Agwr 2 =

(1 —m) 7+ (1= ) (1 — 1) 2] % (kY. (12)
By plugging Eq. (12) into the Eq. (8) we obtain:
Z:[(l—ﬂ'l)rzl + (1 —m2) (1 —7r) 29]
wo k:P ZD (kk) (13)

By multiplying both sides of the above equation b{(k — 1) and summing over all values &f we
obtain a recursive equation in terms of the functional tétn= >", k?(k — 1) D7 [19,20]:

O" =R, 0" (14)

where R, encodes the global invasion threshold for the epidemic to occur. Théatioon®, > 1
guarantees indeed the growth of the number of infected subpopulatiores system and therefore the
spatial spread of the epidemic. From Eg. (13) we derive the explicit form,:

R.=[(1—m)rz+(1—m)(l—r)z)] %X, (15)

wherey is a combination of moments of the degree distribution of the system encodindahaation
on mobility fluxes and topology:
- <k2+20> o <k1+29>
(k)

If we assume that the parameters characterising social interactions aeldbeaaviour are uniform
across all subpopulations, the social and spatial layers of the systeorifa. R, can be then evaluated

by computing the combination of moments and solving numerically Eqg. (5) and Eqg. (11) for the
epidemic sizes » and the probabilitiesr; » respectively. Differently from previous works focusing

on homogeneous populations of hosts, an explicit analytical solutidty @annot be recovered in the
general case, due to the, andr; » terms, however special cases can be solved through series expansion
as discussed in the following subsections.

(16)

The global invasion parametédt, quantifies the potential for the spreading at the spatial level of a
specific infectious disease in a given social, demographic and mobility settihiy @an thus be used to
provide an estimate of the pandemic risk associated to an emerging epidemicexeaple, we address

in SectionApplication to the 2009 H1N1 pandemic influerthe case of the 2009 H1N1 influenza
pandemic in Europe, highlighting the important role of age classes in deternigtagtransmission
and spatial spread of the disease.



Here we focus on a generic partition of the population into two groups apidrexthe impact of the
various ingredients of the system (social, demographic, mobility, and disegredients) on the global
invasion thresholdk,. Figure 2A shows the dependence Bf on the reproductive numbek, for
different levels of heterogeneity of the human mobility networks, as indidaggtie parametey, and
considering two boundary scenarios,= 0 andr = 1, corresponding to the cases in which only
individuals of one group (group 2 or 1, respectively ) travAl, is an increasing function ok and
assumes larger values for larger heterogeneities in the mobility network (nelles values ofy),
confirming the results obtained on socially homogenous systems [19,20¢oMErR,. assumes values
roughly 50% larger in the case= 1 with respect to the cage= 0, highlighting the role of different
travel behaviour in a partitioned population. Whemassumes its boundary values only one group is
allowed to travel, whereas the other does not move from the origin subpiopuldf » = 1, this
corresponds to let the most socially active group to travel, thus increttsngrobability to start an
outbreak at the reached subpopulation, and overall increasing tlhiempanpotential of the disease
considered. This simple result highlights the importance of the charactenisétioe passengers profile,
in that it may strongly affect the probability of global invasion.

Figure 2 Numerically computed invasion threshold parameterR.. (A) R. as a function ofR, for
two different values of the parameterruling mobility network heterogeneityy(= 2.3 and~ = 3)
and for boundary values of the traveling partitiens= 0 andr = 1. Here we consider a recovery rate
1 = 0.5, a traffic rescaling factowy = 0.05, and parameters, n ande set to 0.2, 0.5, 0.1, respectively.
(B) Heat map ofR, as a function ot andn for a« = 0.4, Ry = 1.2 andy = 2.3. We consider = 0.
The colour code is proportional to the value®f, the region of no-invasio®, < 1 being coloured in
grey.

The role of local contact structure is investigated in Figure 2B. Giverpeodeictive numbeRy > 1
ensuring the occurrence of a local outbreak in the seeding regionesuits show that there exist a
region of values of the parameter@nde for which containment at the source is predicted (grey area).
Low enough values of the social activity of group 2 vs. group 1 (meakbyn) coupled with large
enough assortativity (i.e. low enough values:pflo not provide the conditions for the spatial invasion
of the disease.

A more extensive characterisation of the global invasion threshold cabtagned for two specific
social systems for which approximate analytical expression of Eq. @®)e obtained. We discuss
these systems in the following subsections.

Proportionate mixing

We indicate withproportionate mixinghe case in which individuals are heterogenous in terms of social
activity, but distribute their contacts among the two groups in an unbiased Asguch this model
represents the simplest framework to be adopted for describing socitficition [42], in the case
heterogeneities on social activity of individuals are documented but paniition on the distribution
of across-group contacts is available [6]. The number of social ememian individual of group
makes with an individuals of groupis simply determined by the proportion of social contacts of group
j with respect to the total number of contacts made by the whole population. ®Bi@ceumber of
contacts made by groupper unit time isg; N;, proportionate mixing imposes an extra condition on the
probability p; of internal contacts:

qi N;

P N— 17
P q1 N1+ g2 No 7



This condition must be fulfilled together with the symmetry relation of Eq. (2). Botiditions trans-
late, in turn, into a relation between the parametersq, o andn:

b1 = O[D,
p2=n(l—a)D, (18)
whereD = (a+ (1 — a)n)’l. By referring to expression of the contact matrix of Eq. (3), the two
relations written in Eq. (18) yield a condition ferwhich is not in this case a free parameter but is given
by:
e=na(l—a)D. (19)

Notice that, being constrained by Eq. (19), the other two parameteasidr can now take values freely
in the rangg0, 1] without any inconsistency in the model. The contact matrix can be rewritten as:

q1 1 n >
C=-—-D . 20
¥ (n 2 (20)
FromC, we then derive the next generation matrix:
202t 05
R==—qD . 21
p P\ - - D

The calculation of the epidemic size becomes easier for the proportionate rnagegas the relation
zg = 1 — (1 — z)" is satisfied [42]. Close to the epidemic threshold, whBse~ 1 andz;» are
vanishing, we can writes ~ 1 2; + 7 (1 — 1) 22 /2 and obtain the following expression from Eq. (5):

2 (Ro—1) (a+ (1—a)n?)
Ro (Ro (o4 (1 —a)n?) = (1—a)(1=n)n?)

21~

(22)

The expressions for; cannot be obtained in a close form. Still, a series expansion provides-an ap
proximate solution for the casegs— 0 andn — 1. The details of the calculations are reported in the
Additional File 1. The first case; — 0, corresponds to a population partition in which the less active
group, group 2 in our framework, is fairly isolated and establishes w&wcbntact links. The invasion
threshold parameter can be expressed in this case as:

2(Ro — 1)% w
R*:(%Q)OX
0 H

(A Ry TR}

(23)

In the case = 0, when only individuals of the typ2 travel, the threshold®.. converges rapidly to zero
(the order being)?), implying that the epidemic remains local and no global spread is possibltheOn

other hand, if only individuals of typetravel ¢- = 1), R, approaches rapidlR” = 2(}2}(’%7;1)2 %X, that
is the expression of the homogenous case where no partition of the popusationsidered [20]. This

indicates that individuals of group 2 play a negligible role on the spreadecdidemic.

The case; — 1 represents the homogenous limit, as individuals of the two groups have sionilact
patterns, therefore the population looses its criterium for partition. Contisthe linear expansion



yields the homogeneous solutié} in addition to a linear correction ifl — 7):

2(R0*1)2 wo
R* ziix
R p
1—2a+4+r—Ry(l—r)
Ry

(24)

1+ (1-mn)

Figure 3 summarises the results of the proportionate mixing case and pribgecdsnparison between
the approximate analytical solutions and the numerical ones. Panels A drahB?s as a function of
7 for the two boundary cases= 0 andr = 1. In the case in which only individuals of group 2 travel
(r = 0), R, is very sensitive to variations im, spanning several orders of magnitudes when [0, 1].
The parameten characterises the ratio of the social activity of individuals of group 2dtig seeders
in this case) to the one of group 1, thus it determines the contacts that theduzadésseeding the
infection in a non-infected subpopulation may establish with the population tieuater. Varying its
corresponding value strongly affects the probability to observe a gtalthleak. On the other hand,
when the traveling flux consists only of individuals of groupplplays a less important role since its
variation does not affect the contact pattern of the seeding groupingeddly slight modifications on
R,.. The approximate analytical solutions of Egs. (23) and (24) (dasheg) livedl reproduce the results
obtained numerically.

Figure 3 R, for a proportionate social system. On the topR, as a function of;. Panel(A) shows
the case = 0, « = 0.4 and Ry = 1.2. Panel(B) shows the case =1, « = 0.4 andRy = 1.08. The
continuous curves represent the value as computed numerically, whilaghedicurves represent the
approximate solutions fay — 0 andn — 1. On the bottom threshold conditiaR,. = 1 in the, n
plane as obtained numerically for different values Rpr PanelsC andD consider the cases= 0 and

r = 1 respectively. For all the panels= 0.5, and the mobility network is characterisedhy= 2.3 and
wg = 0.05. The coloured regions are the one for which the invasion condRipn- 1 is satisfied. In
panel D we also report therange of value$ min (@), 1c.maz ()] for which invasion is obtained for a
given valuen.

Panels C and D of Figure 3 summarise the impact of the socio-demographingiarsa. and» on

the invasion condition for the two cases= 0 andr = 1, respectively, and for different values of
Ry. The curves represent the invasion threshold condiite(y, «) = 1, with the invasion regions
located above the curves of panel C, and to the left side of the curyeanet D. Ifr = 0, the curve
n(«) corresponding to the global invasion condition is an increasing function ioidicating that if the
fraction of individuals belonging to group 2 is increased, the smaller nebd tbe associated social
activity to reach the outbreak invasion, given that they represent gueseof the epidemic. i = 1,

the functional relationship betweenand o associated with the threshold condition displays a richer
behaviour (panel D). In the limit§ — 0 andn — 1, we recover the homogenous mixing regime
where, for the two values aR, considered in the figure, the epidemic is not able to spread globally. If
we move from these boundary values to intermediate values aftivating the social heterogeneities
of the population in the model, we observe an increasR.iruntil the invasion threshold is crossed,
and global invasion is reached. Differently from the case- 0, if » = 1, i.e. only more active
individuals (group 1) travel, the conditioR, = 1 is not an increasing fraction @f. For values of

« smaller than a critical value depending &g, the system experiences invasion for an entire range
of n values, [1¢.min (), Ne,maz ()] (Panel D). The upper value of this rangg,..., becomes larger

as the fraction of individuals in group 1 decreases, indicating that egnouip 1 is relatively smaller

(« decreasing) and less activeificreasing), its exclusive dominance on mobility is enough to ensure
invasion. Proportionate mixing is then responsible to limit invasion o7 ., («), so that no invasion

is obtained by further increasing the social activity of travelees 1 yin ().



Assortative mixing

Assortative mixing represents the case in which individuals interactnergfally within their group, as

it applies e.g. to individuals partitioned by age [6,47]. Assortativity is matheaibtidescribed by the
parametet: whene is below the value corresponding to the proportionate mixing (Eq. (19))y8ters
can be said to be assortative. In the following we consider the limit of highrassity, i.e. the limit

e — 0. We consider moreover the two limits in » — 0 andn — 1, as before. This allows us to
recover the global invasion paramefey through series expansion, as detailed in the Additional File 1.
The resulting expressions in the two limits are:

2(Ry— 1)
R*:i(o )wox<r+

R p
(25)
.2 a(l—=7)R3— (1 —a)r Ry +3(1 — a)r
a(l—a)? ’
for the limitn — 0, and
p— 2 J—
R*22(R021) @X 1_£RO 3
(26)
Ry—3
1—n)(1-

for the limitn — 1.

Figure 4 reports on the results for the assortative mixing case. PasBbwsR, as a function ok

for the two cases = 0 andr = 1 and for two different values af. As for the proportionate mixing
case, according to the type of traveling individuals two different behagiemerge. In the cage= 0
(continuous curves)R, is an increasing function af andn. The parametet quantifies the chances
of cross-group transmission. As such, its increase results in a higbealility for individuals of
group 1 to be infected by imported cases, represented in this case ealglusi individuals of group

2. Being individuals of group 1 more socially active hence more importarthiolocal spreading, an
increase ir: better ensures the occurrence of the outbreak at the local level fofjomimortation, and

is thus associated to an enhancement in the epidemic invasion potential. Onahkantti, when only
individuals of group 1 travel{ = 1, dashed lines in the figureR.(¢) is a non monotonous function.
Starting from small values of, the increase im favours the global spread (i.€2. increases) until a
given value is reached, following which a decreas&jnis observed. In this case, group 2 only acts in
the local transmission dynamics as individuals of the group do not travell(). Individuals of group 1
are therefore responsible for the spatial dissemination of the diseasdsarfdr the local transmission,
being more socially active than the group2< 1). Our results indicate that there exist an optimal value
of the across-groups mixingfor the assortative case that allows the system to maximise its pandemic
potential. A larger number of contacts established between group 1 withctetspthe optimal one
(i.e. smallere) would decrease in invasion efficiency because fewer contacts weudlitected to the
great majority of the populatiom( < 0.5), thus reducing the number of infections in the first group
due to interaction with group 2. An increasingly mixed population (i.e. larpyeould reduce the local
spreading role of individuals of class 1 and therefore their capacityeid sther subpopulations. The
optimal value of clearly depends on all other parametersd, Ry).



Figure 4 R, for an assortative social system. (A)R. as a function ok for the two cases = 0
andr = 1 and two values of), 0.3 and 0.7.(B) Absolute difference between the approximate and
the numerically computed value @, as a function ok andr for the case; — 0. The grey area
indicates the parameter region for which the model is not consigt@htAbsolute difference between
the approximate and the numerically computed valug.0és a function ot andr for the case; — 1.

In all casesy = 0.1, Ry = 1.10, . = 0.5, v = 2.3 andwy = 0.05.

In panels B and C of Figure 4 we show the comparison between the apptexamelytical solution and

the numerical one by reporting the absolute difference between thesporm@ing results. The series
expansion in Eq. (25) for the limif — 0 yields a quadratic dependence ©as the first non-constant
term, withn disappearing from the first two terms of the equation. The approximated wélil. so
obtained well approaches the numerical results for the gase0 as shown in panel B where absolute
differences are of the order of magnitude of at migst*, and relative differences of at most43% in

the displayed range. For the limjt— 1 we recover instead a linear dependence on the two parameters
e andn. Panel C of Figure 4 shows an absolute differencR.jrbelow 0.7 between the numerical value
and the approximated one, corresponding to a relative differense36%.

Proportionate vs. assortative mixing

We conclude this section with a comparison between the proportionate arsbstiréative mixing cases.
Figure 5 shows the value @, as a function of; for the two cases, proportionate and assortative with
degree of across-groups mixiag= 0.05, all the other parameters being equal. Though displaying
a qualitatively similar behaviour, the curve obtained in the proportionate mixasg dicates that
this specific contact framework favours the global invasion of an emgiligiiection with respect to
the assortative one. Moreover, there exists a range \@lues for which an epidemic spreading in
a population characterized by proportionate mixing would reach a pandeménsion, whereas the
same epidemic would be contained at its source if the population mixes assbytaiwch difference is
attributed solely to the different mixing among the two groups.

Figure 5 Comparison between proportionate and assortative séal system. R, as function ofy for
the proportionate case and the assortative oneeanithd.05. All the other parameters are kept the same
in the two curvesr =0, = 0.4, Ry = 1.2, u = 0.5, v = 2.3 andwy = 0.05.

Numerical simulations

The theoretical framework described so far is based on the combinattmmtifiuous differential equa-
tions for the transmission dynamics within each subpopulation, with mathemati¢slofocomplex
network theory for describing the spatial invasion of the epidemic. In tluisosewe validate the the-
oretical approach by presenting the comparison between the resulemedso far and the output of
stochastic numerical simulations, where all processes are simulated explibi#\system evolves fol-
lowing a stochastic microscopic dynamics where hosts are individually tleakeé at each time step
it is possible to monitor several quantities, as for example the number of infedtidividuals within
each subpopulation and for each group, or the number of subpopslatiached by the disease. Given
the stochastic nature of the dynamics, the experiment can be repeated feiterdifealisations of the
noise, different underlying graphs and different initial conditions.

The mobility network consists df = 10* subpopulations and is generated by the uncorrelated config-
uration model [56] that allows building a network with a preassigned detistdbution. In agreement
with the analytical calculations we choose a power-law degree distributigh), < £~ with exponent



~ = 2.3. Once the mobility network is constructed, a number of inhabitants is assigeadiaubpopu-
lation according to the degree of the node. Specifically, for each hedeassume a power-law relation

between the populatiofy; and its degreé;, N; = %k? where theN is the average population of

the nodes, set to0*, and(k?) = >_, k? P(k). This relation was shown to reproduce the behaviour of
empirical systems, with an estimate foof approximately3/4 [57]. Fluxes along each mobility link
also follow a power-law relation with the degrees of the connected nosldesaribed in SectioBpatial
layer and mobility modehuy,x,, = wo(kikm)? , with & = 0.5 andwy = 0.05. With this definition,
fluxes are symmetric and do not alter the occupancy number of eachmuafon, thus the system is
at equilibrium with respect to the mobility dynamics. The social layer is corsiugy dividing the
population of each node into two groups according to the paramefEne contact parametetrsandny
define then the contact matrix ruling the transmission dynamics.

The dynamics proceeds in parallel and considers discrete time stepsemting the unitary time scale
t of the process. The reaction and diffusion rates are therefore tedvato probabilities and at each
time step the system is updated by implementing the infection dynamics and the diffusicess.
Infection transmission is a binomial process that accounts for the heteridgef contacts. The force
of infection acting on an individual within the groupn the subpopulatiohis calculated by combining
the contribution of the infectious individuals belonging to the two groups witlérséime subpopulation,
namely
s

Ai = — (Cinli + Ciala), (27)
Ny

where the transmission ratecorresponding to the chosen value g is computed from the largest
eigenvalue of the next generation matrix — see Eq. (4). Recovery frerdisiease is also a binomial
process, with every infectious individual having at each time step a pildpa. to enter in the recov-
ered compartment. We s&, = 1.2 andu = 0.5. The diffusion of individuals is implemented as a
multinomial process by accounting the heterogeneities in individual traagliémcy given by Eq. (7).
Throughout this numerical exploration we always assumed that onlyiéhudils of group 2 travel, i.e.
r=0.

The epidemic is initialised by placing 5 infected individuals per each group wéthandomly chosen
subpopulation and it is simulated until the extinction of the virus is reached.friibgon of subpop-
ulations reached by the diseabg,/V provides a clear quantification of the invasion potential of the
disease. We consider the two scenarios introduced in the analytical treéath@eeproportionate mix-
ing case and the assortative one, and we provide a comparison betwemrtdbme of the numerical
simulations and the corresponding analytical results.

Panel A of Figure 6 considers the case of proportionate mixing and m®wdd exploration of the
space of parametersanda. The heat map shows the averdge,/V, computed over 5,000 stochastic
realisations for each poirii), ). The white line indicates the global invasion thresh8ld«, n) = 1

as computed by solving numerically Eq. (15), in order to allow for a compabgstwveen the analytical
results and the simulations. Notwithstanding finite-size and discrete effert&leoed in the numerical
simulation, and the several approximations used in the analytical treatmenéddalock, branching
ratio, and others), the heatmap shows a good agreement between resulsinfiulations and from the
numerical solutions of the equations describing the threshold conditiond@ygtem.



Figure 6 Comparison between numerical results and analytical estiates. (A)lnvasion behaviour

for the proportionate mixing casé)..,/V as a function ofr andn for the case: = 0. The colour code

is proportional to the average value bf,,/V as computed from3000 stochastic runs. The white line
corresponds to the global invasion threshBld«, n) = 1 computed solving numerically the analytical
equations(B) Invasion behaviour for the assortative mixing caBg,/V" as a function ot for n = 0.5

and three different values @f, 0.1, 0.15, 0.2. The coloured arrows indicate for the three cases the
critical values of for which the condition?, = 1 is satisfied, as obtained by the analytical equations.

Panel B of Figure 6 focuses on the assortative mixing case. Here we theoaverage fraction of
infected subpopulationd)..,/V, as a function of the assortative parametdor three different values

of a and forn = 0.5. All the curves present a transition between local outbreak and gloksdion in
correspondence of a critical value @fabove which the fraction of infected subpopulation becomes an
increasing function of. The increase i reduces the invasion potential of the disease. The threshold
behaviour is in agreement with the theoretical analysis (Eqg. (15)), whosshold results are reported

in the plot for comparison (coloured arrows).

Application to the 2009 H1N1 pandemic influenza

The modelling framework introduced so far can provide a prompt sceaaailysis in case of an emerg-
ing epidemic. Once estimates for the disease parameters are available, the aflethis for assessing
the invasion potential of the disease for a specific country or region iichandata on social contacts
and mobility are available. Here we provide as an example the study of thep2@@@mic of A(H1N1)
influenza in Europe and Mexico [46]. The relevant partition of the pdfmran this setting is the subdi-
vision in age classes, following the empirical evidence collected during thd piigse of the epidemic.
The analysis of early outbreak data indeed showed that the majority of daseo local transmission
in the community was among children, whereas imported cases — seeding thmiegitnon-infected
areas — were mainly adults [43,44,46]. Each age class was mainly redpdasitine of the two mech-
anisms at play in the spreading — local transmission (children), and spasahunation (adults). To
explicitly study the role of these two types of hosts on the conditions for giolation, we consider
the generic multi-host metapopulation framework introduced here with anaatiggn that is param-
eterized with demographic and contact data. We consider a children agg@gtaup 1) of individuals
below 18 years old and an adult age class (group 2) of the remainindapiopu The fractiono of
population of group 1 is obtained from UN statistics [58]. The averagé&fwope isa. = 0.197 and
other values are reported in Table 3. Contact parametandn are estimated from the contact matrices
reconstructed from the large data-collection of the Polymod project fot eauntries in Europe [6,46].
The average estimates across the eight countries-ar@.097 andn = 0.795, and additional estimates
for specific countries are reported as examples in Table 3. The Eurgfiaation is also compared to
the one of Mexico [59], seed country of the pandemic, to explore the imgdaary different social
contexts on the epidemic dynamics.

Table 3 Values of parametersa, n and e for three European countries [6], for the European
average [6,46], and for Mexico [59]

Country « n €

Germany 0.183 0.746 0.098
Netherlands 0.221 0.833 0.094
Poland 0.212 0.972 0.100
Europe 0.197 0.795 0.097

Mexico 0.320 0.323 0.063




The values presented in the table describe an assortative system, adial@astivity is heterogeneous
among the two groups, with children having on average more contacts th#s. aflir-transportation
statistics available for several airports yield an average of 7% of chilnrempancy [46], thus = 7%.
Finally we parametrize the mobility network and the distribution of traveling fluyesattingy = 2.3
andwg = 1 [2].

Epidemiological parameters were chosen among the estimates provided fdfHbB1) pandemic.
Throughout the analysis we consider an infectious period of 2.5 ddgn{Ir'three different estimates
for Ry: Ry =1.05 (corresponding to the estimate in [7] for the reproductive number riopgwduring
summer 2009)R, =1.20 (as estimated from the outbreak data in Japan [60]),/ane= 1.40 (as
estimated from the early outbreak data in Mexico [61]). We also considegreaso in which a certain
fraction of the adult population has a pre-existing immunity to the virus accauintithis way for the
serological evidence indicating that about 30 to 37% of the individuald 2960 years had an initial
degree of immunity prior to exposure [62]. We assume #3&t of individuals aged> 60 years are
immune and completely protected against HIN1 pandemic virus [46], anddbramuntry we compute
the corresponding fraction of the adult group with pre-exposure immunity.

With all the parameters being informed by the data, we address the impact epeldic socio-
demographic context on the invasion threshold by comparing three Eurameintries taken as ex-
amples (Germany, Netherlands and Poland), along with a comparisoneEuwsopgMexico. Figure 7
showsR, as a function ot for the three countries assumiiity = 1.05. We consider the case= 0

for Poland and Netherlands and we compare the two case$ andr = 7% for Germany. The het-
erogeneities induced by different valuescodndn may impact significantly the invasion behaviour, as
shown by the great discrepancy among the two curves of Germany dentdPan increase of from
0.75 to 0.97 lowers the critical value efor which invasion is reached of more than one order of mag-
nitude. Fore values in this range, the same disease could thus lead to two differentisdénasion or
containment) if emerging in two different countries (Poland or Germangerively). Given the values
of e obtained from data of the three countries (Table 3), we obtain that evewvevigHow estimates of
the reproductive number, taking into account the seasonal suppreggi@nsmission during summer
2009 [7], all countries under study are predicted to experience algpaiagation of the outbreak once
seeded, confirming the situation observed in reality.

Figure 7 R, as a function of e for the three european countries analysed. For three cases we set
r = 0. In the case of Germany we compare the case 0 with » = 0.07 as estimated by empirical
data.

The comparison between the case- 0 andr = 7% for Germany allows us to quantify the role of
children as seeders of the epidemic in new locations in a data-driven situdtiey contribute to the

increase of the invasion potential of the epidemic, thus lowering the minimum etilne across-groups
mixing for which the epidemic spatial spread is possible. The effect is sntadidmueciable.

If we consider pre-existing immunity in the older age classes, we obsewdifferences in the popula-
tion demographic profile across different regions of the world may hawoag impact in the resulting
suppression of the pandemic potential due to prior immunity. Figure 8 showsitical curvesk, = 1

in the «, € plane for Europe and Mexico. As expected, immunity reduces the paraspetes leading
to global invasion (in each panel, above each critical curve) sincectidinaof the population is now
modelled to be fully protected against the virus. For a giwem larger mixing across age classes is
needed for the pathogen to spatially propagate in a population havingigtiexg immunity; similarly,

a more assortative population would be able to contain the disease at the.dbis interesting to note
that the magnitude of this effect on the critical curve for invasion is affebtethe population profile.
The effect is indeed smaller for Mexico than for Europe, since the Maxicgulation has a smaller



percentage of population in the 60 class of age with respect to Europe and thus an overall smaller
proportion of the population who is fully protected by the pre-existing immunity.

Figure 8 Threshold condition R, = 1 for Europe and Mexico. Threshold conditionR, = 1 as

a function ofe and « for Europe (bottom curves) and Mexico (top curves): comparison @fnibr
immunity case with the case of pre-existing immunity. Here we consiftgr= 1.2 in Europe and
Ry = 1.4 in Mexico. All travellers are adults-(= 0). The two lines red and blue correspond to pre-
existing immunity and no-immunity. Global epidemic invasion region is above e#atatcurve. The
patterned grey area refers to the region of parameter values that datisty the consistency relation.

Conclusions

This study presented a general theoretical framework to accountdatifi@rent layers of heterogeneity
relevant for the propagation of epidemics in a spatially structured envinotymemely contact structure
and heterogenous travel behaviour. The model presents a strudthirevey distinct scales — a social
scale and a spatial one. Employing a subdivision into two host classestowielgpa mathematical
formulation of the model and derive a semi-analytical solution of the invagjoat®n, encoding the
conditions for the global invasion of the epidemic. The system is charastielby a very rich space
of possible solutions, depending on the demographic profile of the popyl#tie pattern of contacts
across groups and their relative social activity, the travel attitude ¢f eass, and the topological and
traffic features of the mobility network. Two qualitatively different scéosare found. The increase
of the across-group mixing and of the social activity of the less activemfelative to the more active
group) enhance the pandemic potential of the infectious disease, ifrsegdemostly found in the less
active group. Reductions of the number of contacts of individuals of gwedetive group is predicted
to be the most efficient strategy for reducing the pandemic potential. If thatageling is dominated
by the most active class, the role of the contacts ratio between the two gsouggligible for a given
population partition, whereas there exist an optimal across-groups mixhgitiximizes the pandemic
potential of the disease. Reductions or increases of this quantity withctetspthe optimal value
would decrease the probability that the epidemic, once seeded in a gigien,reould reach a global
dimension. Such findings call for the need to develop further studies tofidappropriate intervention
measures that can act on these socio-demographic aspects, depanthiegtype of partition and of
population considered. Empirical data of contact patterns, demographyeavel from eight European
countries and from Mexico, and of the 2009 H1N1 influenza pandemie weed to parametrize our
model in terms of two age classes of individuals — children and adults — aut@irexhe spatial spread
of the disease following emergence (in Mexico) and international seeidif@ope). Despite the need
to address some limitations of the model in future work (e.g. partition in more thanlasses, and
geographic dependence of population features), our approaans afflexible theoretical framework —
validated on historical epidemics — that can promptly assess the pandemitigdat€an emerging
infectious disease epidemic where a specific socio-demographic stratificatilevant in the disease
transmission among individuals.
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