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Abstract

Background

Determining the pandemic potential of an emerging infectious disease and how itdepends on the
various epidemic and population aspects is critical for the preparation of anadequate response aimed
at its control. The complex interplay between population movements in space andnon-homogeneous
mixing patterns have so far hindered the fundamental understanding of theconditions for spatial
invasion through a general theoretical framework. To address this issue, we present an analytical
modelling approach taking into account such interplay under general conditions of mobility and
interactions, in the simplifying assumption of two population classes.



Methods

We describe a spatially structured population with non-homogeneous mixing and travel behaviour
through a multi-host stochastic epidemic metapopulation model. Different population partitions,
mixing patterns and mobility structures are considered, along with a specific application for the study
of the role of age partition in the early spread of the 2009 H1N1 pandemic influenza.

Results

We provide a complete mathematical formulation of the model and derive a semi-analytical
expression of the threshold condition for global invasion of an emerging infectious disease in the
metapopulation system. A rich solution space is found that depends on the social partition of the
population, the pattern of contacts across groups and their relative social activity, the travel attitude
of each class, and the topological and traffic features of the mobility network. Reducing the activity
of the less social group and reducing the cross-group mixing are predicted to be the most efficient
strategies for controlling the pandemic potential in the case the less active group constitutes the
majority of travellers. If instead traveling is dominated by the more social class,our model predicts
the existence of an optimal across-groups mixing that maximises the pandemic potential of the
disease, whereas the impact of variations in the activity of each group is less important.

Conclusions

The proposed modelling approach introduces a theoretical framework for the study of infectious
diseases spread in a population with two layers of heterogeneity relevant for the local transmission
and the spatial propagation of the disease. It can be used for pandemic preparedness studies to
identify adequate interventions and quantitatively estimate the correspondingrequired effort, as well
as in an emerging epidemic situation to assess the pandemic potential of the pathogen from
population and early outbreak data.

Keywords

Metapopulation models, Epidemic spreading, Complex networks, Mobility, Mixingpatterns, Travel
behaviour

Background

The spatial spread of directly transmitted infectious diseases depends on the interplay between local
interactions among hosts, along which transmission can occur, and dissemination opportunities pre-
sented by the movements of hosts among different communities. The availability ofincreasingly large
and detailed datasets describing contacts, mixing patterns, distribution in space and mobility of hosts
have enabled a quantitative understanding of these two factors [1-11] and led to the development of
data-driven mechanistic models to capture the epidemic dynamics of infectious diseases [7,12-14].

Although numerical simulations have crucially contributed to our current abilityto explain observed
spatial epidemic patterns, predict future epidemic outcomes and evaluate strategies for their control,
analytical methods offer an alternative valuable avenue for the assessment of an epidemic scenario
that is able to clearly identify the key mechanisms at play and shed light on some of the complex-
ity inherent in data-driven approaches. In the context of models for spatially transmitted infectious
diseases, the metapopulation approach offers a theoretical framework that explicitly maps the spatial
distribution of host population and mobility [15-18], while offering a tractablesystem under certain



approximations [19,20]. Originally introduced in the field of ecology and evolution [15], it considers
a population subdivided into discrete local communities, where the infection transmission dynamics
is described through standard compartmental schemes, coupled by connections representing the move-
ments of hosts. Despite the mathematical complexity of explicitly considering the spatial dimension and
non-trivial topologies connecting local communities, epidemic metapopulation approaches have shown
their ability to analytically explain the failure of feasible mobility restriction measures[19-21], alert
on the possible negative impact that adaptive travel behaviour of individuals may have on epidemic
control [22], and interpret pathogen competition in space [23].

Based on network theory and reaction-diffusion approaches, these studies have quantified the potential
for a global epidemic to occur in terms of a mathematical indicator,R∗ [19,20], measuring the average
number of subpopulations that an infected subpopulation may transmit the disease to, through mobility
of infectious individuals during the outbreak duration. Values larger than1 indicate that transmission
can spatially propagate in the metapopulation system and reach global dimension, whereas epidemics
with R∗ < 1 are contained at the source. Different mobility modes, traffic dynamics andpath choices
have been explored so far within the metapopulation framework [19,20,22,24-27], however all these
properties have been considered at aggregated fluxes level, implicitly assuming that all individuals resi-
dent in the same location are indistinguishable and equivalent. Therefore individuals are also considered
homogeneous in their mixing pattern.

Empirical studies of social and contact networks relevant for disease transmission have however iden-
tified several heterogeneities in specific features at the individual or group level – including, e.g., the
number of contacts, their frequency and duration, contacts’ clustering,assortativity, and their structure
into communities – that affect the dynamics and control of infectious diseases[6,8,9,28-39]. A par-
ticularly efficient theoretical framework that takes into account variationsin population features is the
transmission matrix approach that divides the population into groups and considers inter-group hetero-
geneities [40-42]. Individuals within the same group are assumed to be homogeneous with respect to
their ability to contract and transmit the disease, and this approach can be used when variations at the
individual level are considered to be negligible within the same group. Its advantage is to allow for a
full parameterization of the model with the information available from empirical studies and for a math-
ematical formulation for the analytical computation of important epidemic parameters and observables,
such as the basic reproductive number (measuring the average number of secondary cases per primary
case) [41], the final size of the epidemic [42] and its extinction probability [43].

Although interactions between individuals of different types and at different scales through mobility
have been included in numerical approaches, and each of them has been separately addressed in mathe-
matical approaches, their joint integration into a general theoretical framework has yet to be developed.
A clear example of the importance of both aspects acting together on the dynamics of an epidemic
spreading through a population was recently put forward by the 2009 H1N1 pandemic outbreak, where
age was observed to be a relevant factor differentiating between local community outbreaks (mainly
driven by children) and case importation into unaffected regions (mainly driven by adults) [44-46]. Bro-
ken down to the basic mechanisms at play, the observed pattern could be explained through the interplay
between two classes of individuals – children and adults – having different mixing behaviours [6,47]
and travel habits [46]. Other classifications of the population may be also relevant for the spatial spread
of an infectious disease and the risk of an epidemic invasion, as prompted bythe empirically observed
dependence of travel frequency and contact patterns on differentfeatures of the population [10,48].

In the present study, we present a general theoretical framework for the assessment of the pandemic risk
for an infectious disease spreading through a spatially structured population characterized by contact and
mobility heterogeneities. We integrate the metapopulation framework with the transmission matrix ap-
proach using a parsimonious model based on the subdivision of the population into two groups for each



local community. We consider different types of mixing patterns across classes to provide a fundamen-
tal analytical understanding of the dependence of the global invasion parameterR∗ on epidemiological
parameters and population features. By restricting to two classes, it is possible to provide a complete
mathematical formulation of the model and recover an equation forR∗ that can be solved numerically,
with approximate analytical solutions being possible under limit conditions on the parameters. These
theoretical results are further tested against mechanistic Monte Carlo simulations of the infection dy-
namics in the metapopulation system individually tracking hosts in time and space. The framework is
completely general and can be applied to different social settings, wherehost partition may depend on
demographic or socio-economic factors, or to roles/conditions of individuals in specific settings (e.g.
health-care workers and patients in hospitals [10], students classified bygender or class and teachers in
schools).

Model description

The modelling approach is based on a metapopulation scheme where individualsare distributed in sub-
populations, or patches, connected by a network of mobility flows (Figure 1). It can be described as
the integration of two distinct layers: asocial layer, accounting for heterogeneities in the contact struc-
ture among individuals and aspatial layer, modelling the distribution of individuals in space and their
mobility. Epidemic dynamics occurs inside each patch and is ruled by a transmission matrix approach
accounting for the different contact properties of the social classes considered. Mobility properties per
class are accounted for in the modelling of individuals movements from one patch to another. In the
following we present the two layers in detail, along with the models for infectiousdisease transmission
and for mobility.

Figure 1 Scheme of the model. (A)The spatial layer, based on the metapopulation approach, describes
the space structure and the mobility of individuals.(B) The social layer describes the contact structure
within each subpopulation.

Social layer and infectious disease transmission model

We consider a population socially stratified in two types of individuals (groups), 1 and2, differing in
contact and travel behaviour. We indicate withα the proportion of individuals of type1 (0 < α < 1),
so that group sizes are given byNl,1 = αNl andNl,2 = (1 − α)Nl, whereNl is the total number of
individuals in a given subpopulationl. Interactions among groups can be described by a2 × 2 contact
matrix encoding the average behaviour of the two groups (in the following wedrop thel suffix of the
subpopulation under study to simplify our notation) [40] :

CCC =

(

C11 C12

C21 C22

)

=

(

p1 q1
α

(1−p2) q2
α

(1−p1) q1
1−α

p2 q2
1−α

)

, (1)

whereCij stands for the contact rate of individuals of typei with those of typej that can be expressed
in terms ofqi, representing the average number of contacts per unit time established by an individual of
type i, andpi, representing the fraction of those contacts occurring with individuals ofthe same type.
qi measures the overall social activity of the groupi, whereaspi quantifies how this social activity is
distributed among the two groups. Asymmetry in the social activity can be expressed in terms of a
parameterη:

η =
q2
q1

.

Interactions are reciprocal in that the number of contacts between individuals of group1 and individuals
of group2 is the same as the number of contacts between group2 individuals and group1 individuals,



requiring the matrix to be symmetric, i.e.Cij = Cji. This corresponds to the following condition to be
satisfied:

(1− α) (1− p2) η = α (1− p1) ≡ ε, (2)

where the parameterε here defined quantifies the degree of mixing in the way links are established
across classes. It is defined in the range0 < ε < min{α, η (1 − α)}, where values ofε close to zero
indicate assortativity of the system (i.e. a tendency of individuals in a givenclass to preferably interact
with individuals of the same class), whereas the upper bound of the rangedescribes a scenario where
individuals tend to avoid making contacts within their group. Far from the extremes we have a random
or proportionatemixing where individuals distribute randomly their contacts in the population.

The matrix of Eq. (1) can be rewritten as a function ofη, α andε as:

CCC = q1

(

α−ε
α2

ε
α (1−α)

ε
α (1−α)

η(1−α)−ε

(1−α)2

)

. (3)

Without loss of generality, we consider that individuals in the group1 are on average more social than
those in group2, so that the parameterη is defined within the[0, 1] interval. This simplified theoretical
framework can be calibrated to describe a real social system, once empirical data on demography and
contact behaviour among given classes are available. An example in whichindividuals are stratified by
age is discussed in the SectionApplication to the 2009 H1N1 pandemic influenza. A list of all variables
used to define the population classes is reported in Table 1.

Table 1 Population groups variables
Variable Definition Range

α
group 1 fraction of the
population ]0;1[

q1, q2

average number of contacts
established by individuals
in group 1 and 2

η = q2
q1

ratio of the average number
of contacts ]0;1]

ε
total fraction of contacts
across groups ]0;min(α, η(1− α))]

r
group 1 fraction of traveling
population ]0;1]

Disease transmission is modelled with a Susceptible-Infectious-Recovered (SIR) compartmental scheme
[40]. Susceptible individuals may contract the infection from infectious individuals and enter the infec-
tious compartment; all infectious individuals then recover permanently and enter the recovered compart-
ment. We indicate withβ andµ the transmission rate and the recovery rate, respectively. The infection
dynamics is described by the next generation matrixR= {Rij} [41] representing the average number of
secondary infections of typei generated by primary case of typej in a completely susceptible popula-
tion. If we assume that disease transmission may only occur along the contactsdescribed by the matrix
C= {Cij}, then we can express the next generation matrix as a function of theCij entries:

RRR =
β

µ
ΓΓΓ ·CCC =

β

µ

(

C11α C12α
C21(1− α) C22(1− α)

)

=
β q1
µ

(

1− ε
α

ε
1−α

ε
α

η − ε
1−α

)

(4)



where the matrixΓΓΓ, is a diagonal matrix whose entries correspond to the relative sizes of the groups.
The basic reproductive numberR0 is calculated as the largest eigenvalue of the matrixR [41] and it
provides a threshold condition for a local outbreak in the community; ifR0 > 1 the epidemic will occur
and will affect a finite fraction of the local population, otherwise the disease will die out.

If we consider an epidemic withR0 > 1, the final fractionzi of infected individuals in each group (also
called epidemic size) can be calculated for the two types of individuals (i = 1, 2) as the solution of the
following coupled transcendental equations [49]:

1− zi = e−
∑

j Rij zj . (5)

Spatial layer and mobility model

The spatial component of the model is based on the metapopulation approach. Individuals are divided
into V subpopulations, called also patches, or nodes of the mobility network. We assume that all sub-
populations of the system are characterised by the same social and demographic features in terms of
the two groups introduced, so that the parametersα, η andε are homogeneous across the system. This
assumption allows us to treat the problem analytically, however it can be easilyrelaxed in the numerical
simulations. Population size and connectivity of the patches are instead heterogenous quantities. Each
subpopulationl hasNl inhabitants andkl connections through mobility to other subpopulations (also
called degree of the node). The mobility network is characterised by a random connectivity pattern
described by an arbitrary degree distributionP (k). In the following we will explore the role of realistic
heterogeneous network structures, adopting power-law degree distributionsP (k) ∝ k−γ that was found
to well reproduce the behaviour of human mobility patterns at different spatial levels [1-3,5,7]. Traffic
along the links is also heterogeneously distributed. In particular the average number of peoplewlm trav-
elling along a link from a subpopulationl to a subpopulationm is defined according to the following
scaling property observed in real-world mobility data [2]:

wlm = w0(klk
′
m)θ , (6)

wherekl andkm represent the degrees of the two ending nodes, andθ is system-dependent (θ ' 0.5 in
the worldwide air transportation network [2]). Travellers are chosen randomly in the origin subpopula-
tion, the traveling rate being simply defined asdlm = wlm/Nl, however we need to take into account
that the two social groups have different attitudes towards mobility. We thus introduce a parameterr
indicating the fraction of individuals of type 1 among thewlm travellers, and express the traveling rates
of the two groups as:

dlm,1 = r
w0(kl km)θ

Nl,1
=

r

α
dlm ,

dlm,2 = (1− r)
w0(kl km)θ

Nl,2
=

1− r

1− α
dlm .

(7)

The full list of variables used to define the metapopulation model is provided inTable 2.



Table 2 Metapopulation model variables
Value used
in numerical

Variable Definition simulations
k degree of a subpopulation, i.e. number of connections

to other subpopulations
[1;

√
V ]

P (k) = k−γ ; γ subpopulation degree distribution; power-law exponent γ = 2.3, 3

V ;Vk total number of subpopulations; number of subpopula-
tions with degreek

V = 104

average population of a node, population of a node;
N̄ ,Nk = N̄kφ

〈kφ〉
; with degreek N̄ = 104

φ; power-law exponent; φ = 3/4
w0 mobility scale w0 = 0.05

number of travelers from a subpopulation with degreekl
wlm = w0(klkm)θ; to a subpopulation with degreekm;
θ power-law exponent θ = 0.5

Analytical treatment and results

Identifying and understanding the conditions for the spatial invasion of aninfectious disease, once it
emerges in a given population or community of individuals, requires the consideration of all scales at
play in the system. At the local scale, the reproductive numberR0 provides a threshold condition for
the occurrence of an outbreak locally. At the global scale, however, additional mechanisms need to be
considered that may impede the spatial propagation of the disease from the seed of the epidemic to other
regions of the system. Even in the case the conditionR0 > 1 is satisfied, the epidemic may indeed fail
to spread spatially if the mobility rate is not large enough to ensure the travel ofinfected individuals to
other subpopulations before the end of the local outbreak, or if the amount of seeding cases is not large
enough to ensure the start of an outbreak in the reached subpopulation counterbalancing local extinction
events. It is then possible to identify at the metapopulation scale an additional predictor of the disease
dynamics,R∗, that defines the condition for spatial (or global) invasion,R∗ > 1 [19,20,50,51], analo-
gously to the reproductive numberR0 at the individual level. An analytical expression forR∗ has been
found in metapopulation models characterized by homogeneous or heterogenous mobility structures
and different types of mobility processes: markovian mobility [19,20], adaptive traveling behaviour in
response to the pandemic alert [22], time varying mobility patterns [26], non-markovian mobility with
uniform return rates (i.e. commuting-type of mobility) [24,25], or with heterogeneous length of stay at
destination [27,52]. In all cases, the analytical expression ofR∗ is obtained with a mean-field approxi-
mation assuming that all subpopulations with the same degree are statistically equivalent (degree-block
approximation) [19,20,29]. This translates in assuming that all features characterising the metapop-
ulation systems (e.g. population size, traveling flux between two subpopulations, in/out traffic of a
subpopulation) can be expressed as functions of the degree of the considered subpopulations. While
disregarding more specific properties of each subpopulation that may be related for instance to local,
geographical or cultural aspects, such assumption is grounded on a large body of empirical evidence ob-
tained from different transportation infrastructures and mobility systems ata variety of scales, pointing
to a degree-dependence of average quantities characterising the system [2,20]. In addition, this simpli-
fying assumption enables an analytical treatment of the problem while accounting for the large degree
fluctuations empirically observed in the data [19,20].

Here we consider the same analytical approach adopted in previous works with the aim of exploring
the effects of contact and travel heterogeneities in the host population onthe invasion potential of an



epidemic. We first define the general theoretical framework and present its analytical treatment, and
then focus on different cases representing different interaction types between social groups.

General framework

Following the approach of [19,20], we describe the disease invasion at the subpopulation level using a
branching tree approximation [51]. The invasion process starts from aninitial set of infected subpopu-
lations of degreek, denoted byD0

k. Before the end of the local outbreak, each of them may infect some
of its neighbours, leading to a second generation of infected subpopulations,D1

k. We can generalise
the notation by indicating withDn

k the number of infected subpopulations of degreek at generationn.
The spatial invasion of the epidemic is then described by the equation relating subsequent generations
of infected subpopulations,Dn

k andDn−1
k :

Dn
k =

∑

k′

Dn−1
k′ (k′ − 1)P (k|k′)

n−1
∏

m=0

(

1− Dm
k

Vk

)

·

· Ωk′k

(

λk′k,1, λk′k,2

)

.

(8)

Here each of theDn−1
k subpopulations has(k′ − 1) possible connections along which the infection

can proceed (−1 takes into account the link through which each of those subpopulations received the
infection). In order to infect a subpopulation of degreek, three conditions need to occur: (i) the con-
nections departing from nodes with degreek′ point to subpopulations of degreek, as indicated by the
conditional probabilityP (k|k′); (ii) the reached subpopulations are not yet infected, as indicated by
the probability1 − Dn−1

k /Vk; (iii) the outbreak will be seeded in the new population with probability
Ωk′k

(

λk′k,1, λk′k,2

)

. The latter term is the one that relates the dynamics of the local infection at the
individual level to the coarse-grained view that describes the disease invasion at the metapopulation
level. It accounts for the contribution of the two classes of individuals, thus including the effects of
non-homogeneous travel behaviours and mixing patterns. The number ofinfectious individuals of each
class moving from a subpopulation with degreek′ to a subpopulation with degreek during the entire
duration of the outbreak is given by:

λkk′,1 = dkk′,1
z1Nk′,1

µ
= r dkk′

z1Nk′

µ

λkk′,2 = dkk′,2
z2Nk′,2

µ
= (1− r) dkk′

z2Nk′

µ
,

(9)

wherez1 andz2 are the epidemic sizes in a single population, as computed by Eq. (5), andµ−1 is the
average time during which an individual is infectious, hence the individualcan seed the disease in a
new population in case of travel. We indicate withπ1 (π2) the extinction probability associated toλkk′,1

(λkk′,2) infected individuals seeding a fully susceptible population. Assuming that the seeding processes
of the two classes are independent, the outbreak probabilityΩk′k

(

λk′k,1, λk′k,2

)

is given by

Ωk′k

(

λk′k,1, λk′k,2

)

= 1− π
λk′k,1

1 π
λk′k,2

2 . (10)

The extinction probabilities are determined by the contact patterns of each type of individuals within the
subpopulation. Under the assumption that the infectious period is the same forall hosts,π1 andπ2 can
be obtained by solving the following quadratic equation [43,53,54]:

πi =
1

1 +R1i(1− π1) +R2i(1− π2)
, (11)



where the indexi refers to the two types of individuals (i = 1, 2) andRij are the terms of the next
generation matrix of Eq. (4). If the infection is not able to produce an outbreak in a single population
(R0 < 1), the only solution isπ1 = π2 = 1, that is, the epidemic dies out. Otherwise, Eq. (11)
have solutions in the domain of values(0, 1) for π1 andπ2, yielding a non zero probability of global
outbreaks. Notice that in the case the system is socially homogenous and there is only one type of
individuals the two probabilities reduce to1/R0.

Eq. (8) can be simplified under the following assumptions: (i) the mobility networkis uncorrelated,
namelyP (k′|k) = k′P (k′)/〈k〉 [55]; (ii) few subpopulations only are infected, i.e.Dn−1

k /Vk � 1,
a good approximation of the state of the system during the initial phase of the outbreak; and (iii) the
system is very close to the local epidemic threshold, i.e.R0 − 1 � 1. We first notice that the third
assumption impliesπ1,2 ' 1 that allows the linear expansion of Eq. (10) into the following expression:

Ωk′k

(

λk′k,1, λk′k,2

)

' (1− π1)λkk′,1 + (1− π2)λkk′,2 =

= [(1− π1) r z1 + (1− π2) (1− r) z2]
w0

µ
(k k′)θ.

(12)

By plugging Eq. (12) into the Eq. (8) we obtain:

Dn
k = [(1− π1) r z1 + (1− π2) (1− r) z2]

w0

µ

kP (k)

〈k〉
∑

k′

Dn−1
k′ (k′ − 1) (kk′)θ.

(13)

By multiplying both sides of the above equation bykθ(k − 1) and summing over all values ofk, we
obtain a recursive equation in terms of the functional termΘn =

∑

k k
θ(k − 1)Dn

k [19,20]:

Θn = R∗Θ
n−1, (14)

whereR∗ encodes the global invasion threshold for the epidemic to occur. The condition R∗ > 1
guarantees indeed the growth of the number of infected subpopulations in the system and therefore the
spatial spread of the epidemic. From Eq. (13) we derive the explicit formfor R∗:

R∗ = [(1− π1) r z1 + (1− π2) (1− r) z2]
w0

µ
χ, (15)

whereχ is a combination of moments of the degree distribution of the system encoding the information
on mobility fluxes and topology:

χ =
〈k2+2θ〉 − 〈k1+2θ〉

〈k〉 . (16)

If we assume that the parameters characterising social interactions and travel behaviour are uniform
across all subpopulations, the social and spatial layers of the system factorize.R∗ can be then evaluated
by computing the combination of momentsχ, and solving numerically Eq. (5) and Eq. (11) for the
epidemic sizesz1,2 and the probabilitiesπ1,2 respectively. Differently from previous works focusing
on homogeneous populations of hosts, an explicit analytical solution ofR∗ cannot be recovered in the
general case, due to thez1,2 andπ1,2 terms, however special cases can be solved through series expansion
as discussed in the following subsections.

The global invasion parameterR∗ quantifies the potential for the spreading at the spatial level of a
specific infectious disease in a given social, demographic and mobility setting and it can thus be used to
provide an estimate of the pandemic risk associated to an emerging epidemic. As an example, we address
in SectionApplication to the 2009 H1N1 pandemic influenzathe case of the 2009 H1N1 influenza
pandemic in Europe, highlighting the important role of age classes in determininglocal transmission
and spatial spread of the disease.



Here we focus on a generic partition of the population into two groups and explore the impact of the
various ingredients of the system (social, demographic, mobility, and disease ingredients) on the global
invasion thresholdR∗. Figure 2A shows the dependence ofR∗ on the reproductive numberR0 for
different levels of heterogeneity of the human mobility networks, as indicatedby the parameterγ, and
considering two boundary scenarios,r = 0 and r = 1, corresponding to the cases in which only
individuals of one group (group 2 or 1, respectively ) travel.R∗ is an increasing function ofR0 and
assumes larger values for larger heterogeneities in the mobility network (i.e. smaller values ofγ),
confirming the results obtained on socially homogenous systems [19,20]. Moreover,R∗ assumes values
roughly 50% larger in the caser = 1 with respect to the caser = 0, highlighting the role of different
travel behaviour in a partitioned population. Whenr assumes its boundary values only one group is
allowed to travel, whereas the other does not move from the origin subpopulation. If r = 1, this
corresponds to let the most socially active group to travel, thus increasingthe probability to start an
outbreak at the reached subpopulation, and overall increasing the pandemic potential of the disease
considered. This simple result highlights the importance of the characterisation of the passengers profile,
in that it may strongly affect the probability of global invasion.

Figure 2 Numerically computed invasion threshold parameterR∗. (A) R∗ as a function ofR0 for
two different values of the parameterγ ruling mobility network heterogeneity (γ = 2.3 andγ = 3)
and for boundary values of the traveling partition,r = 0 andr = 1. Here we consider a recovery rate
µ = 0.5, a traffic rescaling factorw0 = 0.05, and parametersα, η andε set to 0.2, 0.5, 0.1, respectively.
(B) Heat map ofR∗ as a function ofε andη for α = 0.4, R0 = 1.2 andγ = 2.3. We considerr = 0.
The colour code is proportional to the value ofR∗, the region of no-invasionR∗ < 1 being coloured in
grey.

The role of local contact structure is investigated in Figure 2B. Given a reproductive numberR0 > 1
ensuring the occurrence of a local outbreak in the seeding region, ourresults show that there exist a
region of values of the parametersη andε for which containment at the source is predicted (grey area).
Low enough values of the social activity of group 2 vs. group 1 (measured byη) coupled with large
enough assortativity (i.e. low enough values ofε) do not provide the conditions for the spatial invasion
of the disease.

A more extensive characterisation of the global invasion threshold can beobtained for two specific
social systems for which approximate analytical expression of Eq. (15) can be obtained. We discuss
these systems in the following subsections.

Proportionate mixing

We indicate withproportionate mixingthe case in which individuals are heterogenous in terms of social
activity, but distribute their contacts among the two groups in an unbiased way. As such this model
represents the simplest framework to be adopted for describing social stratification [42], in the case
heterogeneities on social activity of individuals are documented but no information on the distribution
of across-group contacts is available [6]. The number of social encounters an individual of groupi
makes with an individuals of groupj is simply determined by the proportion of social contacts of group
j with respect to the total number of contacts made by the whole population. Sincethe number of
contacts made by groupi per unit time isqiNi, proportionate mixing imposes an extra condition on the
probabilitypi of internal contacts:

pi =
qiNi

q1N1 + q2N2
. (17)



This condition must be fulfilled together with the symmetry relation of Eq. (2). Bothconditions trans-
late, in turn, into a relation between the parametersp1, p2, α andη:

p1 = αD,

p2 = η (1− α)D, (18)

whereD = (α+ (1− α)η)−1. By referring to expression of the contact matrix of Eq. (3), the two
relations written in Eq. (18) yield a condition forε, which is not in this case a free parameter but is given
by:

ε = η α (1− α)D . (19)

Notice that, beingε constrained by Eq. (19), the other two parametersα andη can now take values freely
in the range[0, 1] without any inconsistency in the model. The contact matrix can be rewritten as:

CCC =
q1
N

D
(

1 η
η η2

)

. (20)

FromC, we then derive the next generation matrix:

R =
β

µ
q1D

(

α α η
(1− α) η (1− α) η2

)

. (21)

The calculation of the epidemic size becomes easier for the proportionate mixingcase, as the relation
z2 = 1 − (1 − z1)

η is satisfied [42]. Close to the epidemic threshold, whereR0 ' 1 andz1,2 are
vanishing, we can writez2 ≈ η z1 + η (1− η) z21/2 and obtain the following expression from Eq. (5):

z1 ≈
2 (R0 − 1)

(

α+ (1− α) η2
)

R0 (R0 (α+ (1− α) η2)− (1− α) (1− η) η2)
. (22)

The expressions forπi cannot be obtained in a close form. Still, a series expansion provides an ap-
proximate solution for the casesη → 0 andη → 1. The details of the calculations are reported in the
Additional File 1. The first case,η → 0, corresponds to a population partition in which the less active
group, group 2 in our framework, is fairly isolated and establishes very few contact links. The invasion
threshold parameter can be expressed in this case as:

R∗ '
2 (R0 − 1)2

R2
0

w0

µ
χ ·

[

r + η2 − rη2
(

1− (1− α) (R0 + 1)

αR0

)]

.

(23)

In the caser = 0, when only individuals of the type2 travel, the thresholdR∗ converges rapidly to zero
(the order beingη2), implying that the epidemic remains local and no global spread is possible. Onthe

other hand, if only individuals of type1 travel (r = 1), R∗ approaches rapidlyRh
∗ = 2(R0−1)2

R2

0

w0

µ
χ, that

is the expression of the homogenous case where no partition of the population is considered [20]. This
indicates that individuals of group 2 play a negligible role on the spread of the epidemic.

The caseη → 1 represents the homogenous limit, as individuals of the two groups have similar contact
patterns, therefore the population looses its criterium for partition. Consistently the linear expansion



yields the homogeneous solutionRh
∗ in addition to a linear correction in(1− η):

R∗ '
2 (R0 − 1)2

R2
0

w0

µ
χ ·

[

1 + (1− η)
1− 2α+ r −R0 (1− r)

R0

]

.

(24)

Figure 3 summarises the results of the proportionate mixing case and presentsthe comparison between
the approximate analytical solutions and the numerical ones. Panels A and B showR∗ as a function of
η for the two boundary casesr = 0 andr = 1. In the case in which only individuals of group 2 travel
(r = 0), R∗ is very sensitive to variations inη, spanning several orders of magnitudes whenη ∈ [0, 1].
The parameterη characterises the ratio of the social activity of individuals of group 2 (theonly seeders
in this case) to the one of group 1, thus it determines the contacts that the individuals seeding the
infection in a non-infected subpopulation may establish with the population they encounter. Varying its
corresponding value strongly affects the probability to observe a globaloutbreak. On the other hand,
when the traveling flux consists only of individuals of group 1,η plays a less important role since its
variation does not affect the contact pattern of the seeding group, yielding only slight modifications on
R∗. The approximate analytical solutions of Eqs. (23) and (24) (dashed lines) well reproduce the results
obtained numerically.

Figure 3 R∗ for a proportionate social system. On the topR∗ as a function ofη. Panel(A) shows
the caser = 0, α = 0.4 andR0 = 1.2. Panel(B) shows the caser = 1, α = 0.4 andR0 = 1.08. The
continuous curves represent the value as computed numerically, while the dashed curves represent the
approximate solutions forη → 0 andη → 1. On the bottom threshold conditionR∗ = 1 in theα, η
plane as obtained numerically for different values forR0. PanelsC andD consider the casesr = 0 and
r = 1 respectively. For all the panelsµ = 0.5, and the mobility network is characterised byγ = 2.3 and
w0 = 0.05. The coloured regions are the one for which the invasion conditionR∗ > 1 is satisfied. In
panel D we also report theη range of values[ηc,min(α), ηc,max(α)] for which invasion is obtained for a
given valueα.

Panels C and D of Figure 3 summarise the impact of the socio-demographic parametersα andη on
the invasion condition for the two casesr = 0 and r = 1, respectively, and for different values of
R0. The curves represent the invasion threshold conditionR∗(η, α) = 1, with the invasion regions
located above the curves of panel C, and to the left side of the curves ofpanel D. Ifr = 0, the curve
η(α) corresponding to the global invasion condition is an increasing function ofα, indicating that if the
fraction of individuals belonging to group 2 is increased, the smaller need tobe the associated social
activity to reach the outbreak invasion, given that they represent the seeders of the epidemic. Ifr = 1,
the functional relationship betweenη andα associated with the threshold condition displays a richer
behaviour (panel D). In the limitsη → 0 and η → 1, we recover the homogenous mixing regime
where, for the two values ofR0 considered in the figure, the epidemic is not able to spread globally. If
we move from these boundary values to intermediate values ofη, activating the social heterogeneities
of the population in the model, we observe an increase inR∗ until the invasion threshold is crossed,
and global invasion is reached. Differently from the caser = 0, if r = 1, i.e. only more active
individuals (group 1) travel, the conditionR∗ = 1 is not an increasing fraction ofα. For values of
α smaller than a critical value depending onR0, the system experiences invasion for an entire range
of η values,[ηc,min(α), ηc,max(α)] (panel D). The upper value of this range,ηc,max, becomes larger
as the fraction of individuals in group 1 decreases, indicating that even ifgroup 1 is relatively smaller
(α decreasing) and less active (η increasing), its exclusive dominance on mobility is enough to ensure
invasion. Proportionate mixing is then responsible to limit invasion toη ≥ ηc,min(α), so that no invasion
is obtained by further increasing the social activity of travelersη < ηc,min(α).



Assortative mixing

Assortative mixing represents the case in which individuals interact preferentially within their group, as
it applies e.g. to individuals partitioned by age [6,47]. Assortativity is mathematically described by the
parameterε: whenε is below the value corresponding to the proportionate mixing (Eq. (19)), the system
can be said to be assortative. In the following we consider the limit of high assortativity, i.e. the limit
ε → 0. We consider moreover the two limits inη, η → 0 andη → 1, as before. This allows us to
recover the global invasion parameterR∗ through series expansion, as detailed in the Additional File 1.
The resulting expressions in the two limits are:

R∗ '
2 (R0 − 1)2

R2
0

w0

µ
χ

(

r+

ε2
α(1− r)R2

0 − (1− α)r R0 + 3(1− α)r

α (1− α)2

)

,

(25)

for the limit η → 0, and

R∗ '
2 (R0 − 1)2

R2
0

w0

µ
χ

(

1− ε

α

R0 − 3

R0 − 1
+

(1− η)(1− r)
R0 − 3

R0 − 1

)

,

(26)

for the limit η → 1.

Figure 4 reports on the results for the assortative mixing case. PanelA showsR∗ as a function ofε
for the two casesr = 0 andr = 1 and for two different values ofη. As for the proportionate mixing
case, according to the type of traveling individuals two different behaviours emerge. In the caser = 0
(continuous curves),R∗ is an increasing function ofε andη. The parameterε quantifies the chances
of cross-group transmission. As such, its increase results in a higher probability for individuals of
group 1 to be infected by imported cases, represented in this case exclusively by individuals of group
2. Being individuals of group 1 more socially active hence more important for the local spreading, an
increase inε better ensures the occurrence of the outbreak at the local level following importation, and
is thus associated to an enhancement in the epidemic invasion potential. On the other hand, when only
individuals of group 1 travel (r = 1, dashed lines in the figure),R∗(ε) is a non monotonous function.
Starting from small values ofε, the increase inε favours the global spread (i.e.R∗ increases) until a
given value is reached, following which a decrease inR∗ is observed. In this case, group 2 only acts in
the local transmission dynamics as individuals of the group do not travel (r = 1). Individuals of group 1
are therefore responsible for the spatial dissemination of the disease andalso for the local transmission,
being more socially active than the group 2 (η < 1). Our results indicate that there exist an optimal value
of the across-groups mixingε for the assortative case that allows the system to maximise its pandemic
potential. A larger number of contacts established between group 1 with respect to the optimal one
(i.e. smallerε) would decrease in invasion efficiency because fewer contacts would be directed to the
great majority of the population (α < 0.5), thus reducing the number of infections in the first group
due to interaction with group 2. An increasingly mixed population (i.e. largerε) would reduce the local
spreading role of individuals of class 1 and therefore their capacity to seed other subpopulations. The
optimal value ofε clearly depends on all other parameters (η, α, R0).



Figure 4 R∗ for an assortative social system. (A)R∗ as a function ofε for the two casesr = 0
andr = 1 and two values ofη, 0.3 and 0.7.(B) Absolute difference between the approximate and
the numerically computed value ofR∗ as a function ofε andη for the caseη → 0. The grey area
indicates the parameter region for which the model is not consistent.(C) Absolute difference between
the approximate and the numerically computed value ofR∗ as a function ofε andη for the caseη → 1.
In all casesα = 0.1, R0 = 1.10, µ = 0.5, γ = 2.3 andw0 = 0.05.

In panels B and C of Figure 4 we show the comparison between the approximate analytical solution and
the numerical one by reporting the absolute difference between the corresponding results. The series
expansion in Eq. (25) for the limitη → 0 yields a quadratic dependence onε as the first non-constant
term, withη disappearing from the first two terms of the equation. The approximated value of R∗ so
obtained well approaches the numerical results for the caseη → 0 as shown in panel B where absolute
differences are of the order of magnitude of at most10−4, and relative differences of at most∼ 43% in
the displayed range. For the limitη → 1 we recover instead a linear dependence on the two parameters
ε andη. Panel C of Figure 4 shows an absolute difference inR∗ below 0.7 between the numerical value
and the approximated one, corresponding to a relative difference of∼ 36%.

Proportionate vs. assortative mixing

We conclude this section with a comparison between the proportionate and the assortative mixing cases.
Figure 5 shows the value ofR∗ as a function ofη for the two cases, proportionate and assortative with
degree of across-groups mixingε = 0.05, all the other parameters being equal. Though displaying
a qualitatively similar behaviour, the curve obtained in the proportionate mixing case indicates that
this specific contact framework favours the global invasion of an emerging infection with respect to
the assortative one. Moreover, there exists a range ofη values for which an epidemic spreading in
a population characterized by proportionate mixing would reach a pandemic dimension, whereas the
same epidemic would be contained at its source if the population mixes assortatively. Such difference is
attributed solely to the different mixing among the two groups.

Figure 5 Comparison between proportionate and assortative social system. R∗ as function ofη for
the proportionate case and the assortative one withε = 0.05. All the other parameters are kept the same
in the two curves:r = 0, α = 0.4, R0 = 1.2, µ = 0.5, γ = 2.3 andw0 = 0.05.

Numerical simulations

The theoretical framework described so far is based on the combination ofcontinuous differential equa-
tions for the transmission dynamics within each subpopulation, with mathematical tools of complex
network theory for describing the spatial invasion of the epidemic. In this section we validate the the-
oretical approach by presenting the comparison between the results recovered so far and the output of
stochastic numerical simulations, where all processes are simulated explicitly.The system evolves fol-
lowing a stochastic microscopic dynamics where hosts are individually tracked and at each time step
it is possible to monitor several quantities, as for example the number of infectious individuals within
each subpopulation and for each group, or the number of subpopulations reached by the disease. Given
the stochastic nature of the dynamics, the experiment can be repeated with different realisations of the
noise, different underlying graphs and different initial conditions.

The mobility network consists ofV = 104 subpopulations and is generated by the uncorrelated config-
uration model [56] that allows building a network with a preassigned degreedistribution. In agreement
with the analytical calculations we choose a power-law degree distribution,P (k) ∝ k−γ with exponent



γ = 2.3. Once the mobility network is constructed, a number of inhabitants is assigned toeach subpopu-
lation according to the degree of the node. Specifically, for each nodel, we assume a power-law relation
between the populationNl and its degreekl, Nl =

N̄
〈kφ〉

kφl , where theN̄ is the average population of

the nodes, set to104, and〈kφ〉 = ∑k k
φP (k). This relation was shown to reproduce the behaviour of

empirical systems, with an estimate forφ of approximately3/4 [57]. Fluxes along each mobility link
also follow a power-law relation with the degrees of the connected nodes, as described in SectionSpatial
layer and mobility model, wklkm = w0(klkm)θ , with θ = 0.5 andw0 = 0.05. With this definition,
fluxes are symmetric and do not alter the occupancy number of each subpopulation, thus the system is
at equilibrium with respect to the mobility dynamics. The social layer is constructed by dividing the
population of each node into two groups according to the parameterα. The contact parametersε andη
define then the contact matrix ruling the transmission dynamics.

The dynamics proceeds in parallel and considers discrete time steps representing the unitary time scale
t of the process. The reaction and diffusion rates are therefore converted into probabilities and at each
time step the system is updated by implementing the infection dynamics and the diffusion process.
Infection transmission is a binomial process that accounts for the heterogeneity of contacts. The force
of infection acting on an individual within the groupi in the subpopulationl is calculated by combining
the contribution of the infectious individuals belonging to the two groups within the same subpopulation,
namely

λi =
β

Nl

(Ci1I1 + Ci2I2) , (27)

where the transmission rateβ corresponding to the chosen value forR0 is computed from the largest
eigenvalue of the next generation matrix – see Eq. (4). Recovery from the disease is also a binomial
process, with every infectious individual having at each time step a probability µ to enter in the recov-
ered compartment. We setR0 = 1.2 andµ = 0.5. The diffusion of individuals is implemented as a
multinomial process by accounting the heterogeneities in individual travel frequency given by Eq. (7).
Throughout this numerical exploration we always assumed that only individuals of group 2 travel, i.e.
r = 0.

The epidemic is initialised by placing 5 infected individuals per each group withina randomly chosen
subpopulation and it is simulated until the extinction of the virus is reached. Thefraction of subpop-
ulations reached by the diseaseD∞/V provides a clear quantification of the invasion potential of the
disease. We consider the two scenarios introduced in the analytical treatment, the proportionate mix-
ing case and the assortative one, and we provide a comparison between the outcome of the numerical
simulations and the corresponding analytical results.

Panel A of Figure 6 considers the case of proportionate mixing and provides an exploration of the
space of parametersη andα. The heat map shows the averageD∞/V , computed over 5,000 stochastic
realisations for each point(η, α). The white line indicates the global invasion thresholdR∗(α, η) = 1
as computed by solving numerically Eq. (15), in order to allow for a comparison between the analytical
results and the simulations. Notwithstanding finite-size and discrete effects considered in the numerical
simulation, and the several approximations used in the analytical treatment (degree-block, branching
ratio, and others), the heatmap shows a good agreement between results from simulations and from the
numerical solutions of the equations describing the threshold condition for the system.



Figure 6 Comparison between numerical results and analytical estimates. (A)Invasion behaviour
for the proportionate mixing case.D∞/V as a function ofα andη for the caser = 0. The colour code
is proportional to the average value ofD∞/V as computed from5000 stochastic runs. The white line
corresponds to the global invasion thresholdR∗(α, η) = 1 computed solving numerically the analytical
equations.(B) Invasion behaviour for the assortative mixing case.D∞/V as a function ofε for η = 0.5
and three different values ofα, 0.1, 0.15, 0.2. The coloured arrows indicate for the three cases the
critical values ofε for which the conditionR∗ = 1 is satisfied, as obtained by the analytical equations.

Panel B of Figure 6 focuses on the assortative mixing case. Here we show the average fraction of
infected subpopulations,D∞/V , as a function of the assortative parameterε, for three different values
of α and forη = 0.5. All the curves present a transition between local outbreak and global invasion in
correspondence of a critical value ofε, above which the fraction of infected subpopulation becomes an
increasing function ofε. The increase inα reduces the invasion potential of the disease. The threshold
behaviour is in agreement with the theoretical analysis (Eq. (15)), whosethreshold results are reported
in the plot for comparison (coloured arrows).

Application to the 2009 H1N1 pandemic influenza

The modelling framework introduced so far can provide a prompt scenarioanalysis in case of an emerg-
ing epidemic. Once estimates for the disease parameters are available, the method allows for assessing
the invasion potential of the disease for a specific country or region for which data on social contacts
and mobility are available. Here we provide as an example the study of the 2009pandemic of A(H1N1)
influenza in Europe and Mexico [46]. The relevant partition of the population in this setting is the subdi-
vision in age classes, following the empirical evidence collected during the initial phase of the epidemic.
The analysis of early outbreak data indeed showed that the majority of cases due to local transmission
in the community was among children, whereas imported cases – seeding the epidemic in non-infected
areas – were mainly adults [43,44,46]. Each age class was mainly responsible for one of the two mech-
anisms at play in the spreading – local transmission (children), and spatial dissemination (adults). To
explicitly study the role of these two types of hosts on the conditions for globalinvasion, we consider
the generic multi-host metapopulation framework introduced here with an age partition that is param-
eterized with demographic and contact data. We consider a children age class (group 1) of individuals
below 18 years old and an adult age class (group 2) of the remaining population. The fractionα of
population of group 1 is obtained from UN statistics [58]. The average forEurope isα = 0.197 and
other values are reported in Table 3. Contact parametersε andη are estimated from the contact matrices
reconstructed from the large data-collection of the Polymod project for eight countries in Europe [6,46].
The average estimates across the eight countries areε = 0.097 andη = 0.795, and additional estimates
for specific countries are reported as examples in Table 3. The European situation is also compared to
the one of Mexico [59], seed country of the pandemic, to explore the impactof very different social
contexts on the epidemic dynamics.

Table 3 Values of parametersα, η and ε for three European countries [6], for the European
average [6,46], and for Mexico [59]
Country α η ε

Germany 0.183 0.746 0.098
Netherlands 0.221 0.833 0.094
Poland 0.212 0.972 0.100
Europe 0.197 0.795 0.097
Mexico 0.320 0.323 0.063



The values presented in the table describe an assortative system, where social activity is heterogeneous
among the two groups, with children having on average more contacts than adults. Air-transportation
statistics available for several airports yield an average of 7% of childrenoccupancy [46], thusr = 7%.
Finally we parametrize the mobility network and the distribution of traveling fluxes by settingγ = 2.3
andw0 = 1 [2].

Epidemiological parameters were chosen among the estimates provided for theA(H1N1) pandemic.
Throughout the analysis we consider an infectious period of 2.5 days [7] and three different estimates
for R0: R0 =1.05 (corresponding to the estimate in [7] for the reproductive number in Europe during
summer 2009),R0 =1.20 (as estimated from the outbreak data in Japan [60]), andR0 = 1.40 (as
estimated from the early outbreak data in Mexico [61]). We also consider a scenario in which a certain
fraction of the adult population has a pre-existing immunity to the virus accounting in this way for the
serological evidence indicating that about 30 to 37% of the individuals aged ≥ 60 years had an initial
degree of immunity prior to exposure [62]. We assume that33% of individuals aged≥ 60 years are
immune and completely protected against H1N1 pandemic virus [46], and for each country we compute
the corresponding fraction of the adult group with pre-exposure immunity.

With all the parameters being informed by the data, we address the impact of thespecific socio-
demographic context on the invasion threshold by comparing three European countries taken as ex-
amples (Germany, Netherlands and Poland), along with a comparison Europe vs. Mexico. Figure 7
showsR∗ as a function ofε for the three countries assumingR0 = 1.05. We consider the caser = 0
for Poland and Netherlands and we compare the two casesr = 0 andr = 7% for Germany. The het-
erogeneities induced by different values ofα andη may impact significantly the invasion behaviour, as
shown by the great discrepancy among the two curves of Germany and Poland: an increase ofη from
0.75 to 0.97 lowers the critical value ofε for which invasion is reached of more than one order of mag-
nitude. Forε values in this range, the same disease could thus lead to two different scenario (invasion or
containment) if emerging in two different countries (Poland or Germany, respectively). Given the values
of ε obtained from data of the three countries (Table 3), we obtain that even withvery low estimates of
the reproductive number, taking into account the seasonal suppression of transmission during summer
2009 [7], all countries under study are predicted to experience a spatial propagation of the outbreak once
seeded, confirming the situation observed in reality.

Figure 7 R∗ as a function of ε for the three european countries analysed. For three cases we set
r = 0. In the case of Germany we compare the caser = 0 with r = 0.07 as estimated by empirical
data.

The comparison between the caser = 0 andr = 7% for Germany allows us to quantify the role of
children as seeders of the epidemic in new locations in a data-driven situation. They contribute to the
increase of the invasion potential of the epidemic, thus lowering the minimum valueof the across-groups
mixing for which the epidemic spatial spread is possible. The effect is small but appreciable.

If we consider pre-existing immunity in the older age classes, we observe how differences in the popula-
tion demographic profile across different regions of the world may have astrong impact in the resulting
suppression of the pandemic potential due to prior immunity. Figure 8 shows thecritical curvesR∗ = 1
in theα, ε plane for Europe and Mexico. As expected, immunity reduces the parameterspace leading
to global invasion (in each panel, above each critical curve) since a fraction of the population is now
modelled to be fully protected against the virus. For a givenα, a larger mixing across age classes is
needed for the pathogen to spatially propagate in a population having pre-existing immunity; similarly,
a more assortative population would be able to contain the disease at the source. It is interesting to note
that the magnitude of this effect on the critical curve for invasion is affected by the population profile.
The effect is indeed smaller for Mexico than for Europe, since the Mexican population has a smaller



percentage of population in the≥ 60 class of age with respect to Europe and thus an overall smaller
proportion of the population who is fully protected by the pre-existing immunity.

Figure 8 Threshold condition R∗ = 1 for Europe and Mexico. Threshold conditionR∗ = 1 as
a function ofε andα for Europe (bottom curves) and Mexico (top curves): comparison of the no-
immunity case with the case of pre-existing immunity. Here we consider:R0 = 1.2 in Europe and
R0 = 1.4 in Mexico. All travellers are adults (r = 0). The two lines red and blue correspond to pre-
existing immunity and no-immunity. Global epidemic invasion region is above each critical curve. The
patterned grey area refers to the region of parameter values that do notsatisfy the consistency relation.

Conclusions

This study presented a general theoretical framework to account for two different layers of heterogeneity
relevant for the propagation of epidemics in a spatially structured environment, namely contact structure
and heterogenous travel behaviour. The model presents a structure with two distinct scales – a social
scale and a spatial one. Employing a subdivision into two host classes, we provide a mathematical
formulation of the model and derive a semi-analytical solution of the invasion equation, encoding the
conditions for the global invasion of the epidemic. The system is characterized by a very rich space
of possible solutions, depending on the demographic profile of the population, the pattern of contacts
across groups and their relative social activity, the travel attitude of each class, and the topological and
traffic features of the mobility network. Two qualitatively different scenarios are found. The increase
of the across-group mixing and of the social activity of the less active group (relative to the more active
group) enhance the pandemic potential of the infectious disease, if seeders are mostly found in the less
active group. Reductions of the number of contacts of individuals of the less active group is predicted
to be the most efficient strategy for reducing the pandemic potential. If instead traveling is dominated
by the most active class, the role of the contacts ratio between the two groupsis negligible for a given
population partition, whereas there exist an optimal across-groups mixing that maximizes the pandemic
potential of the disease. Reductions or increases of this quantity with respect to the optimal value
would decrease the probability that the epidemic, once seeded in a given region, would reach a global
dimension. Such findings call for the need to develop further studies to identify appropriate intervention
measures that can act on these socio-demographic aspects, dependingon the type of partition and of
population considered. Empirical data of contact patterns, demography and travel from eight European
countries and from Mexico, and of the 2009 H1N1 influenza pandemic were used to parametrize our
model in terms of two age classes of individuals – children and adults – and explain the spatial spread
of the disease following emergence (in Mexico) and international seeding (in Europe). Despite the need
to address some limitations of the model in future work (e.g. partition in more than two classes, and
geographic dependence of population features), our approach offers a flexible theoretical framework –
validated on historical epidemics – that can promptly assess the pandemic potential of an emerging
infectious disease epidemic where a specific socio-demographic stratification is relevant in the disease
transmission among individuals.
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