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Abstract

Thanks to recent technological advances, measuring real-world interactions by the use of mobile devices and wearable sensors has become

possible, allowing researchers to gather data on human social interactions in a variety of contexts with high spatial and temporal resolution.

Empirical data describing contact networks have thus acquired a high level of detail that may yield new insights into the dynamics of infection

transmission between individuals. At the same time, such data bring forth new challenges related to their statistical description and analysis,

and to their use in mathematical models. In particular, the integration of highly detailed empirical data in computational frameworks

designed to model the spread of infectious diseases raises the issue of assessing which representations of the raw data work best to inform

the models. There is an emerging need to strike a balance between simplicity and detail in order to ensure both generalizability and accuracy

of predictions. Here, we review recent work on the collection and analysis of highly detailed data on temporal networks of face-to-face

human proximity, carried out in the context of the SocioPatterns collaboration. We discuss the various levels of coarse-graining that can be

used to represent the data in order to inform models of infectious disease transmission. We also discuss several limitations of the data and

future avenues for data collection and modelling efforts in the field of infectious diseases.
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Introduction

Contact patterns among individuals play an important role in

determining the potential transmission routes of infectious

diseases. Knowledge of these patterns is thus relevant for

identifying contagion pathways, for informing models of

epidemic spread, and for the design and evaluation of control

measures, such as the targeting of specific groups of individuals

with appropriate prevention strategies or interventions (e.g.

drug prophylaxis, vaccination, hand-washing, and the use of

masks) [1–5].

Empirical descriptions of contact patterns have, until

recently, mostly relied on interviews and surveys, sometimes

on a very large scale [6–13], yielding important insights.

Surveys allow distinction between different types of contact

(e.g. involving or not involving physical contact) and classifica-

tion of the contacts according to their context (at work, at

home, at school, etc.), and have yielded information on the

mixing patterns of different age groups in various countries

[10].

However, surveys are costly and often have often a low

response [13], and the precise formulation of the question
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might influence the answers. Answers are also subject to

memory biases, which are difficult to estimate [12]. Moreover,

surveys often collect ego-networks on single days (see,

however, [12,14]), and it is then difficult to estimate some

properties of the contact networks known to be relevant for

the spread of infectious diseases, such as the number of

triangles and the fraction of repeated contacts from one day to

the next [15,16].

The use of novel technologies, in particular of networked

wearable sensors, offers appealing alternatives: Bluetooth or

Wi-Fi can be used to assess the proximity of individuals

[17,18], and even the face-to-face presence of individuals can

be resolved with high spatial and temporal resolution [19].

Here, we review recent work developed within the SocioPat-

terns collaboration (www.sociopatterns.org), where wearable

proximity sensors were used to collect large-scale datasets on

human face-to-face interactions in various contexts, including

conferences, hospitals, schools, and museums [16,19–21].

Data Collection: Method, Statistical Analysis,

and Representations

The data collection infrastructure is based on wearable

wireless devices that exchange radio packets in a peer-to-peer

fashion to monitor the location and proximity of individuals

(www.sociopatterns.org). The use of ultra-low-power radio

signals allows radio packets to be exchanged only between

devices located within 1–1.5 m of one another. Moreover,

when individuals wear the devices on their chest and the

lowest radio power is used, exchange of packets between

devices is only possible when they are facing each other, as the

human body acts as a shield at the radio frequency used. In

summary, the system detects and records close-range encoun-

ters during which a communicable disease infection could be

transmitted, e.g. by coughing, sneezing, or hand contact (Fig. 1

and [19]).

The sensing system is tuned so that the recorded data

include, for each detected contact between participants, its

start and end times, with a temporal resolution of approxi-

mately 20 s: it is thus possible to monitor the number of

contacts that each individual establishes with any other

individual, the duration of individual encounters, the cumula-

tive time spent in contact between two or more individuals,

the frequency of encounters, and how these quantities evolve

during the observation period.

The complexity of the data is revealed through statistical

analysis of the contact event durations and of the time intervals

between contacts: large variability is indeed observed in all

these quantities. The corresponding distributions, shown in

Fig. 2a, b, are broad, similarly to other characteristics of

human behaviour [22]: short durations are the most probable,

but very long durations are also observed with a non-negligible

probability, and no characteristic temporal scale emerges. For

transmissible diseases for which the transmission probability

between two individuals depends on their time in contact, this

means that different contacts might yield very different

transmission probabilities: many contacts are very short and

correspond to a small transmission probability, but some are

much longer than others, and could therefore play a crucial

role in disease dynamics. These strong duration fluctuations

constitute a robust property observed across all contexts [19–

21] and at different moments, although the amount of activity

varies significantly from case to case (Fig. 2c).

The detailed knowledge of all contact events allows the

re-creation of an artificial in silico population and hence the

simulation of potential spreading phenomena with a high

degree of realism. It is also possible to test, in simulations, the

impacts of specific interventions for mitigation and contain-

ment. Highly detailed contact data might, however, represent

(a) (b)

FIG. 1. (a) Schematic illustration of the sensing infrastructure. Radio frequency identification (RFID) devices are worn as badges by the individuals

participating in the deployments. A face-to-face contact is detected when two persons are close and facing each other. The interaction signal is then

sent to RFID readers located in the environment. (b) RFID device worn by participants.
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unnecessarily detailed information if the goal is to simply

extract stylized facts or generic statistics of contacts, which

can be used to design and validate models of human contacts

and to estimate the relevance of transmission control strat-

egies. The observed sequence of contacts might indeed be

influenced by specific aspects of the environment in which the

measure took place, and represents only one instance of many

contact sequences occurring in the same environment on

different days. It is thus useful to build contact summary

statistics, which are expected to be more robust to variations

of the specific measurement context. To this end, the

time-resolved contact data are usually aggregated along two

dimensions, as discussed below.

First, aggregation along the temporal dimension yields

cumulative contact networks preserving the information at

the individual level: such networks describe who has been in

contact with whom, and each link between two nodes is

weighted by the cumulative time spent in contact by the two

corresponding individuals. The resulting weights are highly

heterogeneous, as shown in Fig 2d): whereas most links

correspond to very short durations, some correspond to very

long contact times, with no characteristic interaction time-scale.

Similar statistics have been observed in various contexts, ranging

from scientific conferences to schools, hospitals, or offices

[3,16,19–21,23]. The heterogeneity of contact patterns at the

individual level is known to have a strong impact on spreading

dynamics [24,25]. In particular, it highlights the existence of

‘super-contactors’, i.e. individuals who account for an important

proportion of the overall contact durations and may therefore

become super-spreaders in the case of an outbreak [23,26].
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FIG. 2. Statistical properties of the contact data for several datasets (see Table 1 for the dataset characteristics). (a) Probability of observing a

contact of duration Dt vs. Dt, computed as the number of contacts of duration Dt divided by the total number of contacts. (b) Probability of observing

a time interval of a given duration between two successive contact events of a given individual, aggregated over the entire population. (c) Evolution of

the number of nodes and links in 20-s instantaneous networks during a conference. (d) Probability of observing a daily cumulated contact duration wij

between individuals i and j (i.e. number of pairs i–j with daily cumulated contact duration wij, divided by the total number of pairs of individuals who

have been in contact at least once during the day).

TABLE 1. Partial list of the datasets on face-to-face proximity collected by the SocioPatterns collaboration during 2009 and 2010

and discussed in the present article

Name Date Venue Event type No. of participants Duration

SG April–July 2009 Science Gallery, Dublin, Ireland Exhibition c. 30 000 3 months
ESWC09 June 2009 ESWC 2009, Crete, Greece Conference c. 180 4 days
SFHH June 2009 SFHH, Nice, France Conference c. 400 2 days
HT09 July 2009 ACM Hypertext 2009, Torino, Italy Conference c. 120 3 days
PS October 2009 Primary school, Lyon, France School c. 250 2 days
OBG November 2009 Bambino Gesu Hospital, Rome, Italy Hospital c. 100 10 days
HOSP December 2010 Edouard Herriot Hospital, Lyon, France Hospital c. 100 4 days
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High-resolution contact data can also be aggregated over

specific attributes of the individuals. When the population

under study is structured, i.e. when individuals can be

classified according to specific characteristics or role (e.g.

according to their age class or professional activity), a

convenient representation of their contacts is provided by

contact matrices, whose elements give the number (or

duration) of the contacts that individuals in one given class

have with individuals of another class, as illustrated in Fig. 3.

Such a representation is useful for designing interventions, as

it can suggest easily generalizable strategies that target specific

classes of individuals.

Contact matrices, however, typically report only averages,

discarding the strong fluctuations in the numbers and

durations of contacts between two individuals of given classes.

The contact matrix representation also carries the implicit

assumption that all individuals are in contact with one another:

any two individuals are assumed to be connected, with a

weight that depends only on their relative classes.

The cumulative duration of contacts between two individ-

uals, however, fluctuates strongly, even when their role classes

are fixed [21,27]: for instance, the contact duration between

nurse A and doctor B can be very different from the one

between nurse C and doctor D. Information on the the

average contact duration between nurses and doctors is thus

not sufficient. Moreover, the density of links connecting

individuals in given classes depends on the specific classes, and

is sometimes very low: many pairs of individuals never have any

contact. In order to account for these important properties,

the concept of ‘contact matrix of distributions’ (CMD) was

introduced [27]: in this representation, as in usual contact

matrices, the contact patterns between individuals depend on

their relative classes. For each pair of classes, the distribution

of cumulated contact durations is fitted to a certain functional

form (e.g. a negative binomial in order to account for its broad

character), and the matrix elements are given by the param-

eters of this fit. Therefore, the CMD representation does not

retain the specific information on who has been in contact with

whom, but it does retain both the empirical density of links and

the heterogeneity of contact durations.

Finally, each of the above representations can be computed

for the entire duration spanned by the dataset or for restricted

time windows, such as half-days or days, in order to investigate

possible variations with time of the contact statistics, net-

works, or matrices [20,23,27]. Information on temporal

variations of individuals’ contacts from one day to the next

could be included in the contact matrix data summaries, e.g. as

an additional parameter in each contact matrix entry (giving,

for example, for nurses and doctors, the average fraction of

new contacts between nurses and doctors from one day to the

next).

Using High-resolution Contact Data in Models

of Epidemic Spread

Empirical time-resolved contact data can be used to perform

data-driven simulations of epidemic spread in a population

[3,16,27]. As each dataset describes a specific population and

environment, and therefore features specificities that might

not be representative of another period or context, an issue

naturally emerges: what level of detail on the contact patterns

(a)

(b)

FIG. 3. Contact matrices giving the cumulated durations in seconds

of the contacts between classes of individuals, measured in the HOSP

and PS datasets. In the hospital case, individuals were categorized,

according to their role in the ward, as nurses, doctors, patients, and

administrative staff. In the school case, individuals were categorized

according to the classes that they were in (here, ranging from 1st to

5th grade). The matrix entry at row X and column Y gives the total

duration of all contacts between all individuals of class X with all

individuals of class Y. NUR, paramedical staff (nurses and nurses’

aides); PAT, patient; MED, medical doctor; ADM, administrative staff.
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should be incorporated into computational models of spread,

so that the relevant information is retained but the model stays

as parsimonious and generalizable as possible? In other words,

what are the most useful synopses of high-resolution contact

patterns? On the one hand, data summaries that are too

corase might disregard important properties; on the other

hand, representations that are too fine might be too specific,

and the integration of highly detailed data may yield models

that are less transparent and lead to results that are less

general in their applicability [16,27,28].

In order to shed light on these issues, we have investigated

the impact of the data representation on simulations of

epidemic spread by building a hierarchy of data representations

corresponding to different levels of aggregation. Each repre-

sentation was used to simulate the spread of an infectious

disease [16,27], and the results were compared with the

outcome of simulations based on the most detailed represen-

tation (regarded as a reference standard). This methodology

provides several insights. First, the time at which the epidemic

peaks is a robust property of the spread. It is correctly

approximated even by simulations based on coarse data

representations, at least for spreading processes that are slow

with respect to the temporal resolution of the data [16,27].

Moreover, data representations that do not take into account

the heterogeneity of contact durations lead to overestimations

of the probability of a large outbreak and the attack rate

(Fig. 4) [16,27]. Most importantly, they might lead to an

incorrect classification of the relative risks for different classes

of individuals [27]. In contrast, the representation by CMDs

allows the correct modelling of important features of epidemic

spread, and the estimation of the relative risks of individuals in

different role classes, while maintaining a parsimonious form

that retains very little information from the time-varying

contact data that it summarizes. This representation thus

provides a practical tool that translates complex properties of

the contacts within a population into practically actionable

information for guiding intervention and prevention strategies.

It represents an interesting synopsis of highly detailed contact

data that combines simplicity, compactness of representation,

and modelling power, which are essential features for guiding

decision-making in public health contexts.

Discussion

Infection control still represents one of the most important

challenges in public health. The current policies for control of

infections transmitted through person-to-person contact are

based on general assumptions that may not be applicable to all

individuals, meaning that the policies may be difficult to apply

to an entire population. Strategies driven by detailed data on

the contact patterns within populations promise to increase

efficiency and feasibility. To this end, it is crucial to identify

appropriate methods for using high-resolution data to inform

models and design prevention strategies.

The unsupervised measurement of contact patterns with

wearable sensors provides an interesting opportunity: it gives

access to the network of contacts between individuals, and

provides key information on the structure and heterogeneity

of contacts between individuals belonging to different role

classes and on the repetition of contact patterns on different

days. The collection of data in diverse contexts highlights

differences and similarities between human contacts, depend-

ing on context, and has shown the remarkable robustness of

crucial statistical features such as the distribution of cumulated

contact durations. The collected data can be used to design

models of human behaviour, inform models of epidemic

spread, and design and evaluate containment strategies in

diverse contexts such as schools and hospitals. For instance, it

is possible to evaluate, in simulations, the performance of

targeted vaccination strategies or the role of the intervention
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FIG. 4. Probability of observing a certain attack rate (fraction of the

final number of cases) for numerical simulations of a susceptible–

exposed–infected–recovered model on the OBG dataset (i.e. number

of simulations leading to a given attack rate, divided by the total

number of simulations). The different curves correspond to simula-

tions performed with different representations of the raw data. DYN,

dynamical contact network including the precise start and end time of

each contact; CM, contact matrix representation that includes only

information on the average duration of contact between individuals of

different classes (individuals are categorized here as nurses, assistants,

doctors, patients, and care-givers); CMD, contact matrix of distribu-

tions that takes into account the heterogeneity of contact durations

and the different densities of links among different categories of

individuals. Simulations performed with the CM representation lead to

an overestimation of the final number of cases.
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timing. It is also possible to envision novel intervention types,

such as changes in the daily schedule of a school or in the

organization of a hospital ward, or to estimate the relative

efficiency of school closure and targeted class closure [29].

The present methodology has some limitations. Most

datasets collected so far correspond to the contacts in

populations of relatively limited size (a few hundred individ-

uals) over a limited amount of time. No information is

collected on contacts occurring either outside the range of the

sensing system or involving individuals not wearing sensors.

Moreover, the data do not provide information on physical

contacts (unlike some surveys) or on the occurrence of events

that are known to favour transmission, such as coughing and

sneezing.

These limitations hint at future research directions. Further

data collection campaigns will be crucial to validate and

consolidate the results across other hospital units and other

contexts, and over longer periods of time. Detailed compar-

isons with surveys [13] would also constitute an important

cross-validation tool. The role of sampling of the population

should also be carefully assessed.

Additional datasets will also help in the evaluation of the use

of proxies, such as the ones put forward in [2,30], that may

replace systematic detailed measurement of contact patterns.

For example, the use of metadata on school schedules or shifts

in hospitals allows us to infer approximate co-location

properties, group structures and spatial distributions that can

be used to simulate epidemic spread and design intervention

strategies. High-resolution data from wearable sensors could

then be used as a reference standard to validate the results of

the simulations that use only proxy data.

High-resolution datasets can also be used to devise models

of human mobility and contact that can be used to generate

synthetic datasets that can be fed into models of disease

spread at various scales, helping to eventually achieve multi--

scale models that span several temporal, spatial and contact

scales.

The overlay and integration of epidemiological, microbio-

logical and genomic information with contact patterns among

individuals may also enable radical changes in the approach to

infection control. The precise measure of the contact pattern

in a population could be combined with whole genome

sequencing techniques for pathogens to investigate outbreaks.

So far, only traditional surveys have been used to investigate

social networks in these situations [31]. Combining

phylogenetic analysis of viruses with actual contact data could

provide valuable information about the transmission

mechanisms of infectious diseases, especially regarding the

role of frequency and/or duration of contacts. The inclusion

of host susceptibility characteristics (e.g. age, sex, underlying

diseases, and genetic susceptibility) in such datasets would

also enable more precise studies of infectious disease

transmission mechanisms.

Acknowledgements

This work was partially supported by the French ANR project

HarMS-flu (ANR-12-MONU-0018 to A. Barrat) and by the EU

FET project Multiplex 317532 to A. Barrat and C. Cattuto.

This study was also partially supported by the FINOVI

foundation, the INSERM IMI Pandemic programme, and GOJO.

Transparency Declaration

The authors declare no conflicts of interest.

References

1. Chowel G, Viboud C. A practical method to target individuals for

outbreak detection and control. BMC Med 2013; 11: 36.

2. Smieszek T, Salathe M. A low-cost method to assess the epidemio-

logical importance of individuals in controlling infectious disease

outbreaks. BMC Med 2013; 11: 35.

3. Salathe M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH. A

high-resolution human contact network for infectious disease trans-

mission. Proc Natl Acad Sci USA 2010; 107: 22020–22025.

4. Cauchemez S, Bhattarai A, Marchbanks TL et al. Role of social

networks in shaping disease transmission during a community outbreak

of 2009 H1N1 pandemic influenza. Proc Natl Acad Sci USA 2011; 108:

2825–2830.

5. Temime L, Opatowski L, Pannet Y, Brun-Buisson C, Boelle PY,

Guillemot D. Peripatetic health-care workers as potential supersp-

readers. Proc Natl Acad Sci USA 2009; 106: 18420–18425.

6. Read JM, Edmunds WJ, Riley S, Lessler J, Cummings DA. Close

encounters of the infectious kind: methods to measure social mixing

behaviour. Epidemiol Infect 2012; 140: 2117–2130.

7. Beutels P, Shkedy Z, Aerts M, Van Damme P. Social mixing patterns for

transmission models of close contact infections: exploring self-evalu-

ation and diary-based data collection through a web-based interface.

Epidemiol Infect 2006; 134: 1158–1166.

8. McCaw JM, Forbes K, Nathan PM et al. Comparison of three methods

for ascertainment of contact information relevant to respiratory

pathogen transmission in encounter networks. BMC Infect Dis 2010; 10:

166.

9. Mikolajczyk RT, Akmatov MK, Rastin S, Kretzschmar M. Social contacts

of school children and the transmission of respiratory-spread patho-

gens. Epidemiol Infect 2008; 136: 813–822.

10. Mossong J, Hens N, Jit M et al. Social contacts and mixing patterns

relevant to the spread of infectious diseases. PLoS Med 2008; 5: e74.

11. Zagheni E, Billari FC, Manfredi P, Melegaro A, Mossong J, Edmunds

WJ.Using time-use data to parameterize models for the spread of

close-contact infectious diseases. Am J Epidemiol 2008; 168: 1082–1090.

12. Smieszek T, Burri EU, Scherzinger R, Scholz RW. Collecting close-con-

tact social mixing data with contact diaries: reporting errors and biases.

Epidemiol Infect 2012; 140: 744–752.

ª2013 The Authors

Clinical Microbiology and Infection ª2013 European Society of Clinical Microbiology and Infectious Diseases, CMI, 20, 10–16

CMI Barrat et al. Measuring contact patterns 15



13. Danon L, Read JM, House TA, Vernon MC, Keeling MJ. Social

encounter networks: characterizing Great Britain. Proc R Soc B 2013;

280: 20131037.

14. Read JM, Eames KT, Edmunds WJ. Dynamic social networks and the

implications for the spread of infectious disease. J R Soc Interface 2008;

5: 1001–1007.

15. Smieszek T, Fiebig L, Scholz RW. Models of epidemics: when contact

repetition and clustering should be included. Theor Biol Med Model

2009; 6: 11.

16. Stehl�e J, Voirin N, Barrat A et al. Simulation of an SEIR infectious

disease model on the dynamic contact network of conference

attendees. BMC Med 2011; 9: 87.

17. O’Neill E, Kostakos V, Kindberg T et al. Instrumenting the city:

developing methods for observing and understanding the digital

cityscape. Lect Notes Comput Sci (2006)4206: 315–332.

18. Pentland A. Honest signals: how they shape our world. Cambridge, MA:

MIT Press, 2008.

19. Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF,

Vespignani A. Dynamics of person-to-person interactions from

distributed RFID sensor networks. PLoS One 2010; 5: e11596.

20. Stehl�e J, Voirin N, Barrat A et al. High-resolution measurements of

face-to-face contact patterns in a primary school. PLoS One 2011; 6:

e23176.

21. Isella L, Romano M, Barrat A et al. Close encounters in a pediatric

ward: measuring face-to-face proximity and mixing patterns with

wearable sensors. PLoS One 2011; 6: e17144.

22. Barabasi A-L. Bursts: the hidden pattern behind everything we do.

Dutton Adult. (2010)

23. Vanhems P, Barrat A, Cattuto C et al. Estimating potential infection

transmission routes in hospital wards using wearable proximity

sensors. PLoS One 2013; 8: 73970.

24. Anderson RM, May RM. Infectious diseases of humans: dynamics and

control. Oxford: Oxford University Press, 1992.

25. Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free

networks. Phys Rev Lett 2001; 86: 3200–3203.

26. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and

the effect of individual variation on disease emergence. Nature 2005;

438: 355–359.

27. Machens A, Gesualdo F, Rizzo C, Tozzi AE, Barrat A, Cattuto C. An

infectious disease model on empirical networks of human contact:

bridging the gap between dynamic network data and contact matrices.

BMC Infect Dis 2013; 13: 185.

28. Blower S, Go MH. The importance of including dynamic social

networks when modeling epidemics of airborne infections: does

increasing complexity increase accuracy? BMC Med 2011; 9: 88.

29. Gemmetto V, Barrat A, Cattuto C Mitigation of infectious diseases at

school: targeted class closures vs school closures, to be submit-

ted.(2013)

30. Curtis DE, Hlady C, Pemmaraju SV, Polgreen P, Segre AM Modeling

and estimating the spatial distribution of healthcare workers. Proceed-

ings of the 1st ACM International Health Informatics Symposium IHI’(2010)

10: 287–296.

31. Gardy JL, Johnston JC, Ho Sui SJ et al. Whole-genome sequencing and

social-network analysis of a tuberculosis outbreak. N Engl J Med 2011;

364: 730–739.

ª2013 The Authors

Clinical Microbiology and Infection ª2013 European Society of Clinical Microbiology and Infectious Diseases, CMI, 20, 10–16

16 Clinical Microbiology and Infection, Volume 20 Number 1, January 2014 CMI


