
Maxmin-Fair Ranking: Individual Fairness under
Group-Fairness Constraints

David García-Soriano

ISI Foundation, Turin, Italy

d.garcia.soriano@isi.it

Francesco Bonchi

ISI Foundation, Turin, Italy

Eurecat, Barcelona, Spain

francesco.bonchi@isi.it

ABSTRACT
We study a novel problem of fairness in ranking aimed at mini-

mizing the amount of individual unfairness introduced when en-

forcing group-fairness constraints. Our proposal is rooted in the

distributional maxmin fairness theory, which uses randomization

to maximize the expected satisfaction of the worst-off individuals.

We devise an exact polynomial-time algorithm to find maxmin-fair

distributions of general search problems (including, but not limited

to, ranking), and show that our algorithm can produce rankings

which, while satisfying the given group-fairness constraints, ensure

that the maximum possible value is brought to individuals.
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1 INTRODUCTION
As the position in a ranking influences to a great extent the amount

of attention that an item receives, biases in ranking can lead to un-

fair distribution of exposure, thus producing substantial economic

impact. If this is important when ranking items (e.g., web pages,

movies, hotels, books), it raises even more crucial concerns when

ranking people. In fact, ranking is at the core of many decision-

making processes in spheres such as health (e.g., triage in pandemic),

education (e.g., university admission), or employment (e.g., selec-

tion for a job), which can have a direct tangible impact on people’s

life. These concerns have captured the attention of researchers,

which have thus started devising ranking systems which are fair
for the items being ranked [3, 7, 13, 26, 30, 31, 34].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467349

The bulk of the algorithmic fairness literature deals with group
fairness along the lines of demographic parity [9] or equal oppor-
tunity [16]: this is typically expressed by means of some fairness

constraint requiring that the top-k positions (for any k) in the rank-

ing contain enough elements from some groups that are protected

from discrimination based on sex, race, age, etc. In fact, [6] shows

that in a certain model, group-fairness constraints can eliminate the
bias implicit in the ranking scores. Besides, some legal norms en-

force these constraints [1, 2]. For these reasons we will consider a

ranking valid if it satisfies a given set of group-fairness constraints

of this type, as detailed in Section 3.

More formally, consider a set of elements (items or individuals) to

be rankedU = {u1, . . . ,un }, a partition ofU into groups defined

by some protected attributes, and a relevance score R : U → R≥0

for each element. For instance, U could be the result of a query

while R represents the relevance of each item for the query, orU

could be the set of applicants for a job while R their fitness for the

job. Let R denote all possible rankings ofU (bijections fromU to

[n]), where r (u) ∈ [n] denotes the position of elementu in a ranking

r ∈ R and let S ⊆ R denote the subset of valid rankings satisfying

the agreed-upon constraints. LetW (r ,u) denote the utility that

placing u at position r (u) brings to the overall ranking: this is

typically a function of the relevance score R, so that having higher

relevance elements at top positions is rewarded. In other words,

W is such that, if r∗ denotes the ranking by decreasing R, then
r∗ is also the ranking maximizing the total utility (the so-called

Probability Ranking Principle [24] in Information Retrieval). As

the maximum-utility ranking r∗ might not satisfy the given group-

fairness constraint, the problem typically addressed in the literature

is to find a valid ranking which maximizes the global utility, i.e.,

r̃ ∈ argmax
r ∈S

∑
u ∈U

W (r ,u). (1)

Table 1: Example instance. Top row: identifiers and pro-
tected attribute (gender). Bottom row: relevance score R.

u1,� u2,� u3, � u4,� u5,� u6, � u7, � u8, �

0.97 0.93 0.89 0.81 0.73 0.72 0.64 0.62

Example 1. Consider the case described in Table 1 and suppose
that the group-fairness constraint requires to have at least ⌊k/2⌋
individuals of each gender in the top-k positions starting from k ≥ 3.

The ranking by decreasing relevance r∗ = ⟨u1,u2, . . . ,u8⟩ is not
a valid ranking in this case, as � is underrepresented in the top-k
positions for k = 4, 5, 6. A valid ranking which is as close as possible
to r∗ would be r ′ = ⟨u1,u2,u3,u6,u4,u7,u5,u8⟩.
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This approach stems from an information retrieval standpoint:

the set of items to be ranked is the result of a query, and as long as

the given group-fairness constraint is satisfied, it suffices for the

application at hand to maximize the global utility. While at first

sight this setting might seem adequate to rank people, maximizing

global utility provides no guarantee to individuals, who care little

about global utility. In Example 1, individuals u4 and u5 have been

uniquely penalized from a meritocratic fairness point of view: They
may accept the group-fairness constraints and agree with the fact

that the produced ranking r is as close as possible to r∗, but never-
theless feel discriminated against, for being the only ones in a worse

position in r than in r∗ despite other solutions being possible. For
example, ⟨u4,u1,u3,u6,u2,u7,u5,u8⟩ is valid and more favourable

to u4. In other words, while the use of group-fairness constraints

is often desirable and may be required by law, certain individuals

in a such a valid ranking might feel unfairly penalized, even when

comparing only to individuals within the same group. As soon as a

group-fairness constraint is enforced in ranking problems, some

individual-level unfairness is inevitably introduced
1
.

In this paper we study the problem of minimizing the amount
of individual unfairness introduced when enforcing a group-fairness
constraint. While much of the literature for ranking attempts to

maximize global utility, global quality metrics generally fail to ade-

quately capture the treatment of individuals. Thus, differently from

the literature which tries to maximize the global utility, we adopt

Rawls’s theory of justice [23], which advocates arranging social

and financial inequalities to the benefit of the worst-off. Following

this precept, a natural task is to find a ranking that, while satis-

fying the group-fairness constraint, maximizes the utility of the

least-advantaged individual:

r ′ ∈ argmax
r ∈S

min
u ∈U

V (r ,u). (2)

Here V (r ,u) represents the value (utility) that placing u at position

r (u) brings to the individual u, relative to u’s quality R(u).
In Section 5 we provide an exact optimal solution for (2). This,

however, is not the main focus of our paper. In fact, we can improve

individual treatment even further through randomization.
Randomization for individual fairness.We next show how, by

means of randomization, we can improve individual treatment over

the best deterministic solution of (2). In particular, we show that

there exists a probability distribution over valid rankings, where the
minimum expected value that any individual gets is higher than is

possible with any single ranking.

Example 2. Consider the value functionV (r ,u) = r∗(u)−r (u), i.e.,
the difference between the meritocratic ranking by relevance and the
ranking produced. This is positive for individuals who are in a better
(lower-ranked) position in r w.r.t. r∗ and negative for others. It is easy
to see that the ranking r ′ in Example 1 maximizes the minimum value
of V (r ,u): in fact in order to have 3 � in the first 6 positions, some �
has to give up at least 2 positions w.r.t. r∗.

Even when optimizing for (2), individual u5 in Example 2 might

have concerns for being the one receiving the largest part of the

burden of satisfying the group-fairness constraint. The only way

1
This situation resembles some cases in fair classification in which enforcing statistical

parity constraints cause a form of unfairness from an individual viewpoint [9].

to improve on this situation is to introduce randomization into

the process. This means producing a probability distribution over

possible valid rankings instead of a single deterministic ranking.

Example 3. Consider the same instance of Example 1. The follow-
ing distribution over four rankings r1−4 maximizes the minimum
expected value of V (r ,u) = r∗(u) − r (u) among all individuals inU:

Pr(⟨u1,u4,u3,u7,u2,u6,u5,u8⟩) = 1/4
Pr(⟨u2,u1,u3,u6,u4,u8,u7,u5⟩) = 1/2
Pr(⟨u2,u1,u3,u7,u5,u6,u4,u8⟩) = 1/16
Pr(⟨u5,u1,u3,u7,u2,u6,u4,u8⟩) = 3/16

It is easy to check that, under this distribution, everyone has
expected value at least −0.75 (which is achieved by the four �),
while under the best deterministic solution (Example 2) we had
V (r ,u5) = −2 < −0.75.

While in Example 2 the burden required for ensuring the group-

fairness constraint was all on u4 and u5, in Example 3 it has been

equally distributed among the four �. Notice that all four rank-

ings in the distribution above satisfy the group-fairness constraint

in Example 1. However, by combining these four rankings prob-

abilistically, we have succeeded in achieving a higher minimum

expected value than is possible via any single deterministic ranking.

In fact, we have also minimized the disparity in the expected value

that each individual receives: whereas requiring all expected val-

ues to be the same is not mathematically possible when satisfying

group constraints, the solution above comes as close as possible

by minimizing the maximum gap. A complete problem definition

formalizing these ideas is given in Section 3.

Implications and practical deployment. In order to guarantee

the maximum possible value is brought to each individual, in this

paper we embrace randomization and produce a probability dis-

tribution over possible valid rankings. This distributional fairness

approach is very well suited for a search context in which the same

query can be served many times for different users of a platform

(e.g., headhunters searching for a specific type of professional on

a career-oriented social networking platform such as LinkedIn or

XING). Notice also that amortized fairness in the sense of [4, 26] is

an immediate application of this distributional approach: if there

are several rankings to be made, we can draw them independently

from a fair distribution of rankings, so that the empirical properties

of the sample approach those of the fair distribution.

However, the usefulness of randomization extends to settings

with a single, non-repeated trial (as in, e.g., university admissions).

In this case it is an essential tool to secure “ex-ante” (procedural)

individual fairness, i.e., fairness of the procedure by which the

outcome is selected, as opposed to “ex-post” fairness, which is

based on the final outcome alone (see, e.g., [5]).

Regarding implementation and transparency issues, notice that

instead of treating the algorithm as a black box outputting a single

ranking, one can make the entire distribution public. For instance,

we can publish the distribution described in in Example 3 above,

letting all the individuals verify the expected value, as well as the

fact that this distribution is optimal under the maxmin-fair cri-

terion (see Section 3). Then one of the four rankings r1−4 can be

picked at random, via any fair and transparent lotterymechanism or

coin-tossing protocol. Moreover, our algorithms guarantee that the
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optimal distribution found is supported on a small (polynomial-size)

set of rankings, even if the space of all valid rankings is exponential.

Paper contributions and roadmap. In the rest of this paper, fol-

lowing the randomized maxmin-fairness framework [12], we study

how to efficiently and accurately compute this type of distribu-

tions over the rankings satisfying a given set of group-fairness

constraints. We achieve the following contributions:

• We introduce the distributional maxmin-fair ranking frame-

work and provide the formal problem statement (Section 3.1).

We show that maxmin-fair ranking distribution maintains

within-group meritocracy and, in certain cases, it has the de-

sirable properties of being generalized Lorenz-dominant, and

minimizing social inequality (Section 3.2).

• Our main result is an exact polynomial-time algorithm to

find maxmin-fair distributions of many problems, including

ranking (Section 4). A quicker method to find maxmin-fair

distributions approximately is explained in Appendix A.4.

• We also provide an exact optimal solution (Section 5) for the

deterministic version of the problem as in (2). This is achieved

by a means of a variant of Celis et al. [7]. We use this as a

baseline allowing us to quantify the advantage of probabilistic

rankings over the optimal deterministic ranking.

• Our experiments on two real-world datasets confirm empiri-

cally the advantage of probabilistic rankings over deterministic

rankings in terms of minimizing the inequality for the worst-

off individuals (Section 6).

To the best of our knowledge, this is the first work studying

the problem of minimizing the amount of individual unfairness

introduced when enforcing group-fairness constraints in ranking.

A major contribution is showing how randomization can be a key

tool in reconciling individual and group fairness: we believe that

this might hold for other problems, besides ranking.

2 RELATEDWORK
There are some works on algorithmic fairness focused on individ-

ual fairness, but none of them considers them in conjunction with

group fairness. Dwork et al [9] introduce a notion of individual

fairness in classification problems. Roughly speaking, their defini-

tion requires that all pairs of similar individuals should be treated

similarly. This is impossible to satisfy with a deterministic classifier

so, similarly to ours, their definition of fairness requires random-

ized algorithms. The individual similarity metric is assumed given,

while they base their notion of ’similar treatment’ on the difference

between the probabilities of a favourable classification. Kearns et al.

[19] introduce the notion ofmeritocratic fairness in the context of se-
lecting a group of individuals from incomparable populations (with

no group-fairness constraint). Their notion intuitively requires that

less qualified candidates do not have a higher chance of getting

selected than more qualified ones. Another work focusing on indi-

vidual fairness is that of Biega et al. [4], which aims at achieving

equity-of-attention fairness amortized across many rankings, by

requiring that exposure be proportional to relevance.

Our previous work [12] presents a very general framework

to deal with individual fairness, based on randomized maxmin-

fairness: the idea is to use a distribution of solutions in order to

maximize the expected value for the worst-off individual. In par-

ticular, [12] analyzes the case of unweighted matching with no

group-fairness constraint: presents efficient algorithms and shows

that these maxmin-fair matching distributions minimize inequality.

While the techniques from [12] are combinatorial and can only deal

with unrestricted matchings, we greatly generalize the algorithmic

results therein via convex optimization techniques, showing that

for a wide class of problems (including weighted matching and

ranking with constraints), a maxmin-fair distribution may be found

in polynomial time; we only require the existence of a weighted
optimization oracle (see Section 4).

The bulk of recent literature on fairness in ranking [3, 7, 13,

26, 30, 31, 34] and learning-to-rank [10, 21, 27] deals with group

fairness. Singh and Joachims [26] propose an algorithm computing

a fair probabilistic ranking maximizing expected global utility. The

fairness constraints expressible in their framework apply to the

ranking distribution and not to each single ranking, as required by

the group-fairness constraints we use. Celis et al. [7] also investi-

gate fair ranking with group-fairness constraints with an objective

function of the form (1), assuming the valuesW (r ,u) satisfy the

Monge condition. They give a polynomial-time algorithm for dis-

joint protected groups, and a faster greedy algorithm that works

when only upper bound constraints are given. When the protected

groups are allowed to overlap the problem becomes NP-hard and

a polynomial-time approximation algorithm is provided in [7].

3 MAXMIN-FAIR RANKING
We are given a set of n individuals to be rankedU, a partition ofU

into groups C1, . . . ,Ct , and a relevance function R : U → R. For
the sake of simplicity we assume that ties are broken so that all R(u)
are distinct. Moreover, we are given group-fairness constraints as

in [7], defined by setting, for each i ∈ [n] and k ∈ [t], a lower bound

lki ∈ N and an upper bound uki ∈ N on the number of individuals

from class k in the first i positions. We denote by R the set of all

possible rankings ofU (bijections fromU to [n]), and by S ⊆ R

the set of all valid rankings:

S =
{
r ∈ R | lki ≤ |{u ∈ Ck | r (u) ≤ i}| ≤ uki ∀i ∈ [n],k ∈ [t]

}
.

(3)

Finally, we consider a value function V : S × U → R such that

V (r ,u) represents the value (utility) that placing u at position r (u)
brings to the individual u, relative to u’s quality R(u). As we are
interested in modeling meritocratic fairness, our value function

must take into consideration the input relevance score R(u) and the
produced ranking r (u). We consider value functions of the form:

V (r ,u) = f (r (u)) − д(u), (4)

where f : [n] → R is a decreasing function and д : U → R is

increasing in R(u).
The intuition is the following: suppose that being assigned at

position i carries intrinsic utility f (i), whileu’s merit for the ranking

problem is д(u) (which may depend on u and hence also on R(u));
then V (r ,u) measures the net difference between f (r (u)) and д(u),
i.e., how much u has gained in r w.r.t. u’s actual merit. In typical

applications we can take any decreasing function p : [n] → R≥0

encoding position bias or exposure (see [8] for common models)

and set f = p and д = p ◦ r∗. As simple examples, by setting
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p(i) = n − i and p(i) = log(n/i), we can get V (r ,u) = r∗(u) − r (u)

and V (r ,u) = log(
r ∗(u)
r (u) ). When the ranking is a selection process

where k ∈ N individuals are selected and there is no advantage to

being ranked first over kth as long as one is selected, we may use

V (r ,u) =


1, if r∗(u) > k and r (u) ≤ k

−1, if r∗(u) ≤ k and r (u) > k

0, otherwise.

These are but a few examples. Determining which value functionV
is best from a psychological or economical standpoint is beyond the

scope of this work. Insteadwe takeV as given and design algorithms

which can efficiently deal with any function of the form (4).

3.1 Maxmin-fairness framework
Consider an input instance T of a general search problem which

defines implicitly a set S = S(T ) of feasible solutions, assumed to

be finite and non-empty. LetU denote a finite set of individuals and

let us associate with each solution S ∈ S and each individualu ∈ U
a real-valued satisfaction A(S,u) ∈ R (which in [12] takes binary

values). Consider a randomized algorithm A that, for any given

problem instance T , always halts and selects a solution A(T ) ∈ S.

Then A induces a probability distribution D over S: PrD [S] =
Pr[A(T ) = S] ∀S ∈ S. Denote the expected satisfaction of each

u ∈ U under D by D[u] , ES∼D [A(S,u)]. A distribution F over S

ismaxmin-fair for (U,A) if it is impossible to improve the expected

satisfaction of any individual without decreasing it for some other

individual which is no better off, i.e., if for all distributions D over

S and all u ∈ U,

D[u] > F [u] =⇒ ∃v ∈ U | D[v] < F [v] ≤ F [u]. (5)

Maxmin-fair distributions always exist [12]. Due to the convex-

ity of the set of feasible probability distributions, an equivalent

definition can be given based on the sorted vectors of expected

satisfactions. Given a distribution D over S, let D ↑ = (λ1, . . . , λn )
be the vector of expected satisfactions (D[u])u ∈U sorted in increas-

ing order. Let ≻ denote the lexicographical order of vectors: i.e.,

(v1, . . . ,vn ) ≻ (w1, . . . ,wn ) iff there is some index i ∈ [n] such
that vi > wi and vj = w j for all j < i . Write v ≽ w if v = w or

v ≻ w . Then a distribution F over S is maxmin-fair if and only if

F ↑ ≽ D ↑ for all distributions D over S [12].

Problem 1 (Maxmin-fairness in combinatorial search).

Given a fixed search problem, a set U of individuals, and a satis-
faction function A, design a randomized algorithm A which always
terminates and such that, for each instance T , the distribution of
A(T ) is maxmin-fair for (U,A).

Problem 1 is a general formulation of maxmin-fairness in search

problems. Different choices for the set of feasible solutions S and

the satisfaction function A lead to different algorithmic problems.

The problem involves continuous optimization over infinitely many

distributions, each defined over the set S of valid solutions (which

is exponential-size). Despite these difficulties, we will show that

Problem 1 is tractable under mild conditions (Section 4).

García–Soriano and Bonchi [12] instantiate Problem 1 with the

case of matching. The main problem studied in the rest of this paper

is obtained by instantiating Problem 1with the case of ranking under

group-fairness constraints with individual-level value function: in
our setting S is the set of rankings r overU satisfying the group-

fairness constraints, and A(S,u) is our value function V (r ,u).

Problem 2 (Maxmin-fair ranking with group-fairness con-

straints). Given a set of individuals to be rankedU, a partition of
U into groups, a set S of rankings satisfying a given set of group-
fairness constraints as defined in (3), and a value functionV as defined
in (4), design a randomized algorithm which outputs rankings in S,
such that its output distribution over S is maxmin-fair.

3.2 Properties of maxmin-fair rankings
We next state some important properties of maxmin-fair rankings.

For the sake of readability, the proofs can be found in the Appendix.

The first property states the maintenance of the meritocratic order

within each group of individuals (e.g., gender).

Theorem 3.1 (Intra-group meritocracy). For any two indi-
viduals u1,u2 ∈ U belonging to the same group and such that
R(u1) ≥ R(u2), it holds that, if a distribution F over valid rankings S
is maxmin-fair, then Er∼F [f (r (u1))] ≥ Er∼F [f (r (u2))].

Our second property employs the notion of (generalized) Lorenz
dominance from [25], a property indicating a superior distribution

of net incomes. Consider two ranking distributions A and B. Let
A(k ) = A ↑ [k] denote the kth element of the expected satisfaction

values sorted in increasing order. ThenA dominates B if

∑k
i=1A(i) ≥∑k

i=1 B(i) ∀k ∈ [n], i.e., the expected cumulative satisfaction of the

bottom individuals is always higher or equal in A.
A distribution is generalized Lorenz-dominant if it dominates

every other distribution. When it exists, such a distribution has a

strong claim to being superior to all others, in terms of equity and

efficiency [20, 25, 28]. A generalized Lorenz-dominant distribution

must also be maxmin-fair. We show that a dominant distribution

does exist for rankings, in the important case where only upper

bound constraints are given in (3). Notice that in the case of two

groups (e.g., a binary protected attribute), lower bound constraints

may be replaced with an equivalent set of upper bound constraints.

Theorem 3.2. The maxmin-fair ranking with upper bounds is
generalized Lorenz-dominant.

Since

∑
u ∈U V (r ,u) is a constant independent of r , an easy con-

sequence of Theorem 3.2 is that the maxmin-fair distribution also

minimizes social inequality in the sense of [12]: i.e., the maximum

difference between the expected satisfactions of two users.

Corollary 3.1. Themaxmin-fair ranking with upper bounds min-
imizesmaxu ∈U D[u] −minv ∈U D[v] over all ranking distributions
D, as well as any other quantile range.

Moreover, by the majorization inequality [18], it also maximizes

any social welfare function that is additively separable, concave

and symmetric w.r.t.U:

Corollary 3.2. Suppose f : R → R is concave. When only
upper bound constraints are present, the maxmin-fair distribution
maximizes

∑
u ∈U f (D[u]) over all ranking distributions D.

In particular, in this case the maxmin-fair distribution minimizes

the variance of D ↑ , and when the valuesV (r ,u) are positive, it also
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maximizes, for instance, the Nash social welfare [22] (geometric

mean) of expected satisfactions. It must also minimize the Gini

inequality index when it is well-defined [25].

4 ALGORITHM
We show that our fair ranking problem (Problem 2) is efficiently solv-

able. Notice that the set S of valid solutions can be exponential-size,

so enumerating S is out of the question in an efficient algorithm.

Instead, we need a method to quickly single out the best solutions

to combine for a maxmin-fair distribution. To show how this can be

done, we abstract away from the specifics of the problem and show

how to find a maxmin-fair distributions of general search problems

(Problem 1). The following notion is key:

Definition 1. A weighted optimization oracle forA : S ×U →
R is an algorithm that, given w : U → R≥0, returns S∗(w) and
A(S∗(w),u) for all u ∈ U, where

S∗(w) ∈ argmax
S ∈S

∑
u ∈U

w(u) · A(S,u). (6)

Roughly speaking, the intuition why these oracles are important

is the following. Suppose we have constructed a distribution D
which is notmaxmin-fair. By puttingmoreweight on the individuals

less satisfied by D, we can use the weighted optimization oracle to

find a new solution S placing more emphasis on them, which can

be added to “push D towards maxmin-fairness”.

Designing an efficient weighted optimization oracle is a problem-

dependent task. Our first algorithmic result reveals that their exis-

tence suffices to solve Problem 1 efficiently.

Theorem 4.1. Given a weighted optimization oracle, Problem 1 is
solvable in polynomial time.

We emphasize that Theorem 4.1 is very general and its applicabil-

ity is in no way limited to ranking problems, or to value functions

of a certain form. They apply to an arbitrary search problem P (e.g.,

searching for a ranking, a matching, a clustering...) and an arbitrary

set of individuals. As long as an efficient weighted optimization

algorithm exists for P , it yields efficient algorithms for maxmin-fair-

P (Problem 1). The wide applicability of this condition implies that

maxmin-fair distributions may be efficiently solved in a great many

cases of interest: most polynomial-time solvable problems stud-

ied in combinatorial optimization (e.g., shortest paths, matchings,

polymatroid intersection. . . ) admit a polynomial-time weighted op-

timization oracle. Thus, Theorem 4.1 extends in a new direction

the results of [12]: as efficient weighted matching algorithms exist,

the main result of [12] becomes a corollary to Theorem 4.1 (up to

the loss of a polynomial factor in runtime).

More importantly for us, the same holds for constrained ranking.

Theorem 4.2. Ranking with group-fairness constraints as in (3)

and a value function of the form (4) admits a polynomial-time
weighted optimization oracle.

Corollary 4.1. Maxmin-fair ranking with group-fairness con-
straints (Problem 2) is solvable in polynomial-time.

In Section 4.1 we prove Theorem 4.1 by solving a sequence

suitably designed linear programs. Each of these programs requires

exponentially many constraints to be written down explicitly, but

can nonetheless be solved efficiently via the ellipsoid method using

a weighted optimization oracle. (As explained in Appendix A.4,

if we settle for some approximation error, these LPs can also be

solved approximately using techniques to solve zero-sum games

and packing/covering LPs [11, 32, 33].) Finally, in Section 4.2 we

show the existence of weighted optimization oracles for ranking

(Theorem 4.2).

4.1 Proof of Theorem 4.1
We start by showing a weaker result concerning the computation

of the optimal expected satisfaction values, rather than the actual

distribution of solutions.

Lemma 4.1. Given a weighted optimization oracle, the expected
satisfactions of a maxmin-fair distribution can be computed in poly-
nomial time.

Proof. Let F be a maxmin-fair distribution. We maintain the

invariant that we know the expected satisfaction αv of F for all v
in a subset K ⊆ U:

F [v] = αv for all v ∈ K , (7)

K , ∅ =⇒ F [v] ≥ max
w ∈K

αw for all v < K . (8)

Initially K = ∅. We show how to augment K in polynomial

time while maintaining (7) and (8), which gives the result since

K = U will be reached after at most |U| iterations. We need to

find the largest minimum expected satisfaction possible outside

K for a distribution D subject to the constraints that the expected

satisfaction inside K must be equal to αv . By (7), (8) and the lex-

icographical definition of maxmin-fairness, for any distribution

D the constraints D[v] = αv for all v ∈ K are equivalent to the

constraints D[v] ≥ αv for all v ∈ K . We can write our optimization

problem as the following (primal) linear program:

max λ

s.t.

∑
S ∋v
−pS · A(S,v) ≤ −αv ∀v ∈ K

λ +
∑
S ∋v
−pS · A(S,v) ≤ 0 ∀v < K∑

S ∈S

pS = 1

pS ≥ 0,

(9)

whose dual is

min µ −
∑
v ∈K

αvwv

s.t. µ −
∑
v ∈S

wv · A(S,v) ≥ 0 ∀S ∈ S∑
v ∈U

wv = 1

wv ≥ 0.

(10)

The dual (10) has |U| variables but a possibly exponential number

of constraints (one for each candidate solution S). To get around
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this difficulty, observe that it can be written in the equivalent form

min

[
max
S ∈S

∑
v ∈S

wv · A(S,v)

]
−

∑
v ∈K

αvwv

s.t.

∑
v ∈U

wv = 1

wv ≥ 0.

(11)

This formulation makes it apparent that, given a weighted opti-

mization oracle, we can construct a separation oracle for the dual,
i.e., an algorithm that given a candidate solution to (10) and a pa-

rameter λ, returns “yes” if it is a feasible solution of value at most

λ, and otherwise returns “no” along with some violated constraint

or reports the fact that the value of the candidate solution is larger

than λ. Indeed, given {wv }v ∈U and λ ∈ R, we can determine if

the optimum of (11) is at most λ by using the weight optimization

oracle and answering “yes” if the weight of the solution is no larger

than λ+
∑
v ∈K αvwv . Otherwise the separation oracle answers “no”

and reports a violated constraint, given either by the constraint∑
v wv = 1, which can be checked separately, or by the constraint∑
v ∈S∗ wv · A(S

∗,v) ≤ µ, where S∗ is the solution found by the

weighted optimization oracle.

The existence of a separation oracle for a linear program im-

plies its polynomial-time solvability via the ellipsoid algorithm [15].

Hence (11) can be solved exactly in polynomial time, and we can

find an optimal solution to (11). Let us denote the optimal pri-

mal and dual solutions by {p∗S }S ∈S and {w∗v }v ∈U . Suppose now
that the optimum value of (9) is λ∗; notice that if K , ∅, we
must have λ∗ ≥ maxv ∈K αv by our assumptions (7) and (8). Let

K ′ = support(w∗) \ K = {v < K | w∗v > 0}. By complementary

slackness, for every v ∈ K ′ its corresponding primal constraint

in (9) is tight, hence

∑
S ∋v p∗SA(S,v) = λ∗. From the lexicographical

definition of maxmin-fairness we infer that F [v] = λ∗ for allv ∈ K ′

and F [v] ≥ λ∗ for all v < K . Therefore adding K ′ to K maintains

the invariants (7) and (8) if we set αv = λ∗ for all v ∈ K ′. This
allows us to augment K as long as K ′ , ∅.

On the other hand, if K ′ = ∅, then K , ∅ (as
∑
v wv = 1) and

λ∗ = maxv ∈K αv , since the objective function did not increase

since the last iteration. In this case we simply add the constraint

µ −
∑
v ∈K αvwv = λ∗ to (10) and change the objective function to

minimize

∑
v ∈K wv . This also yields an optimal solution to (11). But

in this case the new solutionw∗∗ must satisfy support(w∗∗)\K , ∅,
so we are back to the previous case.

We repeat this process until K = U. The number of iterations is

at most |U|, and each iteration runs in polynomial time. �

Proof of Theorem 4.1. Consider the last pair of LP programs

used in the proof of Lemma 4.1 (i.e., when K ∪ K ′ = U). We

used the separation oracle and the ellipsoid algorithm to solve

the dual LP (11); it remains to show that we can also find a

solution to the primal problem (9), whose variables define the

maxmin-fair distribution. If all numbersA(S,u) are rationals whose
numerators and denominators are specified with with b bits, then

the number T of calls to the separation oracle during the run of

the ellipsoid algorithm can be bounded by a polynomial in |U|

and b (see [15]). Consider the subprogram P of (11) formed by

using only these T constraints, along with

∑
v wv = 1 and the

non-negativity constraints. If we run the ellipsoid algorithm (which

is deterministic) on the new subprogram P instead, we will find

the same solution, because the separation oracle will return the

exact same sequence of solutions. Since the ellipsoid algorithm is

guaranteed to find an optimal solution, it follows that the reduced

set of constraints is enough by itself to guarantee that the optimum

of LP (11) is at least λ∗ (hence exactly λ∗); all other constraints
in (11) are redundant (their inclusion does not further increase

the minimum objective value). The dual of this subprogram P is a

subprogram Q of the primal LP (9) using only T of the variables pS
and having the same optimal value as (11) and (9). Since Q has a

polynomial number of variables and constraints, it can be solved

explicitly in polynomial time; any solution to this reduced primal

subprogram Q gives the desired distribution. �

Pseudocode for the maxmin-fair algorithm is given below.

Algorithm 1: Maxmin-fair solver

input :User set U; weighted optimization oracleA for

A : S × U → R

output :A maxmin-fair distribution for S

1 K ← ∅
2 αu ← −∞ for all u ∈ U
3 while K , U do
4 Solve (11) using oracleA as separation oracle.

5 Let λ∗ be the optimal value.

6 Let {w∗v }v∈U be a solution with value λ∗ and
support(w∗) \ K , ∅.

7 K ′ = support(w∗) \ K = {v < K | w∗v > 0}.

8 αv ← λ∗ for all v ∈ K ′

9 K = K ∪ K ′

10 V ← violated constraints found by the separation oracle in

previous calls.

11 Solve the subprogram Q of (9) comprising the constraints in V and

the simplex constraints pS ≥ 0,
∑
S pS = 1.

12 return an optimal solution {p∗S }S∈V to Q .

4.2 Proof of Theorem 4.2
Proof. SortU = {u1, . . . ,un } by decreasing order ofw so that

w(u1) ≥ w(u2) ≥ . . . ≥ w(un ), (12)

and let us identifyU with the set [n] for ease of notation, so that
ui = i . Recall that the positions [n] are sorted by decreasing f :

f (1) ≥ f (2) ≥ . . . ≥ f (n). (13)

Define B(i,u) = f (i) − д(u) andWiu = w(u) · B(i,u). Observe that,
because of the orderings defined by (12) and (13), the matrixW
satisfies the following “Monge property”: if i < j and u < v , then
Wiu +Wjv ≥Wiv +Wju . Indeed,

Wiu +Wjv − (Wiv +Wju ) = w(u)(B(i,u) − B(j,u))

+w(v)(B(j,v) − B(i,v))

= (w(u) −w(v)) (f (i) − f (j)) ≥ 0.

Thus we may apply the algorithm
2
from [7] to find a valid ranking

r maximizing

∑
u ∈UWr (u),u =

∑
u ∈U w(u) ·V (r ,u), as required by

2
In [7] an additional monotonicity property is assumed (thatWiu is decreasing with

u), but it is easy to check that it is not actually needed.
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the definition of weighted optimization oracle from Section 4. Then

we may compute each V (r ,u) explicitly using f and д. �

An important case is where only upper bounds are given in the

group constraints, i.e., when the set of valid rankings is of the form

S =
{
r ∈ R | |{u ∈ Ck | r (u) ≤ i}| ≤ uki ∀i ∈ [n],k ∈ [t]

}
. (14)

Plugging in the algorithm from [7] into Theorem 4.2 we obtain:

Algorithm 2: Weighted optimization oracle for ranking

with upper bounds

input :Set of individuals U; weight function w : U → R; value

function V : S × U → R
output :Best response ranking r and V (r , u) for all u ∈ U

1 Sort individuals in U in order of decreasing weight:

w (u1) ≥ w (u2) ≥ . . . ≥ w (un ).
2 For each position i ∈ [n] in increasing order (as in (13)), let u be the

smallest-index unassigned individual whose additional placement

at position i does not violate the group upper bound constraints in

the first i positions, and set r (u) = i .
3 Return r and V (r , u) for all u ∈ U.

Corollary 4.2. Algorithm 2 is a weighted optimization oracle for
ranking with upper bounds.

5 DETERMINISTIC BASELINE
In this section we present an exact optimal solution for the deter-

ministic version of the problem as formulated in (2). This is useful

for our experiments (Section 6) as it allows us to quantify the ad-

vantage of probabilistic rankings over deterministic rankings in

terms of the amount of individual fairness maintained.

Although Celis et al. [7] study the problem of the form (1), we

devise a variant of their algorithm to deal with the problem as

in (2): this variant can be shown to provide the optimal deterministic
ranking solution to the constrained ranking problem (2) when the

group-fairness constraints are expressed in terms of upper bounds

on the number of elements from each class that appear in the

top-k positions, as in (14). As noted in Section 3 and in [7], in

the case of two disjoint groups (e.g., a binary protected attribute

such as gender), lower bound constraints may be replaced with an

equivalent set of upper bound constraints.

Algorithm 3: Deterministic baseline

input :Set of individuals U; relevance function R : U → R≥0

output :Deterministic ranking r .
1 Sort individuals in U in order of decreasing score:

R(u1) ≥ R(u2) ≥ . . . ≥ R(un ).
2 For each position i ∈ [n] in increasing order (as in (13)), let u be the

smallest-index unassigned individual whose additional placement

at position i does not violate the group upper bound constraints in

the first i positions, and set r (u) = i .
3 Return r .

At the basis of our deterministic baseline (Algorithm 3) lies the

idea of using the function softmin(x1, . . . , xn ) = − ln(
∑n
i=1 e

−xi )

Table 2: Minimum expected value produced by MF(0) and optimal
deterministic solution, spread (maximum - minimum) of expected
value, Gini inequality index (%), and discounted cumulative gain for
IIT-JEE and Law-schools datasets for different values of α .

IIT-JEE Law-schools
α = 0.1 α = 0.2 α = 0.3 α = 0.1 α = 0.2 α = 0.3

minV (MF ) -26.82 -96.44 -185.7 -0.87 -1.03 -5.48

minV (det) -44 -180 -358 -1 -2 -10

sprd(MF ) 53.76 193.4 372.8 0.97 1.14 6.19

sprd(det) 433 899 1192 6 7 32

дini(MF ) 0.6714 2.413 4.658 0.0005 0.0011 0.05

дini(det) 1.062 3.772 7.027 0.0010 0.0020 0.08

DCG(MF ) 84847±118 84444±180 84062±242 31379± 1 31379± 1 31379± 1

DCG(det) 85123 85008 84807 31380 31380 31380

Figure 1: IIT-JEE: Minimum expected value produced by MF(0) and
optimal deterministic solution (left); distribution of expected value
V (r , u) (for α = 0.3) (center); number of iterations (calls to the opti-
mization oracle) vs error ϵ (right).

to force the algorithm from [7] to approximately maximize a mini-

mum instead of a sum, and observe that the limiting behaviour of

the function x → softmin(Mx)/M must also occur in this case for

finite M because the algorithm from [7] does not depend on the

specific values of the matrixWi j , but only on the existence of an

ordering of rows/columns ofW where the Monge property holds

(see Section 4.2).

Theorem 5.1. When the group-fairness constraints are defined
only by upper bounds, Algorithm 3 returns a ranking r ′ such that

r ′ ∈ argmax
r ∈S

min
u ∈U

V (r ,u).

6 EXPERIMENTS
Datasets. We use two real-world datasets containing gender infor-

mation and one score for each individual. Our first dataset comes

from the IIT Joint Entrance Exam (known as IIT-JEE 2009) [6]
3
,

from which we select the top N = 1000 scoring males and the top

N scoring females. The score distribution is heavily biased at the

top, with just four females making the top-100. Our second dataset

is much less skewed: it contains admissions data from all of the

public law schools in the United States
4
. We use the top N = 1000

LSAT scorers, of whom 362 are female.

Settings.We impose the following group-fairness constraints, pa-

rameterized by α ∈ [0, 12 ]: at least ⌈α · k − 1⌉ females should be

ranked in the top k , for k = 1, 2, . . . , 2N . We employ V (r ,u) =
r∗(u) − r (u) as our value function, where r∗ is the ranking by de-

creasing score.

3
https://jumpshare.com/v/yRUSJrnw3bzGGNf0jL3A

4
http://www.seaphe.org/databases.php
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Algorithms. We implement our maxmin-fair solver for ranking,

using the technique described in Appendix A.4 to solve the LPs ap-

proximately with an additive error parameter ϵ ; ϵ = 1 corresponds

to an additive error in expected ranking position of 1 (out of 2000

for IIT-JEE and out of 1000 for Law school). We denote by MF(ϵ)
the ranking distribution produced by our approximate maxmin-fair

algorithm with parameter ϵ , and byMF(0) the one obtained with

the smallest ϵ tested (0.5). Our code is available on Dropbox
5
.

In order to quantify the advantage of probabilistic rankings over

the optimal deterministic ranking, we also test the deterministic

algorithm we devised (Algorithm 3) to solve the problem in (2). This

provides the strongest possible deterministic competitor for our

algorithm.

Measures. Besides comparing the minimum expected value, which

is the main focus of our work, we also report other measures of

inequality of the produced solution: spread (maximum - minimum)

of expected value and Gini inequality index [14] (after normalizing

values to the interval [0, 1] to make the index well-defined). Finally,

to examine if there is a loss in global ranking quality, we use the

popular discounted cumulative gainmetric [4, 6, 7, 17, 26, 29], which

can be defined as DCG(r ) =
∑
u ∈U score(u)/log(r (u) + 1).

Results. The first two rows of Table 2 report the expected value

(over a random ranking from the distribution) of the solution for the

worst-off individual; we can observe that the maxmin-fair solution

improves significantly on the optimal deterministic solution, with

the gap between the two increasing with α (the strength of the

group-fairness constraint). The same can be observed in Figure 1

(left) and Figure 2 (left) for the two datasets. We do not report the

average value of the solution for all individuals because it is the

same for every ranking, as rankings are bijections onto [n].
In Table 2 we can also observe that the inequality measures

for the maxmin-fair solution are always smaller than the optimal

deterministic one. Finally, we report the ranking-quality measure

DCG. Since, unlike the three other measures in Table 2 DCG is

defined for deterministic rankings, we report average and standard

deviation. We see that DCG is nearly the same forMF(0) and det.

Thus in this experiment improving individual fairness with respect
to a group-only fairness solution incurs a negligible loss in DCG.

Figure 1 (center) and Figure 2 (center) depict the average ex-

pected value of the bottom k individuals in three solutions: our

best solution MF(0), an approximate solution with ϵ = 10, and the

optimal deterministic solution. The peculiar behaviour of the curve

in Figure 1 (center) (constant up to roughly k = n/2 for MF) is due
to the skew of the input scores, which forces the maxmin-fair solu-

tion to essentially increase the ranking positions of most men by a

certain minimum amountX and decrease that of most women byX
with the best possible distribution. We notice that the maxmin-fair

solution yields stronger cumulative value to the worst-off users

than the other two do, for any k . In particular, the maxmin-fair

solution found Lorenz-dominates the approximate one and the de-

terministic one, in accordance with Theorem 3.2. Because of the

error allowed, the approximate solution MF(10) stays somewhat

belowMF(0) and its curve crosses that of the deterministic solution

sporadically before distancing itself again. Finally, Figure 1 (right)

5
https://www.dropbox.com/sh/0kc17h36p632m0a/AACyO_

PNPeBOJvPirEhQzFUDa?dl=0

Figure 2: Law-schools: Minimum expected value produced byMF(0)
and optimal deterministic solution (left); distribution of expected
value V (r , u) (for α = 0.3) (center); number of iterations (calls to
the optimization oracle) vs error ϵ (right).

and Figure 2 (right) show the number of calls to the optimization

oracle (which is also the size of the support of the ranking distri-

bution) as a function of the additive error parameter ϵ . Runtime is

linear in the number of calls to the optimization oracle. The longest

runtime of our Python implementation of MF (which occurred on

the IIT-JEE dataset with α = 0.3 and ϵ = 0.5) was under one hour.

7 CONCLUSIONS
We introduced the problem of minimizing the amount of individual

unfairness introduced when enforcing group-fairness constraints

in ranking. We showed how a randomized approach ensures more

individual fairness than the optimal solution to the determinis-

tic formulation of the problem. We proved that our maxmin-fair

ranking distributions provide strong fairness guarantees such as

maintaining within-group meritocracy and, under a mild assump-

tion (i.e., when we have only upper-bound constraints or when the

protected attribute is binary), they have the desirable properties

of being generalized Lorenz-dominant, and minimizing social in-

equality. Besides the technical contributions, our work shows how

randomization is key in reconciling individual and group fairness.

In our future work we plan to extend this intuition beyond ranking.
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A APPENDIX
We present here the proofs missing from the main text.

A.1 Proof of Theorem 3.1
Proof. Recall the form of our value functionV (r ,u) = f (r (u))−

д(u) and observe that for any distribution D,

D[u] = E
r∼D
[V (r ,u)] = E

r∼D
[f (r (u))] − д(u). (15)

Let uswrite r ∈ F tomean that r occurs with non-zero probability
in the maxmin-fair distribution F . We show that if u1,u2 belong to

the same group and R(u1) ≥ R(u2), then the following holds:

f (r (u2)) > f (r (u1)) for some r ∈ F =⇒ F [u1] ≥ F [u2] , (16)

E
r ∈F
[f (r (u1))] ≥ E

r ∈F
[f (r (u2))]. (17)

Suppose by contradiction that (16) fails, so f (r (u2)) > f (r (u1)) but
F [u1] < F [u2] for some r ∈ F . Let r̂ denote a ranking which is

identical to r except that the positions of u1 and u2 are swapped.

As u1 and u2 belong to the same group, swapping their positions

will not affect the group-fairness constraints, so r̂ is a valid ranking
too. Consider a distribution D over valid rankings S obtained by

drawing s from D and returning s if s , r and r̂ if s = r . We

have Es ∈D [f (s(u1))]−Es ∈F [f (s(u1))] = Prs ∈F [s = r ] · (f (r (u2))−
f (r (u1))) > 0, so Es ∈D [f (s(u1))] > Es ∈F [f (s(u1))] and therefore,

by (15), D[u1] > F [u1]. Moreover ∀v ∈ U \ {u1,u2} it holds that
F [v] = D[v]. Therefore D is a distribution improving the expected

satisfaction of u1 w.r.t. F and such that no v ∈ U exists such that

F [v] ≤ F [u1] and D[v] < F [v], thus contradicting the assumption

that F is maxmin-fair. This proves (16).

To prove (17), consider first the case F [u1] ≥ F [u2]. Since
R(u1) ≥ R(u2) implies д(u1) ≥ д(u2), in this case substituting

D = F in (15) we trivially obtain (17). If instead F [u1] < F [u2] then,
by (16), we conclude that f (r (u1)) ≥ f (r (u2)) for all r ∈ F , which
implies (17), as we wished to show. �

A.2 Proof of Theorem 3.2
In this subsection we consider the case where we only have upper

bounds in the group-fairness constraints.

First we need a result characterizing the minimum expected

satisfaction of a maxmin-fair distribution. It has been inspired by

the proof of [12][Theorem 15]. While [12] only considers matroid

problems (which do not cover constrained ranking), our key insight

is that this type of argument can be generalized whenever there is a
weight optimization oracle depending only on the weight order (as
opposed to the numerical values of the weights). This is true of the

greedy algorithm from Corollary 4.2 (Algorithm 2).

Lemma A.1. Let λ : 2U → R. There is a distribution of valid
rankings such that D[u] ≥ λu if and only if

max
S ∈S

∑
u ∈X

A(S,u) ≥
∑
u ∈X

λu for all X ⊆ U. (18)

Proof of Lemma A.1. Given a set E, let ∆(E) = {x : E → R≥0 |∑
e ∈E xe = 1} denote the set of distributions over E. Consider

the following two-player zero-sum game: Player 1 (the maximizer)

chooses a distribution of solutions p ∈ ∆(S), Player 2 (the mini-

mizer) chooses a distribution of users w ∈ ∆(U), and the payoff

for Player 1 when she plays S ∈ S and Player 2 plays u ∈ U is

A(S,u) − λu . The value of this game is

v = max
p∈∆(S)

min
w ∈U
[
∑
S ∈S

pS (A(S,u) − λu )];

the required distribution exists when v ≥ 0. By Von Neumann’s

minimax theorem we have

v = min
w ∈∆(U)

max
S ∈S
[
∑
u ∈U

wu (A(S,u) − λu )]. (19)

Thus, v ≥ 0 exactly when for allw ∈ ∆(U), it holds that

max
S ∈S

∑
u ∈U

wuA(S,u) ≥
∑
u ∈U

wuλu . (20)

The result will follow if we can show that the minimization prob-

lem (19) has an optimal solution of the form

wu =

{
1
|X | , if u ∈ X

0, otherwise

(21)

for some non-empty X ⊆ U, because for wu of the form (21),

(20) simplifies to (18) on multiplication by |X |. We have seen in

Corollary 4.2 that for eachw ,maxS ∈S
∑
u ∈U wu (A(S,u) − λu ) can
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be optimized by an oracle (Algorithm 2) that only depends on the

order determined by w (observe that subtracting λu from A(S,u)
amounts to adding λ to the functionд in the definition ofA(S,u)). In
other words, for any bijection π : [n] → U and any weightw ≥ 0
compatible with π (i.e., satisfying wπ (1) ≥ wπ (2) ≥ . . .wπ (n)), we

have

max
S ∈S

∑
u ∈U

wu (A(S,u) − λu ) =
∑
u ∈U

wu (A(G(π ),u) − λu ),

where G(π ) is the solution returned by the greedy weighted opti-

mization oracle.

Fix an order π : [n] → U and let Bu = A(G(π ),u)−λu . Consider
the minimization problem

min

{ ∑
u ∈U

wuBu | w ∈ ∆(U),w compatible with π

}
. (22)

Let dn = wπ (n) and di = wπ (i) −wπ (i+1). The compatibility con-

ditions for w may be rewritten as di ≥ 0 for all i , and the distri-

butional constraint

∑
i wi = 1 becomes

∑
i i · di = 1. If we write

zi =
∑
j≤i Bπ (j), then (22) becomes

min


∑
i ∈[n]

di · zi | di ≥ 0,
∑
i ∈[n]

idi = 1

 = min
{zt
t
| t ∈ [n]

}
;

(23)

the last equality is easily seen to hold because zi ≤ λ · i for all i
implies

∑
i dizi ≤ λ

∑
i i · di = λ. Therefore for each π , an optimal

solution to (22) is of the form (21), where X = {π (1), . . . , π (t)};
hence the same is also true of an optimal solution to (19). �

Corollary A.1. The minimum expected satisfaction
in any maxmin-fair distribution of valid rankings is
min∅,X ⊆U

maxS∈S
∑
u∈U A(S ,u)
|X | .

We also need the following technical lemma concerning the

behaviour of the expression in Corollary (A.1).

Lemma A.2. The following function H : 2U → R is submodular:

H (E) = max
S ∈S

∑
u ∈E

A(S,u). (24)

Proof. Let J (E) = maxS ∈S
∑
u ∈E f (S(u)). Then H (E) = J (E) −∑

u ∈E д(u), i.e., H is the difference between J and a modular func-

tion. So it suffices to show that J is submodular; let us fix X ⊆ Y
and Z ⊆ U \ Y . Recall from corollary 4.2 that

∑
w wu f (S(u)) is

maximized by a greedy algorithm. By settingwu = 1 for u ∈ E and

wu = 0 elsewhere, it can be used to compute J (E) for any E; let us
denote by rE the ranking returned. Whenever we have two equal

weightswu = wv , we can break ties in Algorithm 2 in favor of X ,
followed by Y \ X , Z , andU \ (Y ∪ Z ). Then the greedy algorithm

to maximize f (Y ∪ Z ) attempts to place the elements of X in top

positions whenever possible, then elements of Y , and then elements

of Z . This ensures that in rX and rX∪Z the position of the elements

of X is the same, allowing us to simplify the marginal gains:

J (X ∪ Z ) − J (X ) =
∑

u ∈X∪Z
f (rX∪Z (u)) −

∑
u ∈X

f (rX (u))

=
∑
u ∈Z

f (rX∪Z (u)).

Similarly,

J (Y ∪ Z ) − J (Y ) =
∑

u ∈Y∪Z
f (rY∪Z (u)) −

∑
u ∈Y

f (rY (u))

=
∑
u ∈Z

f (rY∪Z (u)).

Moreover, for any x ∈ Z , rX∪Z (x) ≤ rY∪Z (x) by the greedy rule in

Corollary 4.2 and our tie-breaking rule. Therefore f (rX∪Z (x)) ≥
f (rY∪Z (x)), which implies J (X ∪ Z ) − J (X ) ≥ J (Y ∪ Z ) − J (Y ), as
desired. �

The following is an analog of the “fair decompositions” of [12]:

Lemma A.3. Define a sequence of sets B1,B2, . . . ,Bk iteratively
by: Bi is a maximal non-empty set X ⊆ U \ Si−1minimizinд

H (X ∪ Si−1) − H (Si−1)

|X |
,

where H is given by (24) and Si =
⋃
j≤i

Bi . (25)

We stop when Si = L (i.e., k is the first such i); this will eventually
occur as the sequence (Si ) is strictly increasing. Then for every i ∈ [k],
the following hold:
(a) The expected satisfaction of any u ∈ Bi in any maxmin-fair

distribution F is F [u] = H (Bi )
|Bi |

.
(b) For all u ∈ Si ,v < Si , we have F [u] < F [v].
(c) For any D ∈ ∆(S) and m ≤ |U|, it holds that

∑m
j=1 D(j) ≤∑m

j=1 F(j).

Proof. Let λj =
H (Bj )
|Bj |

for all j ∈ [k]. Notice that, using (25),

H (Si ) = H (Si−1 ∪ Bi ) = λi |Bi | + H (Si−1) holds for all i , hence

H (Si ) =
i∑

j=1
λj |Bj |. (26)

Notice also that the definition of H trivially implies that for any

distribution D we must have

H (X ) ≥
∑
u ∈X

D[u]. (27)

We can give an alternative definition of Si as

Si is a maximal set X * Si−1 minimizing

H (X ) − H (X ∩ Si−1)

|X \ Si−1 |
.

(28)

Indeed, for any fixed difference Y = X \ Si−1, the submodularity of

H (Lemma A.2) implies that the minimum of the numerator in (28)

is attained for a set X which properly contains Si−1. In particular

we have that for any X ⊆ U and j ∈ [k], H (X ) − H (X ∩ Sj−1) ≥
λj |X \ Sj−1 |, and by replacing X with X ∩ Sj above we also get

H (X ∩ Sj ) − H (X ∩ Sj−1) ≥ λj |X ∩ Bj |, implying

H (X ) ≥ λi |X \ Si−1 | +
∑
j<i

λj |X ∩ Bj | ∀i ∈ [k]. (29)

We show that properties (a) and (b) hold for all i ≤ t ≤ k ,
reasoning by induction on t . There is nothing to show when t = 0
or Si−1 = U (in the latter case, k < i), so assume that t ≥ 1 and

the claims hold for all i < t ; we show they also hold for i = t .
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From property (a) in the induction hypothesis, we know that

in the maxmin-fair distribution, F [u] = λj∀u ∈ Sj , j ≤ i . We can

use Lemma A.1 to determine the minimum expected satisfaction

of F outside Si−1; we conclude, by (29), that minu<Si−1 F [u] ≥ λi .
As (26) shows, equality in (29) is attained when X = Si , thus by (27)
we must in fact have minu<Si−1 F [u] = λi and F [u] = λi for all
u ∈ Bi , proving (a).

To prove (b), we need to show the strict inequality λi−1 < λi .
By Lemma (A.2), the function J (X ) = H (X ∪ Si−1) − H (Si−1) is
submodular. A consequence of this is that, if X ,Y are non-empty

sets minimizing J (X )/|X |, then X ∪ Y also minimizes J (X )/|X |.

Indeed, suppose
J (Y )
|Y | =

J (X )
|X | , λ. By the submodularity of J ,

J (X ∪ Y ) + J (X ∩ Y ) ≤ J (X ) + J (Y ) = λ(|X | + |Y |).

Notice that J (X ∪ Y ) ≥ λ |X ∪ Y | and J (X ∩ Y ) ≥ λ |X ∩ Y | by
definition. If any of these two inequalities were strict we would

have the contradiction

J (X ∪ Y ) + J (X ∩ Y ) > λ(|X ∪ Y | + |X ∩ Y |) = λ(|X | + |Y |).

Hence these inequalities are not strict, and J (X ∪ Y ) = λ |X ∪ Y |.
Now, due to the maximality of Bi as defined by (25), the set Bi is

the union of all non-empty setsX minimizing J (X )/|X |. This means

that, when t > 1, the strict inequality λt > λt−1 holds (otherwise

Bt−1 would not be maximal), which by (a) implies (b).

Finally we show (c). We argue by contradiction. Pick a coun-

terexample with minimum m; then m ≥ 1. Let i be such that

|Si−1 | < m ≤ |Si |. Then we have

∑m−1
j=1 D(j) ≤

∑m−1
j=1 F(j) and∑m

j=1 D(j) >
∑m
j=1 F(j), thus D(m) > F(m) = λi by properties (a)

and (b). Now let X be the individuals with them smallest satisfac-

tions in D. It follows that

H (Si ) ≥
∑
u ∈Si

D[u] ≥
∑
u ∈X

D[u] + (|Si | −m)D(m)

=

m∑
j=1

D(j) + (|Si | −m)D(m) >
m∑
j=1

F(j) + (|Si | −m)λi

=
∑
j≤i

λj |Bj | = H (Si ).

This contradiction completes the proof. �

Proof of Theorem 3.2. Property (c) of Lemma A.3 asserts that

themaxmin-fair distribution F is generalized Lorenz-dominant. �

A.3 Proof of Theorem 5.1
Proof. SortU = {u1, . . . ,un } by increasing order of д so that

д(u1) ≥ д(u2) ≥ . . . ≥ д(un ), (30)

and let us identifyU with the set [n] for ease of notation, so that
ui = i . Recall that the positions [n] are sorted by decreasing order

of f so that

f (1) ≥ f (2) ≥ . . . ≥ f (n). (31)

Let M > 0 be a large enough number and define Wiu =

−e−M (f (i)−д(u)). Observe that, because of the orderings defined

by (30) and (31), the matrixW satisfies the Monge property: if i < j
and u < v , thenWiu +Wjv ≥Wiv +Wju . Indeed,

Wiu+Wjv−(Wiv+Wju ) = (e
−Mf (j)−e−Mf (i))(eMд(u)−eMд(v)) ≥ 0

because д(u) ≥ д(v) and f (i) ≥ f (j), so both factors are non-

negative. Thus we may apply the algorithm from [7] to maximize∑
uWr (u),u over valid rankings r . The resulting algorithm is Al-

gorithm 3. For any fixed M , maximizing

∑
uWr (u),u is the same

as maximizing (1/M) · softmin{M · A(S,u) | u ∈ U}. But since the
solution S∗ = S∗(M) returned by this algorithm does not depend
onM > 0 and limM→∞

softmin(M ·z)
M = min (z) , it follows that S∗

maximizes min{A(S,u) | u ∈ U}, as we wished to show. �

A.4 Solving maxmin-fairness approximately
Instead of solving the LPs in the proof of Theorem 4.1 exactly, we

can use iterativemethods designed to approximately solve zero-sum

games and packing/covering programs, as sketched next.

Recall that the exact algorithm 1 works by solving the linear

program (9) and updating K and αv . Let us apply a positive affine

transformation to normalize allA(S,v) to the range [0, 1] and select
an additive approximation parameter ϵ > 0, so we want to ensure

that in the final solution, the expected satisfaction for every v ∈ U
is at most an additive ϵ below that whichwould have been computed

by solving LP (9) exactly at the point where αu was assigned.

Rather than maximizing λ directly in (9), we can guess an ap-

proximation λ̃ to the optimum, and verify if the guess is correct by

eliminating the λ variable from this LP and replacing it with our

guess λ̃, and then checking if the program is feasible. Denote by

M the resulting LP.M is a fractional covering program, equivalent

to a zero-sum game, hence the techniques from [32] apply. IfM is

feasible, the algorithm from [32] returns a non-negative solution

with

∑
s pS = 1 and violating the remaining constraints by at most

an additive term δ , usingO(logn/δ2) calls to the separation oracle.

This solution is sparse, havingO(logn/δ2) non-zero coefficients. By

performing binary search on λ̃, we can solve (9) up to a δ/2 term in

the satisfaction probabilities by approximately solvingO(log(1/δ ))
packing problems. Thenwe augmentK by adding those users where

the satisfaction probabilities in the approximate solution increased

by at most δ/2; then we know than in the exact solution, it was

impossible to increase then by more than δ . This process, however,
may decrease the satisfaction probabilities of individuals already in

K by up to δ/2. If we have solvedm different LPs by the time we

reach K = U, the total cumulative error in the satisfaction proba-

bilities in the final solution and the optimum values of the program

where they were computed is at most δm. Sincem ≤ O(n log(1/δ )),
we can take δ = O(ϵ/(n log(n/ϵ)) to guarantee that δm ≤ ϵ .

Several improvements over this basic scheme can be made. First,

the above bound for m is often too pessimistic, and it is more

efficient to do a “doubling trick”: start withm = 2 and keep doubling
m and restarting again with K = ∅ if during the execution of the

algorithm sketched above we end up solving more thanm programs.

Second, we can use the variable-step increase technique from [33].

Third, in the case of ranking problems with upper bounds, the

separation oracle only depends on the order of the weights and

not their specific values, so there is no need to call it again if this

order does not change; we can simply increase the probability of

that solution. Finally, for a given order of weights, (23) allows us

to obtain an optimal dual solution that respects that given weight

order, which can be used to detect convergence of the iterative

algorithm from [33] earlier.
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